初中数学:1.1从自然数到有理数教案(浙教版七年级上)

合集下载

浙教版七年级上数学第一章全套教案

浙教版七年级上数学第一章全套教案

教育精品资料浙教版七年级上第一章《从自然数到有理数》全章教案1.1从自然数到分数一、教学目标:1 .回顾小学中关于“数”的知识;2 .理解自然数、分数的产生和发展的实际背景和必然性;3 .体验自然数与分数的意义和在计数、测量、排序、编号等方面的应用。

二、教学重点和难点重点:认识数的发展过程,感受由于生活与生产实践的需要,数还需从自然数和分数作进一步的扩展。

难点:本节的“合作学习”中的第2题学生不易理解。

三、教学手段:现代课堂教学手段四、教学方法:启发式教学五、教学过程(一)自然数的由来和作用。

请阅读下面这段报道:世界上最长的跨海大桥——杭州湾跨海大桥于2003年6月8日奠基,计划在5年后建成通车,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,将是中国大陆的第一座跨海大桥。

你在这段报道中看到了哪些数?它们都属于哪一类数?在小学里我们已经学过自然数0,1,3,4,5…自然数是人类历史上最早出现的数。

自然数在计数和测量中有着广泛的应用,如5年后建成通车,日通车量为8万辆,全长36千米等。

人们还常常用自然数来给事物标号和排序,如城市的公共汽车路线,门牌号码,邮政编码,上述报道中的2003年,第一座跨海大桥等。

计数简单的理解,可以看成用来统计的结果的自然数。

而测量的结果的自然数是用工具测量。

让学生举出一些实际生活的例子,并说明这些自然数起的作用。

练习,并有学生回答,及时校对。

做一做:下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?(1)2002年全国共有高等学校2003所;(2)小明哥哥乘1425次列车从北京到天津;(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼。

练一练:(二)讲解分数的由来及应用。

在小学里,我们还学习了分数和小数,它们是由于测量和分配等实际需要而产生的。

在解答下列问题时,你会选用哪一类数?为什么?(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?分数可以看作两个整数相除,例如,«Skip Record If...»=3/5=0.6,«Skip Record If...»=0.3,1.31=«Skip Record If...»,0.0062=«Skip Record If...»=«Skip Record If...»。

浙教版数学七年级上册1.1《从自然数到有理数》教学设计

浙教版数学七年级上册1.1《从自然数到有理数》教学设计

浙教版数学七年级上册1.1《从自然数到有理数》教学设计一. 教材分析《从自然数到有理数》是浙教版数学七年级上册第一章第一节的内容。

本节内容主要介绍了有理数的概念,包括整数和分数,以及它们之间的关系。

教材通过具体的例子,让学生理解有理数的定义,掌握有理数的运算方法,为后续学习更高级的数学知识打下基础。

二. 学情分析七年级的学生已经掌握了自然数的相关知识,但对有理数的概念和运算可能还比较陌生。

因此,在教学过程中,需要通过生动的例子和实际操作,让学生理解和掌握有理数的概念和运算方法。

三. 教学目标1.知识与技能:让学生理解有理数的概念,掌握有理数的运算方法。

2.过程与方法:通过实际操作和思考,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:有理数的概念和运算方法。

2.难点:有理数的运算规律和应用。

五. 教学方法1.情境教学法:通过具体的例子和实际操作,让学生理解和掌握有理数的概念和运算方法。

2.问题驱动法:引导学生提出问题,通过思考和讨论,找到解决问题的方法。

3.小组合作学习:学生分组讨论和解决问题,培养团队合作意识和自主学习能力。

六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。

2.准备教学工具,如黑板、粉笔、投影仪等。

3.准备一些实际的例子,如购物场景、运动会等,用于引导学生理解和应用有理数的概念和运算方法。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际的例子,如购物场景、运动会等,引导学生思考和讨论其中的数学问题。

通过这些例子,激发学生的兴趣,引入有理数的概念。

2.呈现(10分钟)利用PPT呈现有理数的概念和运算方法,结合具体的例子,让学生理解和掌握有理数的概念和运算方法。

在此过程中,引导学生提出问题,通过思考和讨论,找到解决问题的方法。

3.操练(10分钟)学生分组进行练习,教师提供一些有关有理数的运算题目,让学生通过实际操作,巩固所学知识。

初中数学教案:从自然数到有理数(2)教案(2021年浙教版)

初中数学教案:从自然数到有理数(2)教案(2021年浙教版)

