初二数学下册入学测试卷

合集下载

初中八年级(下)入学测试

初中八年级(下)入学测试

博思教育入学测试(八年级数学)姓名: 授课教师: 黄淑敏1、(难度系数0.85 6')下列不等式变形正确的是( )(A)由a>b ,得a-2<b-2 (B)由a>b ,得-2a<-2b(C)由a>b ,得a b > (D)由a>b ,得22a b >知识点:不等式的性质错误原因:教学策略:2、(难度系数0.85 6')不等式14x-7(3x+8)<4(2x-5)的负整数解是( )(A)-3,-2,-1,0 (B)-4,-3,-2,-1(C)-2,-1 (D)以上答案都不对知识点:解一元一次不等式错误原因:教学策略:3、(难度系数0.85 6')下列四个命题正确的是 ( )A.两个等腰三角形相似B.两个直角三角形相似C.两个等腰直角三角形相似D.有一个角相等的两个等腰三角形相似知识点:相似三角形错误原因:教学策略:4、(难度系数0.75 6')如图是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )A.0.36πm 2B.0.81πm 2C.2πm 2D.3.24πm 2知识点:线段的比错误原因:教学策略:第4题图5、(难度系数0.85 6')不等式组2,3482,x x x ⎧>-⎪⎨⎪-≤-⎩的最小整数解为( ) A .-1 B .0 C .1 D .4知识点:解一元一次不等式组错误原因:教学策略:6、(难度系数0.85 6')解关于x 的方程113-=--x m x x 产生增根,则常数m 的值等于 ( ) (A)-2 (B)-1 (C)1 (D)2知识点:分式方程,增根错误原因:教学策略:7、(难度系数0.85 6')对两个班学生进行了一次数学测试,班级平均分和方差如下:2212128686259186.x x s s ====,,, 则成绩较为稳定的班级是( ) (A)八(1)班 (B)八(2)班 (C)两个班成绩一样稳定 (D)无法确定知识点:数据的搜集与处理(数据的波动:平均数,方差)错误原因:教学策略:8、(难度系数0.85 6')下列四个命题: ①小于平角的角是钝角;②平角是一条直线;③等角的余角相等; ④凡直角都相等。

2022-2023学年人教版八年级下学期入学测试数学试题

2022-2023学年人教版八年级下学期入学测试数学试题

人教版八年级下学期入学测试一、选择题1.(4分)以下哪个不是全等三角形的判定?()A. SSSB.SASC.ASAD.SSA2.(4分)若等腰三角形的两边长分别为4cm和10cm,则该等腰三角形的周长为()cm.A.18B.24C.26D.18或243.(4分)如图,在△ABC中,∠BAC=α,点D为BC上一点,且DB=DE,DC=DF,则∠EDF=()A.αB.α﹣90°C.180°﹣αD.2α﹣180°4.(4分)若直线l的函数表达式为y=﹣x+2,则下列说法不正确的是()A.直线l经过点(1,1)B.直线l不经过第三象限C.直线l与x轴交于点(﹣2,0)D.y随x的增大而减小5.(4分)如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程kx+b=2x的解是()A.x=B.x=1C.x=2D.x=46.(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,若AB=10,CD=3,则△ABD的面积是()A.9B.12C.15D.247.(4分)如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB交EF 于点D,连接EB.下列结论:①∠F AC=40°;②AF=AC;③∠EFB=40°;④∠EBC=110°,其中正确的是()A.①②④B.②③④C.①②③D.①②③④8.(4分)已知m,n均为正整数且满足mn﹣2m﹣3n﹣20=0,则m+n的最小值是()A.20B.30C.32D.37二、填空题9.(4分)已知x2﹣mx+36是完全平方式,则m的值为.10.(4分)已知x﹣y=1,x2+y2=25,则xy=,x+y=.11.(4分)一次函数y=﹣2x+9的图象不经过第象限.12.(4分)一次函数y=nx+(n2﹣7)的图象过y轴上一点(0,2),且y随x的增大而减小,则n=.13.(4分)已知等腰三角形的底边长为2,腰长为8,则它的周长为.14.(4分)如图,在△ACD中,∠CAD=90°,AC=5,AD=12,AB∥CD,E是CD上一点,BE交AD 于点F,若AB=DE,则图中阴影部分的面积为.三、解答题15.(6分)因式分解:(1)2x2﹣8;(2)4a2﹣12ab+9b2.16.(7分)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AD=BC.求证BD=AC.17.(7分)如图,在平面直角坐标系中,直线过点A(1,5),B(﹣2,﹣1).(1)求直线AB的表达式;(2)求△AOB的面积.18.(7分)如图,CE是△ABC的角平分线,EF∥BC交AC于点F,求证:△FEC是等腰三角形.19.(7分)材料:常见的分解因式的方法有提公因式法和公式法,而有的多项式既没有公因式,也不能直接运用公式分解因式,但是某些项通过适当的调整能构成可分解的一组,用分组来分解一个多项式的因式,这种方法叫做分组分解法.如x2+2xy+y﹣16,我们仔细观察这个式子会发现,前三项符合完全平方公式,分解后与后面的部分结合起来又符合平方差公式,可以继续分解,过程为:x2+2xy+y2﹣16=(x+y)2﹣42=(x+y+4)(x+y﹣4).它并不是一种独立的分解因式的方法,而是为提公因式或运用公式分解因式创造条件.解答下列问题:(1)分解因式:2a2﹣8a+8.(2)请尝试用上面材料中的方法分解因式:x2﹣y2+3x﹣3y.20.(8分)(1)证明角平分线具有的性质:角平分线上的点到角的两边的距离相等.为了更直观、清楚地表达题意,我们通常在证明之前画出图形,并用符号表示已知和求证.如图1,已知:OC平分∠AOB,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:PD=PE.(2)如图2,在△OAB中,OP平分∠AOB,交AB于点P,PD⊥OA于点D,PE⊥OB于点E,OA=OB=6,若S△OAB=15,求PD的长.21.(10分)商场销售一款商品,进价为100元/支,销售中发现该商品每天的销售量y(件)与售价x (元/件)之间满足一次函数关系y=﹣3x+600.(1)商场每天销售这种商品的利润能否达到7200元?如果能,求出此时的销售价格;如果不能,说明理由.(2)若商场规定每天的利润不得低于6300元,求销售价格的取值范围.22.(12分)【探索发现】如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线DE经过点C,过A作AD⊥DE于点D.过B作BE⊥DE于点E,则△BEC≌△CDA,我们称这种全等模型为“k型全等”.(不需要证明)【迁移应用】已知:直线y=kx+6(k≠0)的图象与x轴、y轴分别交于A、B两点.(1)如图2.当k=﹣时,在第一象限构造等腰直角△ABE,∠ABE=90°;①直接写出OA=,OB=;②点E的坐标;(2)如图3,当k的取值变化,点A随之在x轴负半轴上运动时,在y轴左侧过点B作BN⊥AB,并且BN=AB,连接ON,问△OBN的面积是否发生变化?(填“变”或“不变”),若不变,其值为;若变,请说明理由;(3)【拓展应用】如图4,当k=﹣时,直线l:y=﹣4与y轴交于点D,点P(n,﹣4)、Q分别是直线l和直线AB上的动点,点C在x轴上的坐标为(10,0),当△PQC是以CQ为斜边的等腰直角三角形时,点Q的坐标是.。

