数列前n项和的求和公式

数列前n项和的求和公式
数列前n项和的求和公式

For personal use only in study and research; not for commercial use

数列求和的基本方法和技巧

一、利用常用求和公式求和

利用下列常用求和公式求和是数列求和的最基本最重要的方法.

1、 等差数列求和公式:d n n na a a n S n n 2)

1(2)

(11-+=+=

2、等比数列求和公式:?????

≠--=--==)

1(11)1()

1(111q q q a a

q q a q na S n n

n

3、 )1(211+==∑=n n k S n k n

4、)12)(1(6

1

12++==

∑=n n n k S n

k n

5、 213)]1(2

1[+==∑=n n k S n

k n

[例1] 已知3

log 1

log 23-=x ,求???++???+++n x x x x 32的前n 项和.

[例2] 设S n =1+2+3+…+n ,n ∈N *,求1

)32()(++=n n

S n S

n f 的最大值.

二、错位相减法求和

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·

b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列.

[例3] 求和:1

32)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列

??????,22,,26,24,2232n n 前n 项的和.

三、倒序相加法求和

这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.

[例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值

四、分组法求和

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.

[例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a

a a n ,…

[例7] 求数列{n(n+1)(2n+1)}的前n 项和.

五、裂项法求和

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:

(1))()1(n f n f a n -+= (2)

n n n n tan )1tan()

1cos(cos 1sin -+=+ (3)1

11)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])

2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6) n n n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++=

-则 [例9] 求数列

???++???++,11,,321,211n n 的前n 项和.

[例10] 在数列{a n }中,1

1211++???++++=

n n n n a n ,又12+?=n n n a a b ,求数列{b n }的前n 项的和.

[例11] 求证:

1

sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+???++

六、合并法求和

针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .

[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.

[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002

[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的值.

七、利用数列的通项求和

先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.

[例15] 求

1

1111111111个n ???+???+++之和 [例16] 已知数列{a n }:∑∞=+-+++=1

1))(1(,)3)(1(8n n n n a a n n n a 求的值.

For personal use only in study and research; not for commercial use.

Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.

толькодлялюдей, которыеиспользуютсядляобучения, исследованийинедолжныиспользоватьсявкоммерческихцелях.

以下无正文

For personal use only in study and research; not for commercial use.

Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.

толькодлялюдей, которыеиспользуютсядля

обучения, исследованийинедолжныиспользоватьсяв

коммерческихцелях.

以下无正文

For personal use only in study and research; not for commercial use

几种求数列前n项和的方法

几种求数列前n 项和的常用方法 1、公式法: 如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求. ①等差数列求和公式:()()11122 n n n a a n n S na d +-==+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q q q ?=?=-?-=≠?--? 常见的数列的前n 项和:, 1+3+5+……+(2n-1)= ,等. 2、倒序相加法: 类似于等差数列的前n 项和的公式的推导方法。如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。这一种求和的方法称为倒序相加法. 例、求οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++的值. 解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++=S …………. …. …. …. ① 将①式右边反序得:οοοοο1sin 2sin 3sin 88sin 89sin 22222+++???++=S ……② 又因为sin cos(90)x x =-o ,22sin cos 1x x +=,①+②得 : 2222222(sin 1cos 1)(sin 2cos 2)(sin 89cos 89)S =++++???++o o o o o o =89 ∴ S = 小结:倒序相加法,适用于倒序相加后产生相同的结果,方便求和. 3、错位相减法: 类似于等比数列的前n 项和的公式的推导方法。若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法. 例、求和:()2112301n n S x x nx x x -=++++≠≠L ,(课本61页习题组4) 解:设S n =1+2x+3x 2+…+(n-1)x n-2+nx n -1 , ① 则:x S n = x +2 x 2+…+(n-1) x n-1 + n x n ②

数列的通项公式与求和的常见方法

数列的通项公式与求和 的常见方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =, 12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,13n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =, 110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-, 13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++*()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足21 1=a ,n a a n n 21+=+, * ()n N ∈求数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈,13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11 ln(1)n n a a n +=++, 求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,* ()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,251n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数, )0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可 得数列λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{}n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-*()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新 的等差数列。 例:已知数列{}n a 满足11a =, 122 n n n a a a +=+*()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足11a =, 1(1)n n na n a +=++(1)n n +, *()n N ∈,求数列{} n a 的通项公式。 2. 已知首项都为1的两个数列{}n a 、{}n b (0n b ≠*n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b = 求数列{}n c 的通项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ =-++11,即数列?? ????n n p a 为以 p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1155+++=n n n a a ,11=a ,求数列{}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列{}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2 232221n a a a a ++++ . 类型二:分组求和法 例. 求数列的前n 项和: 2321 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 21 )12(++=,求n S . 类型三:倒序相加法 例.求 88sin 3sin 2sin 1sin 2 222+???+++ 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式;

数列前n项和的求和公式

数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2) 1(2) (11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11) 1() 1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6 1 12++==∑=n n n k S n k n 5、 213)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:13 2)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列 ??????,22,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ,… [例7] 求数列{n(n+1)(2n+1)}的前n 项和.

