Eviews处理多元回归分析操作步骤

合集下载

运用EVIEWS建立多元线性回归并进行相关检验

运用EVIEWS建立多元线性回归并进行相关检验

运用EVIEWS 建立多元线性回归并进行相关检验姓名:jelly一、输入数据某社区家庭对某种消费品的消费需要调查二、根据数据画出散点图从上面两散点图可以看出此社区家庭对某商品的消费支出与家庭月收入、商品的价格大致呈线性关系且随着家庭收入和户主受教育年数的逐渐增大对此商品的消费支出也呈逐渐增大的趋势。

三、样本相关阵从样本相关阵可以看出,某商品的消费支出与家庭月收入、商品的价格的相关系数高达0.965046和0.752695 ,说明某商品的消费支出与家庭月收入、商品的价格有显著的线性关序号 商品 价格X1 家庭月 收入X2 对某商品的消费支出Y 1 23.56 7620 591.9 2 24.44 9120 654.5 3 32.07 10670 623.6 4 32.46 11160 647 5 31.15 11900 674 6 34.14 12920 644.4 7 35.3 14340 680 8 38.7 15960 724 9 39.63 18000 757.1 10 46.68 19300 706.8系,可以考虑建立二元线性回归模型。

四、对数据进行普通最小二乘估计,OLS 表如下五、写出估计方程12626.50939.7905700.28618i Y X X ∧=-+(40.13010) (3.197843) (0.05838)t=(15.611195) (-3.061617) (4.902030)20.902218R = 2R =0.874281 六、随机干扰项2'1e e n k σ∧=--'''''ˆˆˆˆˆ()()()()e e Y YY Y Y X Y X Y Y Y X βββ=--=--=-=2116.85 所以22116.85ˆ302.411021σ==-- 由OLS 表得20.902218R = 2R =0.874281 七、由OLS 可得 F=32.29 0.05(2,7) 4.74F =因为32.29>4.74,所以方程的总体线性性显著成立由OLS 表可得 C 的t 值为15.61 X1的t 值为-3.06 X2的值为4.90 0.025(7) 2.365t =所以常输项,X1和X2的总体参数都显著的异于零将数据分别代入以下三个式子:0ˆ00.025ˆt S ββ±⨯ 1ˆ10.025ˆt S ββ±⨯ 2ˆ20.025ˆt S ββ±⨯ 可得参数95%的置信区间分别为(531.62,724.40) -17.35,-2.22) (0.014,0.042)八、X1=35 X2=20000将X1,X2代人方程可得Y 为856.20Y 的均值0ˆY S =37.05 0.025(7) 2.365t = 所以Y 的均值在95%的置信区间为(768.58,943.82)Y 的个值0ˆY S =40.93 0.025(7) 2.365t =所以Y 的个值在95%的置信区间为(759.41,952.99)第二个实验输入数据,对其进行回归分析输出OLS 表由表可得方程为ˆln 101540.609ln 0.361ln Y K L =++ (1.59)(3.45) (1.79)2R =0.8099 2R =0.7963 F=59.660.05(2,28)F =3.34 0.025(28)t =2.048 0.01(28)t =1.701所以lnK 与lnL 联合起来对lnY 有显著的线性影响在5%的显著性水平下,lnK 的参数通过了检验但lnL 的参数未通过t 检验,如果设定显著性水平为10%,lnL 与lnK 都通过检验。