八年级下学期数学入学测试卷及答案

八年级下学期数学入学测试卷及答案

八年级下学期数学入学测试卷(考试时间:90分钟,试卷满分120分)一、选择题(本大题10小题,每小题3分,共30分)1.以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A..B..C..D..2.下列每组数据中,能作为三角形三边边长的是( ) A.3、4、8 B.8、7、15C.5、5、11D.13、12、203.分式32-x y 有意义的条件是( )A.x 0B.y 0C.x 3D.x -34.如图,1=2,AB=AD ,则ABC ≌ADC ,采用的判定方法是( )A.SSSB.SASC.ASAD.AAS5.下列分解因式正确的是( ) A.﹣a+a 3=﹣a(1+a 2)B.2a ﹣4b+2=2(a ﹣2b)C.a 2﹣4=(a ﹣2)2 D.a 2﹣2a+1=(a ﹣1)26.等腰三角形的一个角为,则顶角为( )A.040B.0100C.040或0100D.0707.下列运算中,正确的是( ) A.4m ﹣m =3 B.(﹣m 3n)3=﹣m 6n 3C.m 6m 3=m 2D.(m ﹣3)(m+2)=m 2﹣m ﹣68.如图,ABC 中,A=,ABC 的两条角平分线交于点P ,BPD 的度数是( ) A.B.C.D.9.如图,Rt ABC 中,C=,AD 平分BAC ,交BC 于点D ,AB=10,S ABD =15,则CD 的长为( ) A.3 B.4 C.5 D.610.一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙两人合作完成需要( )小时。

A.b a11+B.ab 1C.ba +1D.ba ab +二、填空题(每题4分,共28分) 11.约分的结果是________.12.已知3x =5,3y =2,则3x+y 的值是_______.13. 已知m+n=-6,mn=4,则m 2-mn+n 2的值为_______. 14. 一个n 边形的内角和等于0720,则n =_______. 15. 如图,ABC ≌ADE ,若C =,D =,DAC =,则BAD =_______.16.如图,在ABC 中,ACB =,CD 是AB 边上的高,A =,AB =20,则BD =_______.(15题图) ( 16题图) (17题图)17.如图,已知ABC 中,AC =AB=5,BC =3,DE 垂直平分AB ,点D 为垂足,交AC 于点 E .那么EBC 的周长为_______.三、解答题(一)(本大题3小题,每小题6分,共18分)18.计算:()()()()33442x y x y x y xy xy +---÷19.如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:BE=CD .20.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=35°,∠C=65°.求∠DAE 的度数.四、解答题(二)(本大题3小题,每小题8分,共24分)21.ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上22.今年新冠肺炎疫情在全球肆虐,为降低病亡率,某工厂平均每天比原计划多生产10台呼吸机,现在生产120台呼吸机的时间与原计划生产90台呼吸机所需时间相同.求该工厂原来平均每天生产多少台呼吸机?23.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:(1)AD平分∠BAC.(2)DF=DE五、解答题(三)(本大题2小题,每小题10分,共20分)24.请认真观察图形,解答下列问题:(1)根据图中条件,试用两种不同方法表示阴影部分的面积.方法1:;方法2:.(2)从中你能发现什么结论?请用乘法公式表示该结论:.(3)运用你所得到的结论,解决问题:已知6,25)2==+xyyx(求22x y+的值.25.如图,△ABC和△ADE都是等腰三角形,BC、DE分别是这两个等腰三角形的底边,且∠BAC=∠DAE.(1)求证:BD=CE;(2)连接DC.如果CD=CE,试说明直线AD垂直平分线段BC.(1)作出ABC关于x轴对称的111A B C△,并写出点1A,1B,1C 的坐标;(2)在y轴上找点D,使得AD BD+最小。