数列的通项公式与求和的常见方法

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =,12n n a a +-=* ()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,1 3n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =,110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-,13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=* ()n N ∈,求数 列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++* ()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足2 11=a ,n a a n n 21+=+,* ()n N ∈求 数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈, 13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11ln(1)n n a a n +=++,求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,*()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 31 31+-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,2 51n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可得数列 λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{} n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列 {}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-* ()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新的等差数 列。 例:已知数列{}n a 满足11a =,122 n n n a a a += +*()n N ∈, 求数列{}n a 的通项公式。 变式练习: 1. 已 知 数 列 {} n a 满 足 11 a =, 1(1)n n na n a +=++(1)n n +, * ()n N ∈,求数列{}n a 的 通项公式。 2. 已知首项都为1的两个数列{}n a 、{} n b (0n b ≠* n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b =求数列{}n c 的通 项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ=-++11,即数列? ? ????n n p a 为以p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数 列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1 15 5+++=n n n a a ,11=a ,求数列 {}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列 {}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的 前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2232221n a a a a ++++Λ. 类型二:分组求和法 例. 求数列的前n 项和: 232 1 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 2 1 )12(+ +=,求n S . 类型三:倒序相加法 例.求ο ο ο ο 88sin 3sin 2sin 1sin 2 2 2 2+???+++ο 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式; (2)设n n n b a c = ,求数列}{n c 的前n 项和n T . 类型五:裂项相消法 例.已知数列}{n a 中,) 2(1 += n n a n ,求n S . 1.求数列 1 1 ,,321,211++???++n n 的前n 项和. 2.在数列}{n a 中,1 1211++???++++=n n n n a n , 又1 2 +?=n n n a a b ,求数列}{n b 的前n 项的和. 3.求和 求数列的通项与求和作业 1.已知数列}{n a 的首项11=a (1)若12n n a a +=+,则n a =__________; (2)若12n n a a +=,则n a =_________ 1 11{}:1,{}.31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 1 练习1数列佝}的前n项为S n,且a =1, a ni=-S n(n =1,2,3,) 3 (1) 求a2,a3, a4B值及数列{a n}的通项公式. (2) 求a2a4一-玄 n ■ 2 练习2 数列{a n}的前n项和记为S n,已知a^1, 3n1 6(n = 1,2,…)?证明: n (1) 数列{§L}是等比数列; n (2) S n 1 = 4a n 1 * 练习3 已知数列{a n}的前n项为S n,S n = —@n -1)(门,N ) 3 (1)求耳忌 ⑵求证:数列{a n}是等比数列.

1 1 已知数列{a n }满足 @ = — ,a n1 =a n ? - ,求a n . 2 n +n 练习5 已知数列 {an } 满足?岭…&an,求歸 5 1 1 n * 练习6已知数列?}中,印 ,a n 1 a n - H),求a n . 6 3 2 练习7已知数列{a n }满足:a n 色^ , a , =1,求数列{a n }的通项公式 3色」+1 { } 2 十2十2+…十2 等比数列 {a n } 的前n 项和S n = 2n - 1,则a1 a 2 a 3 a n 5 (10n -1) 练习 9 求和:5, 55, 555, 5555,…,9 练习4 练习

练习10 求和: + +… + 1 4 4 7 (3n - 2) (3n 1) ’ 1 1 1 1 练习11 求和: 1 2 12 3 12 3 n 练习12 设 {a n } 是等差数列, {b n } 是各项都为正数的等比数列,且 = b^=1 , fa 1 a 5 b 3 =13 (I)求 {a n } , { b n } 的通项公式;(H)求数列? 的前门项和S n . Sb = 21