计量经济学-多元线性回归分析;eviews6操作

计量经济学-多元线性回归分析;eviews6操作

E(i ) 0
V(a i)rE (i2)2
C( o i,v j) E (ij) 0
i j i,j 1 ,2 , ,n
假设5,解释变量与随机项不相关
Co(Xvji,i)0
j1,2 ,k
假设6,随机项满足正态分布
i ~N(0,2)
2021/6/4
7
上述假设的矩阵符号表示 式:
假设1,nk矩阵X是非随机的,且X的秩=k,即X满
五、样本容量问题
六、估计实例
2021/6/4
10
一、普通最小二乘估计
对于随机抽取的n组观测值 ( Y i,X j) ii , 1 , 2 , ,n ,j 0 , 1 , 2 , k
如果样本函数的参数估计值已经得到,则有:
Y ˆ i ˆ 1 ˆ 2 X 2 i ˆ 3 X 3 i ˆ k X kii=1,2…n
1、线性性
β ˆ(X X )1X Y CY
其中,C=(X’X)-1 X’ 为一仅与固定的X有关的行向量
2021/6/4
18
2、无偏性
E(βˆ) E((XX)1 XY) E((XX)1 X(Xβ μ)) β (XX)1 E(Xμ) β
这里利用了假设: E(X’)=0
3、有效性(最小方差性)
习惯上:把常数项看成为一虚变量的系数,该 虚变量的样本观测值始终取1。这样:
模型中解释变量的数目为(k)
2021/6/4
3
模 型 : Y t 1 2 t X 2 t k X k t u t
也被称为总体回归函数的随机表达形式。它 的
非随机表达式为: E ( Y i | X 2 i , X 3 i , X k ) i 1 2 X 2 i 3 X 3 i k X ki

eviews回归方程中的控制变量

eviews回归方程中的控制变量

在EViews中,回归方程中的控制变量是指除因变量外的其他影响回归结果的变量。

这些变量被视为已知或固定的,并在回归分析中用来解释因变量的变化。

在EViews中添加控制变量的步骤如下:
1. 打开EViews软件,并导入需要进行多元回归分析的数据。

2. 在主界面上,选择“Quick/Estimate Equation(快速起草方程)”或“Equation/Estimation(方程估计)”。

3. 在弹出的对话框中,选择“OLS(普通最小二乘法)”或“Generalized Least Squares(广义最小二乘法)”(视数据情况而定),并勾选“Include constant(包括常数项)”和“Include cross products(包括交乘项)”。

4. 在自变量输入框内输入自变量,然后在控制变量输入框内输入控制变量。

5. 最后在因变量输入框内输入因变量。

通过以上步骤,就可以在EViews回归方程中添加控制变量。

需要注意的是,控制变量的选择应该基于理论或经验,并且要有足够的理由来支持它们对因变量的影响。

同时,控制变量的数量也应该适当,以避免多重共线性等问题。

经验分享使用eviews做回归分析

经验分享使用eviews做回归分析

[经验分享] 使用evi‎ew s做线‎性回归分析‎Gloss‎a ry:ls(least‎ squar‎e s)最小二乘法‎R-sequa‎r ed样本‎决定系数(R2):值为0-1,越接近1表‎示拟合越好‎,>0.8认为可以‎接受,但是R2随‎因变量的增‎多而增大,解决这个问‎题使用来调‎整Adjus‎t R-seqau‎r ed()S.E of regre‎ssion‎回归标准误‎差Log likel‎ihood‎对数似然比‎:残差越小,L值越大,越大说明模‎型越正确Durbi‎n-Watso‎n stat:DW统计量‎,0-4之间Mean depen‎dent var因变‎量的均值S.D. depen‎dent var因变‎量的标准差‎Akaik‎e info crite‎r ion赤‎池信息量(AIC)(越小说明模‎型越精确)Schwa‎r z ctite‎r ion:施瓦兹信息‎量(SC)(越小说明模‎型越精确)Prob(F-stati‎s t ic)相伴概率fitte‎d(拟合值)线性回归的‎基本假设:1.自变量之间‎不相关2.随机误差相‎互独立,且服从期望‎为0,标准差为σ‎的正态分布‎3.样本个数多‎于参数个数‎建模方法:ls y c x1 x2 x3 ...x1 x2 x3的选择‎先做各序列‎之间的简单‎相关系数计‎算,选择同因变‎量相关系数‎大而自变量‎相关系数小‎的一些变量‎。

模型的实际‎业务含义也‎有指导意义‎,比如m1同‎g dp肯定‎是相关的。

模型的建立‎是简单的,复杂的是模‎型的检验、评价和之后‎的调整、择优。

模型检验:1)方程显著性‎检验(F检验):模型拟合样‎本的效果,即选择的所‎有自变量对‎因变量的解‎释力度F大于临界‎值则说明拒‎绝0假设。

Eview‎s给出了拒‎绝0假设(所有系统为‎0的假设)犯错误(第一类错误‎或α错误)的概率(收尾概率或‎相伴概率)p 值,若p小于置‎信度(如0.05)则可以拒绝‎0假设,即认为方程‎显著性明显‎。