重庆市巴蜀中学校2023-2024学年八年级数学下学期入学测试题

重庆市巴蜀中学校2023-2024学年八年级数学下学期入学测试题

重庆市巴蜀中学校2023-2024学年八年级数学下学期入学测试题一、单选题1.下列图形中不是轴对称图形的是( )A .B .C .D .2.下列运算正确的是( ) A .22423a a a += B .()32628a a =C .236a a a =gD .()222a b a b -=-3.函数y =x 的取值范围是( ) A .1x ≠B .2x ≠C .1x ≥且2x ≠D .1x >且2x ≠4.ABC V 的三条边长分别为a 、b 、c ,三个内角分别为A ∠、B ∠、C ∠,则满足下列条件的ABC V 是直角三角形的是( ). A .::3:4:5A B C ∠∠∠= B . 1.5a =,2b =,3c =C .1a =,2b =,c =D .23a =,24b =,25c =5的值应在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间6.下列命题中,正确的命题的是( ) A .有两边相等的平行四边形是菱形 B .有一个角是直角的四边形是矩形 C .四个角相等的菱形是正方形D .两条对角线相等的四边形是矩形7.如图,在ABC V 中,AB BC =,点O 为AC 的中点,连接BO ,在BO 上取一点E ,使得AE BE =,若10AB =,12AC =,则BE 的长为( )A .254B .252C .253D .2148.如图,菱形ABCD 中,AB =4,∠B =60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,则△AEF 的面积是( )A .B .C .D 9.如图,在平行四边形ABCD 中,对角线AC BD 、相交于点O ,2BD AD =,点E 、点F 分别是OC AB 、的中点,连接BE FE 、,若42ABE ∠=︒,则AEF ∠的度数为( )A .42︒B .45︒C .46︒D .48︒10.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE =CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE =BF ,∠BEF =2∠BAC ,FC =2,则AB 的长为( )A .B .C .4D .611.如图,在正方形ABCD 中,O 为对角线BD 的中点,E 为正方形内一点,连接BE ,CE ,CBE CEB ∠=∠,延长BE 与ECD ∠的平分线交于点F ,连接OF ,若OF =的边长为( )A .B .3CD 12.定义:对于确定顺序的三个数a ,b ,c ,计算23,,ab bc aca b b c a c-+++,将这三个计算结果的最大值称为a ,b ,c 的“极数”,例如:1,3-,1,因为()()()132313,313231⨯--⨯-⨯==-+--+,3113112⨯⨯=+,所以1,3-,1的“极数”为32,则下列说法中,正确的个数为( )①3,1,4-的“极数”是36;②若x ,y ,0的“极数”为0,则x 和y 中至少有1个数是负数; ③存在2个数m ,使得m ,6-,2的极数为65;④调整2-,4-,1这三个数的位置,一共能得到5种不同的极数.A .1B .2C .3D .4二、填空题13.白细胞是我们体内的重要免疫细胞,负责保护我们免受病原体的侵害.据研究,白细胞直径约为0.000012米,0.000012用科学记数法表示为.14.在正比例函数y kx =中,y 的值随着x 值的增大而增大,则点()3P k -,在第象限.15.已知7y =+,则3x y +的值为16.在菱形ABCD 中,2,60AB BAD =∠=︒,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE PB +的最小值为.17.如图,点A 在线段BG 上,四边形ABCD 和四边形DEFG 都是正方形,面积分别是10和18,则CDE V的面积为.18.关于x 的分式方程31133x a x x x -++=--的解为正数,且关于y 的不等式92(2)213y y y a +<+⎧⎪-⎨≥⎪⎩的解集为>5y ,则所有满足条件的整数a 的和为.19.如图,四边形ABCD 是平行四边形,G 为AB 的中点,连接DG ,将BCE V 沿着BE 所在的直线折叠,点C 刚好落在DG 上的F处,若AB =EF 的长为.20.若一个四位数m 的千位与百位数字和的两倍等于其十位与个位数字的和,则称这个四位数m 为“伙伴数”.将“伙伴数”m 的千位与十位数字对调,百位与个位数字对调后得到新数m ,且()99m m F m '-=,则()4293F =.若四位数m abcd =(19a b c d ≤≤≤≤≤,a ,b ,c ,d 为整数)为“伙伴数”,且()F m 能被8整除.令()a b cG M d++=,则在所有满足条件的“伙伴数”m 中,当()G M 的值最小时,“伙伴数”m 的值为.三、解答题 21.计算题(1)22142a a a ---()21 22.先化简,再求值:2321121x x x x x -⎛⎫--÷ ⎪--+⎝⎭,请在1、2、3中选择一个喜欢的数值作为x 的值. 23.如图,已知直线y =kx +6经过点A (4,2),直线与x 轴,y 轴分别交于B 、C 两点.(1)求点B 的坐标; (2)求△OAC 的面积.24.某服装店用4500元购进一批衬衫,很快售完,服装店老板又购进第二批该款式的衬衫,已知进价每件比第一批降低了10元,若第二次购货款为2100元,则进货量是第一次的一半. (1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,且不高于2250元,第二批衬衫的售价有哪几种方案?(售价是10的倍数)25.小明从家A 步行前往公园E ,已知点E 在点A 的正东方向,但是由于AE 道路施工,小明先沿正北方向走了400米到达B 处,再从B 处沿北偏东60°方向行走400米到达C 处,从C 处沿正东方向走了300米到达D 处,在D 处休息了6分钟,最终沿D E -方向到达E 处,已知点E 在点D 的南偏东45︒方向.小明从家出发的同时,爷爷从家选择另一路线A F E --步行前往E 处,已知点F 在点A 的南偏东60°方向,且点F 在点E 的正南方向.(1)求AE 的长度;(2)若小明步行速度为80米/分,爷爷步行速度为70米/分,小明和爷爷始终保持匀速行驶,1.4≈ 1.7)26.在平面直角坐标系中,直线MN 交x 轴正半轴于点M ,交y 轴负半轴于()0,3N -,30∠=︒ONM ,作线段MN 的垂直平分线交x 轴于点A ,交y 轴于点B ,交MN 于E .(1)如图1,求A 点坐标;(2)如图2,过点M 作y 轴的平行线l ,连接AN 并延长交直线l 于点F ,P 、Q 分别是直线MN 和直线AB 上的动点,求出FPQ △的最小周长;(3)如图3,点G 是y 轴的一个动点,H 是平面内任意一点,以N 、E 、G 、H 为顶点的四边形是菱形时,直接写出点H 的坐标.27.在等边ABC V 中,2AB =,BD AC ⊥,垂足为D ,点E 为AB 边上一点,点F 为直线BD 上一点,连接EF .(1)如图1,将线段EF 绕点E 逆时针旋转60︒得到线段EG ,连接FG AG 、.当点E 与点B 重合,且GF 的延长线过点C 时,连接DG ,求线段DG 的长;(2)如图2,将线段EF 绕点E 逆时针旋转60︒得到线段EG ,连接FG .点E 不与点A ,B 重合,GF 的延长线交BC 边于点H ,连接EH ,求证:BE BH +=;(3)如图3,当点E 为AB 中点时,点M 为BE 中点,点N 在边AC 上,且2DN NC =,点F 从BD 中点Q 沿射线QD 运动,将线段EF 绕点E 顺时针旋转60︒得到线段EP ,连接FP ,当12NP MP +最小时,直接写出DPN △的面积.。