求前n项和公式的常用方法

求数列前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 一.用倒序相加法求数列的前n项和 如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S n=n(a1+a n)/2 解:S n=a1+a2+a3+...+a n① 倒序得:S n=a n+a n-1+a n-2+…+a1② ①+②得:2S n=(a1+a n)+(a2+a n-1)+(a3+a n-2)+…+(a n+a1) 又∵a1+a n=a2+a n-1=a3+a n-2=…=a n+a1 ∴2S n=n(a2+a n) S n=n(a1+a n)/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+a n=a2+a n-1=a3+a n-2=…=a n+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 二.用公式法求数列的前n项和 对等差数列、等比数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 例题2:求数列的前n项和S n 解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。 三.用裂项相消法求数列的前n项和 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 例题3:求数列(n∈N*)的和

数列通项公式与求和的常见解法

数列通项公式的十种求法 {a n }的通项公式。 二、累加法 例2已知数列{a n }满足a n 1 a n 2n 1, 3 (n 1)(n 2 n 、公式法 例1已知数列{a n }满足a n 1 2a n 3 2n , a i 2,求数列{a n }的通项公式。 解:a n 1 2a n 3 2n 两边除以2n 1,得開 a n 3 a n 1 a n 3 2^ 2,人」2门1歹 2, 得鱼 2n 以岂 2 1为首项,以-为公差的等差数列,由等差数列的通项公式, 21 2 2 故数列{》}是 1(n 丐, 3 1 所以数列{a n }的通项公式为a n ( n -)2n 。 评注:本题解题的关键是把递推关系式 a n1 2a n 2n 转化为開 是等差数列,再直接利用等差数列的通项公式求出 a n 1)3,进而求出数列 -,说明数列 2 解:由a n 1 a n 2n 1 得 a n 1 a n 2n 1则 a n (a n [2(n 2[(n 2^ a n 1 ) (a n 1) 1) 1)n 2 1 a n 2 ) 1] [2(n 2) (n 2) 1] I 2 1] @3 a 2) L (2 2 1) 1 (a 2 a 1 ) 4 1) (2 1 1) 1 (n (n 1) 所以数列{a n }的通项公式 为 a n 评注:本题解题的关键是把递推关系式 a n 1 a n 2n 1转化为a n 1 a n 2n 1,进而求 出(a n a n 1) (a n 1 a n 2) L (a 3 a 2) (a ?印) a 1,即得数列{a n }的通项公 式。 求数列{a n }的通项公式。 1) 1

等差数列前n项和公式》教学设计

《等差数列的前n项和公式》教学设计 职业技术学校刘老师 大纲分析: 高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。 教材分析: 数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。 学生分析: 数列在整个高中阶段对于学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要。 教学目标: 知识与技能目标: 掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。 过程与方法目标: 培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 情感、态度与价值观目标: 体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。 教学重点与难点: 等差数列前n项和公式是重点。 获得等差数列前n项和公式推导的思路是难点。 教学用具:ppt 整节课分为三个阶段: 问题呈现阶段 探究发现阶段 公式应用阶段 问题呈现1: 首先讲述世界七大奇迹之一泰姬陵的传说(泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,陵寝以宝石镶饰,图案之细致令人叫绝,成为世界七大奇迹之一。)传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道 这个图案一共花了多少宝石吗?也就是计算1+2+3+ (100) 紧接着讲述高斯算法:高斯,德国著名数学家,被誉为“数学王子”。 200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=? 据说,当其他同学忙于把100个数逐项相加时, 10岁的高斯却用下面的方法迅速算出了正确答案: (1+100)+(2+99)+……+(50+51)=101×50=5050 【设计说明】了解历史,激发兴趣,提出问题,紧扣核心。 问题呈现2: 图案中,第1层到第21层一共有多少颗宝石?

数列通项公式、前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12 -=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2 +n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和2 12 n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1- 1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通 项公式.

(二).累加、累乘 型如1()n n a a f n --=, 1 ()n n a f n a -= 1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比 数列通项公式的方法) 【方法】2n ≥, 1 2 12 1 ()(1)(2)n n n n a a a f n f n f a a a ---??? =?-??

求数列通项公式及求和的基本方法

求数列通项公式及求和的基本方法 1.公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有 1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。 例一 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项 公式? 12n n a ?? = ??? . 反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键. 2.累加法:利用1211()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和). 已知112a =,112n n n a a +?? =+ ??? *()n N ∈,求数列{}n a 通项公式. 3. 累乘法:利用恒等式3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积). 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. n a n =. 反思: 用累乘法求通项公式的关键是将递推公式变形为1()n n a g n a +=.