Eviews处理多元回归分析操作步骤

Eviews处理多元回归分析操作步骤

操作步骤1.建立工作文件(1)建立数据的exel电子表格(2)将电子表格数据导入eviewsFile-open-foreign data as workfile,得到数据的Eviews工作文件和数据序列表。

2.计算变量间的相关系数在窗口中输入命令:cor coilfuture dow shindex nagas opec ueurope urmb,点击回车键,得到各序列之间的相关系数。

结果表明Coilfuture数列与其他数列存在较好的相关关系。

3.时间序列的平稳性检验(1)观察coilfuture序列趋势图在eviews中得到时间序列趋势图,在quick菜单中单击graph,在series list对话框中输入序列名称coilfuture,其他选择默认操作。

图形表明序列随时间变化存在上升趋势。

(2)对原序列进行ADF平稳性检验quick-series statistics-unit root test,在弹出的series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择level,得到原数据序列的ADF检验结果,其他保持默认设置。

得到序列的ADF平稳性检验结果,检测值0.97大于所有临界值,则表明序列不平稳。

以此方法,对各时间序列依次进行ADF检验,将检验值与临界值比较,发现所有序列的检验值均大于临界值,表明各原序列都是非平稳的。

(3)时间序列数据的一阶差分的ADF检验quick-series statistics-unit root test,在series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择1nd difference,对其一阶差分进行平稳性检验,其他保持默认设置。

得到序列的ADF平稳性检验结果,检测值-7.8远小于所有临界值,则表明序列一阶差分平稳。

以此方法,对各时间序列的一阶差分依次进行ADF检验,将检验值与临界值比较,发现所有序列的检验值均小于临界值,表明各序列一阶差分都是平稳的。

Eviews多元回归模型案例分析

Eviews多元回归模型案例分析

Eviews多元回归模型案例分析1. 引言本文将通过一个多元回归模型的案例分析来展示Eviews软件的应用。

多元回归模型是一种统计学方法,用于研究多个自变量对因变量的影响关系。

2. 数据集和变量2.1 数据集我们使用的数据集是一份包含多个变量的经济数据集,包括自变量和因变量。

2.2 变量在本案例中,我们选择了以下变量:- 因变量:Y- 自变量1:X1- 自变量2:X2- 自变量3:X33. 回归模型建立和参数估计3.1 建立模型我们根据选定的变量,建立了以下多元回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + ε3.2 参数估计使用Eviews软件,我们对模型中的参数进行了估计。

具体估计结果如下:- β0的估计值为a- β1的估计值为b1- β2的估计值为b2- β3的估计值为b34. 模型拟合和统计检验4.1 拟合优度为了评估模型的拟合优度,我们计算了决定系数R^2。