八年级下数学开学测试卷

八年级下数学开学测试卷

1. 下列各数中,绝对值最小的是()。

A. -3B. 0C. 1.5D. -2.52. 已知a < b,那么下列不等式中正确的是()。

A. a + 2 < b + 2B. a - 2 > b - 2C. a + 2 > b + 2D. a - 2 < b - 23. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长是()cm。

A. 20B. 22C. 24D. 264. 下列函数中,是反比例函数的是()。

A. y = x^2 + 1B. y = 2x + 3C. y = 3/xD. y = 45. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是()。

A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)二、填空题(每题4分,共16分)6. 若x = 5,则2x - 3的值为______。

7. 在△ABC中,∠A = 90°,AB = 6cm,AC = 8cm,则BC的长度为______cm。

8. 若a > b,且a - b = 5,则a + b的值为______。

9. 已知一次函数y = kx + b的图象经过点(1, 3),则k的值为______。

10. 下列各式中,正确的是______。

11. 解方程:3x - 5 = 2x + 1。

12. 已知一元二次方程x^2 - 4x + 3 = 0,求方程的解。

13. 已知等腰三角形ABC中,底边AB = 8cm,腰AC = 10cm,求顶角A的度数。

四、应用题(每题10分,共20分)14. 学校组织学生参加植树活动,共有80人参加。

其中,男生人数是女生人数的2倍。

请计算男生和女生各有多少人?15. 某工厂生产一批产品,每天生产50个,用了5天完成。

如果每天生产60个,需要多少天完成?答案:一、选择题1. B2. A3. B4. C5. A二、填空题6. 77. 108. 109. 3 10. 3x^2 + 2x - 1三、解答题11. x = 312. x = 1 或 x = 313. 40°四、应用题14. 男生40人,女生40人15. 4天。

黑龙江省哈尔滨市2023-2024学年八年级下学期开学考试数学模拟试题(含答案)

黑龙江省哈尔滨市2023-2024学年八年级下学期开学考试数学模拟试题(含答案)

A .38.在,,,2a 3x 5πA .1个A.①②③二、填空题(每题3 11.用科学计数法表示三、解答题(第21、22题每题7分,第21.(本题7分)解方程:(1)231x x =+141x +-=(1)在图中作出关于y 轴的对称图形ABC △(2)在图中作出向下平移2个单位后的图形ABC △(3)连接、、,直接写出1CC 2CC 12C C 24.(本题8分)如图,在等边中,点D 、点E 分别在、上,且,连接、ABC △BC AC BD CE =AD 相交于点F .BE(1)求的度数;AFE ∠(2)连接,若,,求的长.FC 90AFC ∠=︒3BF =AF 25.(本题10分)春节期间,某水果商从批发市场分别用10000元和6000元购进了重量相同的大樱桃和小樱桃,且大樱桃的进价比小樱桃的进价每千克多20元.(1)求大樱桃和小樱桃的进价分别是每千克多少元?(2)在运输和销售过程中,大樱桃损耗了15%,若大樱桃的售价为每千克80元,要使此次销售获利不少于6700元,则小樱桃的售价最少应该为每千克多少元?26.(本题10分)[问题提出]如图1,在中,,是的中线,E 是线段上的一个动点,ABC △AC BC =CD ABC △CD 且点E 不与点C 、D 重合,连接、.AE BE(1)求证:;AE BE =[问题探究]将线段绕点E 逆时针旋转,使点B 的对应点F 落在直线上.EB BC (2)如图2,当时,的大小是否发生变化?请说明理由;90ACB ∠=︒AEF ∠[迁移探究](3)如图3,当时,若,试探究与之间的数量关系,并说120ACB ∠=︒12AC =CF DE(1)如图1,求线段的长;BC (2)如图2,动点D 从点B 出发,以每秒2个单位长度的速度沿线段向点A 运动,连BA 接,过点O 作交于点E ,设的面积为S ,点D 的运动时间为t 秒,OD OE OD ⊥AC OCE △求S 与t 的关系式;(3)在(2)的条件下,在上取点P ,在上取点Q ,连接、、、,OD OE PA PB QA QC答案:一、选择题(每题3分,共计30分)题号12345678910答案DDAAABCCDC二、填空题(每题3分,共计30分)题号1112131415答案63.0710-⨯1x >()23a x -2349题号1617181920答案432v 7或80︒100︒43三、解答题(第21、22题每题7分,第23、24题每题8分,第25、26、27每题10分)21.(本题7分)解方程:(1)2x =(2)无解()1x =22.(本题7分)先化简,再求值:1212x =-23.(本题8分)(1)略;(2)略;(3)的面积是8.12CC C △24.(本题8分)(1);(2).60AFE ∠=︒6AF =25.(本题10分)(1)大樱桃的进价是每千克50元,小樱桃的进价是每千克30元;(2)小樱桃的售价最少应该为每千克45.5元.26.(本题10分)(1)略;(2);(3).90AEF ∠=︒6CF DE -=27.(本题10分)(1);(2);(3).4BC =22S t =-45PAQ ∠=︒。