4.构造新数列: 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+211 ,求n a 1131122n a n n =+-=- 解: 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足3 21=a ,n n a n n a 11+= +,求n a 。23n a n = 解: 变式:(全国I,)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则{a n }的 通项1___n a ?=?? 12 n n =≥ 2!n a n =)2(≥n 解

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细) 总述:一.利用递推关系式求数列通项的11种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法、 不动点法(递推式是一个数列通项的分式表达式)、 特征根法 二。四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、 等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-= ∑

例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211 122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13) 2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以1 3 n +,得 111 21 3333n n n n n a a +++=++, 则 111 21 3333n n n n n a a +++-=+,故 11223211 2232111122122()()()()33333333212121213()()()()3333333332(1)11111()1 333333 n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++

等比数列前n项和公式

数列 等比数列前n项和公式 ■(2015甘肃省白银市会宁二中高考数学模拟,等比数列前n项和公式,选择题,理3)公比不为1等比数列{a n}的前n项和为S n,且-3a1,-a2,a3成等差数列,若a1=1,则S4=() A.-20 B.0 C.7 D.40 解析:设数列的公比为q(q≠1),则∵-3a1,-a2,a3成等差数列, ∴-3a1+a3=-2a2,∵a1=1,∴-3+q2+2q=0, ∵q≠1,∴q=-3.∴S4=1-3+9-27=-20.故选A. 答案:A ■(2015甘肃省兰州市七里河区一中数学模拟,等比数列前n项和公式,选择题,理11)已知函数y=x3在x=a k时的切线和x轴交于a k+1,若a1=1,则数列{a n}的前n项和为() A.n B. - C.3- D.3- - 解析:∵函数y=x3,∴y'=3x2,∴- - =3, 即 - =3, 化简,得3a k+1=2a k,即, 又∵a1=1,∴S n=- - =3- - ,故选D. 答案:D ■(2015甘肃省白银市会宁二中高考数学模拟,数列与不等式相结合问题,填空题,理16)已知数列{a n}的前n项和为S n,且S n+1=2a n,则使不等式+…+<5×2n+1成立的n的最大值为.解析:当n=1时,a1+1=2a1,解得a1=1. 当n≥2时,∵S n+1=2a n,S n-1+1=2a n-1, ∴a n=2(a n-a n-1),∴ - =2. ∴数列{a n}是以1为首项,2为公比的等比数列. ∴a n=2n-1,∴=4n-1. ∴+…+ =1+4+42+…+4n-1=- - (4n-1). ∴(4n-1)<5×2n+1. ∴2n(2n-30)<1,可知使得此不等式成立的n的最大值为4. 答案:4 专题2数列与函数相结合 问题 1

数列通项公式和前n项和求解方法

数列通项公式的求法详解 关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2)K ,1716 4,1093 ,542,21 1(3) K ,52,21,32 ,1(4)K ,5 4 ,43,32,21-- 答案:(1)110-=n n a (2);1 22++=n n n a n (3);12+=n a n (4)1)1(1+? -=+n n a n n . 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2 ,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

数列求和与求通项公式方法总结(已打)

一、公式法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:=n S = (2)等比数列的求和公式???? ? ????=n S 例1.求和 (1)1+2+3+…+n (2)232222n ++++ 二、分组求和法:若一个数列由两个特殊数列相加减而得到,则分别对两个特殊数列求和之后相加减得到该数列的和。 例2.求和 (1)()()()()n S n n -++-+-+-=2322212321 ; (2)1 3421n n a n -=-- ,求n S ; (3)1 23n n a -=+,求n S 三、裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项公式:(1) 1 11)1(1+- =+n n n n (2) 1111 ()(2)22n n n n =-++ (3) )121121(21)12)(12(1+--=+-n n n n (4) n n n n -+=++111 例3. (1)已知数列{} () 11 += n n a a n n 中,,求前n S n 项和. (2)已知数列{}2 (21)(21) n n a a n n =-+中,,求前n S n 项和. (3)求数列???++???++,1 1, ,3 21, 2 11n n 的前n 项和.

四、错位相减法:如果一个数是由一个等差数列和一个等比数列相乘得到,则使用这种方法。 例4. (1)2n n a n = ,求n S 。 n n n S 2)12(...252321232?-++?+?+?=、求和: (3)求数列()13231,,35,34,33,2-?+???n n 的前n S n 项和. 五、课后练习 1、(2012惠州一模)已知数列{}n a 的前n 项和n S 满足21n n S a =-,等差数列{}n b 满足11b a =,43b S =。 (1)求数列{}n a 、{}n b 的通项公式; (2)设11n n n c b b +=,数列{}n c 的前n 项和为n T ,问n T >1001 2012 的最小正整数n 是多少?

相关文档
最新文档