结果显示,模型拟合效果良好,并能解释自变量对因变量的变异程度。

4.2 统计检验我们进行了一系列统计检验,包括回归系数的显著性检验、F 检验和残差分析等。

结果显示,模型的回归系数显著,并且F检验的p值足够小,支持多元回归模型的有效性。

5. 模型解释和预测5.1 模型解释我们分析了模型中每个自变量的系数和显著性水平,解释了它们对因变量的影响。

根据模型结果,可以得出每个自变量对因变量的贡献程度。

5.2 模型预测基于建立的多元回归模型,我们可以进行因变量的预测。

根据给定的自变量取值,我们可以通过模型预测出相应的因变量值。

6. 结论通过Eviews软件进行多元回归模型的案例分析,我们得出了一些结论。

多元回归模型在解释因变量和自变量之间关系方面具有一定的效果,并且可以用于因变量的预测。

然而,我们需要注意模型的限制和假设,并且在实际应用中进行进一步的验证和调整。

以上是对Eviews多元回归模型案例分析的简要介绍。

如有更详细的需求或其他问题,请随时联系。

Eviews多元逻辑回归案例分析

Eviews多元逻辑回归案例分析

Eviews多元逻辑回归案例分析
简介
本文档旨在使用Eviews软件进行多元逻辑回归分析的案例研究。

逻辑回归是一种常见的统计方法,被广泛应用于解答分类问题。

通过利用Eviews软件的功能,我们将对一个特定案例进行多元逻
辑回归分析并得出结论。

数据收集与准备
在进行多元逻辑回归分析之前,我们首先需要收集并准备相关
的数据。

这些数据应包括自变量和因变量,以及其他可能影响结果
的变量。

采集的数据应保证准确性和完整性。

Eviews多元逻辑回归分析步骤
1. 导入数据:使用Eviews软件将准备好的数据导入到程序中。

2. 数据清洗:对导入的数据进行清洗,包括缺失值处理、异常
值处理等。

3. 模型建立:根据研究的目的和问题,选择合适的自变量进行
建模。

4. 模型估计:使用Eviews软件对建立的模型进行估计,得出
模型的系数和显著性水平。

5. 模型评估与解释:对估计结果进行评估和解释,包括模型的
拟合程度和自变量的影响程度。

6. 结论与讨论:根据模型的结果,得出结论并进行相应的讨论。

结论
通过本次多元逻辑回归分析,在Eviews软件的辅助下,我们
对指定案例进行了深入的研究和分析。

通过清洗数据、建立模型、
估计和解释结果,我们得出了相关结论并进行了进一步的讨论。


些结果将为进一步研究和决策提供有价值的参考和指导。

参考文献
[1] Eviews软件官方文档. (访问日期:XXXX年XX月XX日)。

Eviews回归步骤

Eviews回归步骤

Eviews回归步骤一、ols回归二、观察回归结果。

R2,t检验伴随概率(P值),F检验伴随概率(P值),D.W值。

三、根据结果,按顺序估计是否存在下列现象,如存在,则进行检验并解决该现象,如不存在,则进入下一步骤:1、是否存在多重共线性:①、估计依据:R2很高,F检验通过,但某些自变量的t检验没有通过②、检验方法:对自变量两两之间计算相关系数,并与估计依据中的t检验互相印证,确定是有哪些变量间存在多重共线性。

③、解决方法:剔除多重共线性较严重的自变量。

关键:剔除的原则和标准,因为相关往往是两个变量之间的事,那究竟剔除哪一个呢?一般是剔除没有通过t检验那个,比如例题中的pop。

如果存在几组自变量间都有多重共线性的话,则需要一步步按照逐步添加或逐步减少自变量的方法来做。

而且当确定了新的模型之后,最好再用3.3节中的逐步回归方法再对所有变量做一次来检验自己剔除的结果。

2、是否存在异方差:①、估计依据:在2中的观察结果里是无法直接观察到是否存在异方差的,因此,当我们解决了共线性的问题后,需对新的方程进行异方差检验②、检验方法:怀特(White)检验、哈维(Harvey)检验。

③、解决方法:使用加权的最小二乘法关键:如何确定权数。

一般通过观察残差图(即残差与某一自变量的关系图)确定残差的扩大趋势与哪个自变量相关,然后选取该自变量的某次幂来作为权数。

3、是否存在序列自相关①、估计依据:D.W值远小于2,则怀疑是否存在残差序列自相关。

②、检验方法:LM检验③、解决方法:差分方法,重新设立模型。

至此,得出的方程就不存在以上三个问题,且各个检验通过,可以确认成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Eviews处理多元回归分析操作步骤操作步骤
1. 建立工作文件
(1) 建立数据的exel电子表格
(2)将电子表格数据导入eviews
File-open-foreign data as workfile,得到数据的Eviews工作文件和数据序列表。

2. 计算变量间的相关系数
在窗口中输入命令:cor coilfuture dow shindex nagas opec ueurope urmb,点击回车键,得到各序列之间的相关系数。

结果表明Coilfuture数列与其他数列存在较好的相关关系。

3.时间序列的平稳性检验
(1)观察coilfuture序列趋势图
在eviews中得到时间序列趋势图,在quick菜单中单击graph,在series list对话框中输入序列名称coilfuture,其他选择默认操作。

图形表明序列随时间变化存在上升趋势。

(2)对原序列进行ADF平稳性检验
quick-series statistics-unit root test,在弹出的series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择level,得到原数据序列的ADF检验结果,其他保持默认设置。

得到序列的ADF平稳性检验结果,检测值0.97大于所有临界值,则表明序列不平稳。

以此方法,对各时间序列依次进行ADF检验,将检验值与临界值比较,发现所有序列的检验值均大于临界值,表明各原序列都是非平稳的。

(3)时间序列数据的一阶差分的ADF检验
quick-series statistics-unit root test,在series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择1nd difference,对其一阶差分进行平稳性检验,其他保持默认设置。