八年级下学期数学入学考试试卷及答案

八年级下学期数学入学考试试卷及答案

八年级下学期数学入学考试试卷一.选择题(共10小题,每题3分)1.在以下节能、回收、绿色食品、节水四个标志中,是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.2,3,4 D.2,4,83.下列图形中具有稳定性的是()A.正方形B.长方形C.等腰三角形D.平行四边形4.点M(3,1)关于y轴的对称点的坐标为()A.(﹣3,1)B.(3,﹣1)C.(﹣3.﹣1)D.(1,3)5.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4 B.8 C.16 D.﹣166.化简+的结果为()A.1 B.﹣1 C.D.7.下列运算正确的是()A.x2+x2=2x4B.a2.a3=a5C.(﹣2a2)4=16x6D.a6÷a2=a38.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1 D.ax+ay=a(x﹣y)9.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.∠COP=∠DOP B.PC=PD C.OC=OD D.∠COP=∠OPD10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对二.填空题(共7小题,每题4分)11.若分式的值为0,则x的值为12.分解因式:mx2﹣4m=.13.水由氢原子和氧原子组成,其中氢原子的直径约为0.0000000001米,用科学记数法表示为米.14. 已知,则的值为________.15.如图,在△ABC中,∠BAC=90°.AD⊥BC于点D,若∠C=30°,BD=1,则线段CD 的长为.16.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长.17. 在△ABC中,,AB=4,,则AC=______.三.解答题(共8小题,共62分)18.(6分)化简:(m+2)(m﹣2)﹣×3m.19.(6分)解方程:20.(6分)如图,在△ABC中,AB=AC,∠A=36°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求与作法);(2)在(1)的条件下,求∠BDC的度数.21.(6分)先化简(1﹣)•,再在1,2,3中选取一个适当的数代入求值.22.(8分)如图,在正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系(直接在图中画出);(2)请画出△ABC关于x轴对称的△A1B1C1;(3)写出点A1、C1的坐标.23.(10分)如图,AC=BC,AE⊥CD于点A,BD⊥CE于点B.(1)求证:CD=CE;(2)若点A为CD的中点,求∠C的度数.24.(8分)某商店在2016年至2018年期间销售一种礼盒.2016年,该商店用2200元购进了这种礼盒并且全部售完:2018年,这种礼盒每盒的进价是2016年的一半,且该商店用2100元购进的礼盒数比2016年的礼盒数多100盒.那么,2016年这种礼盒每盒的进价是多少元?25.(12分)将一副三角板按如图所示的方式摆放,A D是等腰直角三角板ABC斜边BC上的高,另一块三角板DMN的直角顶点与点D重合,DM、DN分别交AB、AC于点E、F.(1)请判别△DEF的形状.并证明你的结论;(2)若BC=4,求四边形AEDF的面积.八年级数学下学期入学考试答案参考答案与试题解析一.选择题(共10小题)1.在以下节能、回收、绿色食品、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.2,3,4 D.2,4,8【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,1+2=3,不能组成三角形;B中,2+2<4,不能组成三角形;C中,3+2>4,能够组成三角形;D中,2+4<8,不能组成三角形.故选:C.3.下列图形中具有稳定性的是()A.正方形B.长方形C.等腰三角形D.平行四边形【分析】根据三角形具有稳定性解答.【解答】解:正方形,长方形,等腰三角形,平行四边形中只有等腰三角形具有稳定性.故选:C.4.点M(3,1)关于y轴的对称点的坐标为()A.(﹣3,1)B.(3,﹣1)C.(﹣3.﹣1)D.(1,3)【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点M(3,1)关于y轴的对称点的坐标为(﹣3,1),故选:A.5.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4 B.8 C.16 D.﹣16【分析】根据完全平方式的结构是:a2+2ab+b2和a2﹣2ab+b2两种,据此即可求解.【解答】解:∵x2﹣8x+a可以写成一个完全平方式,∴则a可为:16.故选:C.6.化简+的结果为()A.1 B.﹣1 C.D.【分析】原式变形后利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣==1.故选:A.7.下列运算正确的是()A.x2+x2=2x4B.a2.a3=a5C.(﹣2a2)4=16x6D.a6÷a2=a3【分析】直接利用积的乘方运算以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、x2+x2=2x2,故此选项错误;B、a2•a3=a5,正确;C、(﹣2a2)4=16x8,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.8.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1 D.ax+ay=a(x﹣y)【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.9.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.∠COP=∠DOP B.PC=PD C.OC=OD D.∠COP=∠OPD 【分析】先根据角平分线的性质得出PC=PD,∠POC=∠POD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出OC=OD即可判断.【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,∴PC=PD,∠POC=∠POD,故A,B正确;在Rt△OCP与Rt△ODP中,,∴Rt△OCP≌Rt△ODP(HL),∴OC=OD,故C正确.不能得出∠COP=∠OPD,故D错误.故选:D.10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OC,然后判断出△AOE和△COE全等,再根据等腰三角形三线合一的性质可得AD⊥BC,从而得到△ABC 关于直线AD轴对称,再根据全等三角形的定义写出全等三角形即可得解.【解答】解:∵EF是AC的垂直平分线,∴OA=OC,又∵OE=OE,∴Rt△AOE≌Rt△COE,∵AB=AC,D是BC的中点,∴AD⊥BC,∴△ABC关于直线AD轴对称,∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,综上所述,全等三角形共有4对.故选:D.二.填空题(共7小题)11.若分式的值为0,则x的值为﹣2【分析】根据分子为零且分母不为零分式的值为零,可得答案.【解答】解:由题意,得x+2=0且x≠0,解得x=﹣2,故答案为:﹣2.12.分解因式:mx2﹣4m=m(x+2)(x﹣2).【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).13.水由氢原子和氧原子组成,其中氢原子的直径约为0.0000000001米,用科学记数法表示为1×10﹣10米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 0001=1×10﹣10,故答案为:1×10﹣10.14.答案是:45.15.如图,在△ABC中,∠BAC=90°.AD⊥BC于点D,若∠C=30°,BD=1,则线段CD 的长为 3 .【分析】求出∠BAD=∠BAC﹣∠DAC=30°,求出AB=2,求出BC=4,则CD可求出.【解答】解:∵AD⊥BC于点D,∠C=30°,∴∠DAC=60°,∵∠BAC=90°,∴∠BAD=∠BAC﹣∠DAC=30°,∴在Rt△ABD中,AB=2BD=2,∴Rt△ABC中,∠C=30°,∴BC=2AB=4,∴CD=BC﹣BD=4﹣1=3.故答案为:3.16.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长2+2.【分析】根据DE垂直平分AB,可得BE=AE,进而AE+CE=BE+CE=BC=2,即可求得△ACE的周长.【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BE+CE=BC=2,∴△ACE的周长为:AC+AE+CE=AC+BC=2+2.故答案为:2+2.17.答案为2.三.解答题(共8小题)18.化简:(m+2)(m﹣2)﹣×3m.【分析】利用平方差公式计算:(m+2)(m﹣2),再计算后面的乘法,最后合并同类项即可.【解答】解:原式=m2﹣4﹣m2=﹣4.19.X=-420.如图,在△ABC中,AB=AC,∠A=36°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求与作法);(2)在(1)的条件下,求∠BDC的度数.【分析】(1)直接利用角平分线的作法得出BD;(2)利用等腰三角形的性质以及角平分线的性质分析得出答案.【解答】解:(1)如图所示:BD即为所求;(2)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠ABC=36°,∴∠BDC=∠A+∠ABD=72°.21.先化简(1﹣)•,再在1,2,3中选取一个适当的数代入求值.【分析】先算括号内的减法,再算乘法,最后代入求出即可.【解答】解:原式=•=•=,∵x﹣1≠0,x﹣3≠0,∴x≠1且x≠3,∴x只能选取2,把x=2代入得:原式==﹣2.22.【分析】(1)根据A、C两点坐标根据平面直角坐标系即可;(2)画出A、B、C关于x轴对称的A1、B1、C1即可;(3)根据所作图形求解可得.【解答】解:(1)如图所示;(2)如图所示,△A1B1C1即为所求.(3)点A1的坐标为(﹣4,﹣6)、C1的坐标为(﹣1,﹣4)..【点评】本题考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及其平面直角坐标系的概念.23.如图,AC=BC,AE⊥CD于点A,BD⊥CE于点B.(1)求证:CD=CE;(2)若点A为CD的中点,求∠C的度数.【分析】(1)证明△CAE≌△CBD(ASA),可得出结论;(2)根据题意得出△CDE为等边三角形,进而得出∠C的度数.【解答】解:(1)∵AE⊥CD于点A,BD⊥CE于点B,∴∠CAE=∠CBD=90°,在△CAE和△CBD中,,∴△CAE≌△CBD(ASA).∴CD=CE;(2)连接DE,∵由(1)可得CE=CD,∵点A为CD的中点,AE⊥CD,∴CE=DE,∴CE=DE=CD,∴△CDE为等边三角形.∴∠C=60°.24.【分析】设2016年这种礼盒每盒的进价是x元,则2018年这种礼盒每盒的进价是x 元,根据数量=总价÷单价结合2018年该商店用2100元购进的礼盒数比2016年的礼盒数多100盒,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设2016年这种礼盒每盒的进价是x元,则2018年这种礼盒每盒的进价是x 元,根据题意得:﹣=100,解得:x=20,经检验,x=20是原方程的解,且符合题意.答:2016年这种礼盒每盒的进价是20元.25.将一副三角板按如图所示的方式摆放,AD是等腰直角三角板ABC斜边BC上的高,另一块三角板DMN的直角顶点与点D重合,DM、DN分别交AB、AC于点E、F.(1)请判别△DEF的形状.并证明你的结论;(2)若BC=4,求四边形AEDF的面积.【分析】(1)可得∠CAD=∠B=45°,根据同角的余角相等求出∠CDF=∠ADE,然后利用“角边角”证明△ADE和△CDF全等,则结论得证;(2)根据全等三角形的面积相等可得S△ADE=S△CDF,从而求出S四边形AEDF=S△ABD=,可求出答案.【解答】(1)解:△DEF是等腰直角三角形.证明如下:AD⊥BC,∠BAD=45°,∴∠EAD=∠C,∵∠MDN是直角,∴∠ADF+∠ADE=90°,∵∠CDF+∠ADF=∠ADC=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴DE=DF,又∵∠MDN=90°,∴∠EDF=90°,∴△DEF是等腰直角三角形;(2)∵△ADE≌△CDF,∴S△ADE=S△CDF,∴S四边形AEDF=S△ABD====2.。