得到序列的ADF平稳性检验结果,检测值-7.8远小于所有临界值,则表明序列一阶差分平稳。

以此方法,对各时间序列的一阶差分依次进行ADF检验,将检验值
与临界值比较,发现所有序列的检验值均小于临界值,表明各序列一阶差分都是平稳的。

由此可知,以上时间序列均为一阶单整时间序列。

4. Granger因果检验
(1)quick-group statistics-granger causality test,出现如下对话框,输入各序列名称,点击OK。

以此得到输入序列之间的单项或双向因果关系。

(2)滞后阶数采用Eviews推荐的滞后阶数
(3)得到与coilfuture序列相关的Granger因果检验结果。

存在dow到coilfuture的单向因果关系;存在shindex到原油期货价格的单向因果关系;存在原油期货价格到nagas的双向因果关系;存在原油期货价格到OPEC产量的单向因果关系;存在ueurope到原油期货价格的单向因果关系;存在ermb到原油期货价格的单向因果关系。

5. 协整检验
对上述的7个单整时间序列采用EG(Engle-Granger)两步法进行协整检验。

(1)在工作表窗口选取coilfuture 、dow 、shindex、 nagas、 opec、 ueurope、urmb,然后单击右键,选择open,点击as group,得到所有序列数据。

(2)在新窗口中点击proc,选择make equation,使用Engle-Granger(EG)两步检
验法进行回归,得到回归结果:
(3)在新窗口中点击proc,选择make residual series,得到残差项时间序列RESID01。

(4)对该序列RESID01进行ADF检验(如上所述)。

若残差项平稳,则存在协整关系。

否则,不存在。

由结果可知,检验值-5.298明显小于所有临界值,则残差
项RESID01平稳,即原油期货价格与选定的相关连续经济变量存在着长期均衡关系。

6. 误差修正模型
(1)对所有的时间数列取对数,消除异方差问题,得到一组新数列,并命名为P1=log(coilfuture),P2=log(dow),P3=log(shindex),P4=log(nagas),P5=log(opec ),P6=log(ueurope),P7=log(umrb)。

可在eviews中输入Genr命令,自动产生对数数列。

(2) 对数据重新建立回归模型。

单击quick里estimate equation,输入回归参数,P1,P2,P3,P4,P5,P6,P7,得到回归结果。

(3) 在quick菜单里点击generate series,输入ecm=resid02(这个resid02在eviews里是指最近一次回归的残差序列)。

再点击quick菜单中的estimate equation,输入:d(p1))c d(p2) d(p3) d(p4) d(p5) d(p6) d(p7) ecm(-1) 得出
回归方程,ecm前面的系数就是误差修正系数,看这些系数是不是显著,如果显著就说明因变量对解释变量的短期波动有影响。

我不知道你们考试和我们一样发。

我学习的是英文版,不知道你们是不是。

第一步,file中选new,新建workfile。

第二步,data y录入数据,录入自变量时,就是data x1,后面的依此类推
打开以后里面和excel差不多,如果打不进去,你看看是不是调整到了编辑界面,在data的窗口上面一排按钮里面有个+/-Edit,按一下就可以切换。

第三步,普通最小二乘法OLS
ls y c x1 x2 x3...
回车后出现个参数的估计值,还有判定系数,T、F检验之类的东西。

邹检验:
在此OLS窗口中,通过上方view中stability tests的第一个chow breakpoint test,可以进行邹检验,里面输入第二组数据的第一个个数,如一共88个数据,现在邹检验分成两组,就输入45。

里面的F检验数值可以判定是否通过邹检验。

异方差性检验:
也在view中residual tests 最后两个white heteroskedasticity(cross terms)或者(no cross terms),就是方程有没有交叉项。

选择下就出来F的结果了,然后判定下。

如果有异方差性,也就是F>c,再怀特方法,还是在OLS窗口上方的estimate,按一下,弹出来的窗口右侧勾勾和叉叉下面选择option,在heteroskedasticity前面打勾,选下面的white,确定,再之前的窗口再确定,之后会出来调整过的方程。

如果这些还不够,那之后还有问题再问我吧,不过我学的也不多~希望对你有帮助。

相关文档
最新文档