重庆市育才中学2023-2024学年八年级下学期入学测试数学试题

重庆市育才中学2023-2024学年八年级下学期入学测试数学试题

重庆市育才中学2023-2024学年八年级下学期入学测试数学试题一、单选题1.已知三角形的两条边长分别为2和6,则第三边的长可能是( ) A .1B .2C .7D .92.小陶子们,“育才中学”这四个字中,是轴对称图形的是( ) A .B .C .D .3.下列运算正确的是( )A=B .1C D 2÷=4.将分式+xx y中的x 、y 的值都扩大为原来的2倍,则分式的值( ) A .不变 B .扩大为原来的2倍 C .缩小为原来的2倍 D .扩大为原来的4倍5.如图,为了测量出池塘A 、B 两点之间的距离,小育在平地上选取了能够直接到达点A 和点B 的一点C .他连接BC 并延长,使CE BC =;又连接AC 并延长,使CD AC =,连接DE .只要测量出DE 的长度,也就得到了A 、B 两点之间的距离,这样测量的依据是( )A .SSSB . SASC . ASAD . AAS6.使分式33x x +-有意义的条件是( ) A .3x ≠ B .3x ≠- C .3x ≠± D .3x =±7.如图,在ABC V 中,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于点M 、N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若12AB =,7BC =,16AC =,则ABD △的周长为( )A .19B .23C .28D .358.若三角形的三边长分别为a b c 、、,且满足2(3)40a b -+-=,则这个三角形的形状是( ) A .锐角三角形B .直角三角形C .钝角三角形D .无法判断9.如图,在Rt ABC △中,90512BAC AB AC ∠=︒==,,,BD 平分ABC ∠交边AC 于点D ,点E 、F 分别是边BD AB 、上的动点,当AE EF +的值最小时,最小值为( )A .6B .125C .6013D .1201310.若关于x 的方程11x a x a +=+的两个解为1x a =,21x a=;关于x 的方程22x a x a +=+的两个解为1x a =,22x a=;关于x 的方程33x a x a +=+的两个解为1x a =,23x a =;…,则以下说法中: ①关于x 的方程77x a x a +=+的两个解为1x a =,27x a =;②关于x 的方程101011x a x a +=+--的两个解为1x a =,291a x a +=-; ③关于x 的方程211202412023x x x -+=+-的两个解为12024x =,220242023x =. 正确的有( )个.A .0B .1C .2D .3二、填空题11.流感是由于流行性感冒病毒引起的一种急性呼吸系统传染性疾病,流感病毒的最大直径是0.00000012米.数字0.00000012用科学记数法表示为.12.计算:011(3)()2π--+=.13.因式分解:22ax ay -=.14.若56m n mn +=,=,则22m mn n +-的值是 . 15.已知实数a 、b2b b a -+-=.16.关于x 的一元一次不等式组32132325x x x m -+⎧≥-⎪⎨⎪->⎩至少有3个整数解,且关于y 的分式方程3222my yy y-+=--有整数解,那么符合条件的所有整数m 的和为. 17.如图,在Rt ABC △中,90ACB ∠=︒,D 是线段AB 上的一点,连接CD .将A C D V 沿CD 折叠,使点A 落在E 处,CE 与AB 交于F ,当A C D E ⊥时,若8AC =,6BD =,则线段EF 的长为.18.若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同且均不为0,则称这个四位数为“对称数”,则最小的对称数为 ;若m ,n 均为“对称数”,且n 的前两位数字组成的两位数与后两位数字组成的两位数的平方差等于m ,则m 的最大值为 .三、解答题19.(1(2)化简:2121121x x x x -⎛⎫-÷ ⎪--+⎝⎭ 20.如图,在ABC V 中,90ACB ∠=︒,AC BC =,点D 为AC 边的中点,AE AB ⊥交BD的延长线于点E ,连接CE .(1)用直尺和圆规作ACB ∠的平分线交BE 于点F (不写作图过程,保留作图痕迹); (2)完成以下证明:证明:∵90ACB ∠=︒,AC BC =, ∴ ① 与=45ABC ∠︒,∵CF 是ACB ∠的平分线,∴45ACF BCF ∠=∠=︒, ∵AE AB ⊥ ∴ ② 90=︒,∴9045EAC CAB ∠=-∠=︒︒ ∴ ③∵点D 为AC 的中点,∴ ④ ,在AED △和CFD △中,EAD FCDAD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AED CFD V V≌ ∴DE DF =21.先化简,再求值:2213116926x x x x x x ---÷+-+-,其中1x =.22.苹果寓意“平平安安”.春节里,“开心水果店”第一次用800元购进一批糖心苹果,很快售完.该店立即又用1920元第二次购进同样品种的糖心苹果,已知第二次购进数量是第一次购进数量的3倍,且第二次的进货价比第一次的进货价每千克少了1元. (1)求第一次所购进的苹果每千克多少元?(2)店主在销售第一批苹果时,每千克的售价为8元,发现第一次购进的苹果有5%的损耗,但其他全部售完,售完之后购进第二批苹果.第二批苹果在购进后到售完的过程中,发现有%y 的损耗,每千克售价比第一批的售价贵1元.若该水果店售完这两批苹果后,总获利不低于2168元,求y 的最大值.23.在ABC V 中,90BAC ∠=︒,AB AC =,直线l 经过点A .(1)如图1,过点B 作BD l ⊥于点D ,过点C 作CE l ⊥于点E .求证:DE BD CE =+; (2)如图2,过点B 作BF l ⊥于点F ,连接CF ,已知13AB =,5BF =,求ACF △的面积. 24.(1)如图1,从边长为a 的正方形内去掉一个边长为b 的小正方形,然后剩余部分刚好拼成一个长方形(图2),上述操作所能验证的公式是_______. (2)已知,22220a ab b -+=,6ab =,求a b +的值;(3)如图3,长方形ABCD 由三个正方形,两个长方形组成(两个正方形X ,和两个长方形Z 分别全等).若正方形X 的边长..为5,长方形Z 的面积..为12,求长方形ABCD 的面积.25.数形结合思想是一种数学思想方法.数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化——可以借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系.(1)勾股定理的证明方法有很多种,如图1是“总统法”(半弦图)——将两个全等的直角三角形拼成一个直角梯形.请用两种不同的方法表示出梯形的面积,从而证明出勾股定理;(2)若线段AB 上有一点C ,40AB =,AC x =,BC y = 26.已知ABC V 为等边三角形.(1)如图1,E 为BC 上一点,连接AE ,F 为AE 上一点,连接CF 并延长交AB 于点D .若60EFC ∠=︒,求证:BE AD =.(2)如图2,在(1)的条件下,在直线AC 右侧取一点G ,使得ACG V 为等边三角形,过点G 作GH CD ⊥,垂足为H ,写出AF 、CF 、GH 之间的数量关系,并说明理由;(3)如图3,M 为直线AC 右侧一点,30AMC ∠=︒,连接BM ,以AM 为斜边,构造等腰直角三角形AMN ,过点C 作CP AM ⊥于P ,过点N 作NO AM ⊥于O ,其中BM +CM =,请直接写出CPO △的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学下册入学测试卷
(时间:30分钟 满分:100) 姓名:
测试内容:三角形全等、轴对称、实数、一次函数、整式
一、选择题(每小题4分,共24分)
1.下列说法中,正确的是( ).
A .5
的算术平方根 B .9-的平方根是3- C .4±是64的立方根 D .3是9的平方根 2.下列运算结果正确的是( ) A .3412a a a ⋅= B .326()a a -= C .235a b ab += D .326()ab ab = 3
π
22
7
,0.3,其中无理数有( ) A .1个 B .2个 C .3个 D .4个 4.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB
于点D 、E , AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( )
A .10cm
B .12cm
C .15cm
D .17cm
5. 点A (11y -,)和B (22y ,)都在直线3y x =-上,则1y 与2y 的关系是( ).
A .12y y <
B .12y y =
C .12y y >
D .212y y =
二、填空题(每小题4分,共24分) 6
的平方根是 .
7.如图,已知∠ACB=∠BDA ,只要再添加一个条件:
__ ,就能使ACB≌△BDA .(填一个即可)
8.当0b <时,函数y x b =-+的图象不经过...
第 象限.
9.若2
40x kx ++=是一个完全平方式,则k =__________.
10.观察下列图形:
它们是按一定规律排列的,依照此规律,第2010个图形中共有 个★. 三、化简和计算(每小题5分,共20分)
11.计算: (1);31)2011(41
-⎪⎭

⎝⎛--+ (2)20082009200920098)125.0(25.0)4(⨯-+⨯-
(3)81
4
5032--
(4)分解因式:3x 2-24x +48.
D
C B
A
第7

四、简答题(32分)
12.(6分)已知,a 、b 互为倒数,c 、d 互为相反数,求
13+++-d c ab 的值。

13.(8)已知:如图,点A 、E 、F 、C 在同一条直线上,AD=CB ,∠B=∠D ,AD∥BC.求证: AE=CF .
14.(8分)已知:如图,等边三角形ABC 中,D 、E 分别是BC 、AC 上的点,且AE=CD ,
(1)求证:AD=BE
(2)求:∠BFD 的度数.
15.(10分) 在市区内,我市乘坐出租车的价格
y (元)与路程x (km )的函数关系图象如图所
示.
(1)请你根据图象写出两条信息;
(2)小明从学校出发乘坐出租车回家用了13元,求学校离小明家的路程.
F D C B A
E
顶尖教育初二数学下册入学测试卷(答案)
一、选择题:DBBCC
二、填空题:7、±2 8、2 0° 9、∠CAB=∠DBA 10、一 11、4 12、6031
三、计算:13、(1)0 (2)-98
(3)
4)3(x-4)2
四、解答题:14、0 15、证明:如图1.
∵ AD ∥BC ,
∴∠A=∠C . ----------------1分 在△ADF 与△CBE 中,
∠A=∠C ,
AD=CB ,
∠D=∠B ,
∴△ADF ≌△CBE . ----------------4分 ∴ AF=CE. ----------------5分
∴ AF -EF=CE -EF .
∴AE=CF. ----------------6分
16、(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠C=60°,AB=CA , 在△ABE 和△CAD 中 {AB=CA(已证)∠BAC=∠C(已证)AE=CD(已知), ∴△ABE ≌△CAD (SAS ),∴AD=BE (全等三角形对应边相等); (2)解:∵△ABE ≌△CAD (已证),
∴∠ABE=∠CAD (全等三角形对应角相等),又∵∠BFD=∠BAD+∠ABE , ∴∠BFD=∠BAD+∠CAD=∠BAC ,又∠BAC=60°,∴∠BFD=60°.
17、解:(1)由图像知 1.两千米内(包括两千米)内每千米5元 2。

超过两千米后,每千米1.6元。

(2)令y=13,则
超过起步价13-5=8元
超过2千米:8元÷1.6元千米=5千米 ∴学校离家的路程为5+2=7千米
F D C B
A
E 图1。

相关文档
最新文档