1.1从自然数到有理数(2)教案课题 1.1从自然数到有理数(2)单元第一单元学科数学上课学习目标1.利用并掌握有理数的概念,理解有理数的分类;2.掌握正负数表示相反意义的量.重点会用正、负数或零表示生活实际中的量.理解有理数的概念,会对有理数进行分类;难点建立正数、负数的概念.教学过程教学环节教师活动学生活动设计意图导入新课一、创设情景,引出课题1.自然数可以用来计数、测量、标号或排序;分数和小数在实际生活中的应用.2.小学学过的数不够用了,数的范围需要扩展.思考:418+160-586=578-586=?问题1:你能用小学学过的数表示计算结果吗?为什么?自然数→分数→?20℃和-15℃这两个量分别表示什么?请你说说生活中还有哪些具有相反意义的词语?在日常生活和生产实践中,我们经常会遇到具有相反意义的量,如:温度有“零上”和“零下”,思考自议正确理解正负数的意义和0的性质与作用;通过正负数的学习,树立对立统一的辩证思想;三、典例精讲例下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,176+,0.33,0,35-,-9.课堂检测四、巩固训练1. 下列说法中,正确的是()A.正整数和负整数统称为整数B.有理数包括正有理数和负有理数C.整数和分数统称为有理数D.有理数包括整数、分数和零答案:C2.下列关于“0”的叙述,不正确的是()A.不是正数,也不是负数B.不是正整数,也不是负整数C.不是非正数,也不是非负数D.不是负数,是整数答案:C3.某食品包装袋上标有“净含量385克±5克”,这包食品的合格净含量范围是_______克~390克.38012,0,180,9,1227,12,180,9,1,0.62-1,-3.01,-15,-43,-45%12,0,180-1,-15,-43,9,1227,-3.01,-45%,0.62227,12,0,180,9,1,0.6212,0,180,1227,12,0,180,9,1,0.62课堂小结。

浙教版2020-2021学年七年级数学上册 1.1 从自然数到有理数精品课件

浙教版2020-2021学年七年级数学上册 1.1 从自然数到有理数精品课件
A: 18/75=6/25=0.24元/千克 B :24/120=0.2元/千克 答:B包装每千克的价格更低。
课堂总结
归纳小结、反思提高
1.谈一谈:请学生回忆这节课主要 学了哪些内容,你感受最深的是什 么? 2.读一读:课本第15页的阅读材料
亲亲爱爱的的读读者者:: 1、学盛生而年活不思重相则来信罔,眼,一泪思日,而难眼不 再 泪学晨并则。不殆及代。时表宜软20自弱.7.勉。12,270.岁.172.月1.22不072.待1020人.92:。025。0099:0:055:0039J:0u5l-:20030J9u:l0-25009:05 春亲去爱春的又读回者,: 20、.7一世.1年上27之没.1计有2.在绝20于望20春的09,处:0一境50日 ,9:之只05计有:0在对3J于处ul晨境-20。绝0二望9:0〇的5二人〇。年二七〇月二十〇二年日七月20十20二年日7月201220日年星7月期1日2日 春去春又回,新新桃桃换换旧旧符符。。在在那那桃桃花花 32星、期莫千日等里闲之,行白,了始少于年足头下, 。空20悲20切年。7月12日星期日
2.张大妈在超市买了一袋洗衣粉,发现包装袋 上标有“净重500 5克”,张大妈看不懂是 什么意思,你能帮她解释清楚吗?
课后作业
3.如图一个台阶要铺地毯,则至少 要买地毯___m.
0.9m
2.8m
课后作业
4.一种商品有两种不同规格的包装,A种 商品的质量为75千克,价格为18元;B 种商品质量为120千克价格24元;哪一 种包装每千克的价格更低?
新课引入
大家想一想,在小学里,学习过哪些数?
自然数、整数、 分数、奇数、偶 数、质数(素 数)、合数。
新课引入
自然数概念指用以计量事物的件 数或表示事物件数的数 。 即用数 码0,1,2,3,4,……所表示的 数 。自然数由0开始 , 一个接一 个,组成一个无穷集体。

2021年浙教版数学七年级上册1从自然数到有理数(2)教案与反思

2021年浙教版数学七年级上册1从自然数到有理数(2)教案与反思

1.1 从自然数到有理数(2)前事不忘,后事之师。

《战国策·赵策》圣哲学校蔡雨欣知识技能1.通过丰富实例,体会对自然数和分数作扩充是生活与生产实际的必然需要;2.建立正、负数的概念,体会其实际意义;3.理解有理数的概念,会对有理数进行分类;4.会用正、负数或零表示生活实际中的量。

数学思考能独立思考,体会分类、归纳的基本数学思想和严谨的数学思维方式。

问题解决1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。

2.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。

3.能针对他人所提的问题进行反思,初步形成评价与反思的意识。

情感态度1.课堂中充足的生活与生产实例,让学生体会到“数学源于生活,又应用于生活”,感受数学的实用性与广泛用途,增强他们对数学的好奇心和求知欲;2.正、负数的表示,让学生感受到数字的简约美;教学重难点教学重点有理数概念。

教学难点正、负数概念的建立过程。

教学方法教法讨论法、探究法。

学法教师适当引导,学生探索、交流、讨论。

(一)复习引入,温故知新复习小学学习过的数。

为建立负数的概念做铺垫。

师:大家想一想,在小学里,学习过哪些数?生:自然数、整数、分数、奇数、偶数、质数(素数)、合数。

(请同学一个一个回答)师:恩,大家学习了这么多数,那我们下面来看一个科普视频。

播放科普视频《探索月球》片段,请同学在观看的同时找一找视频中不熟悉的数字。

看看谁发现了陌生的朋友?于是发现了视频中前面带“减号”的数字,听到了“负223度”的表达。

设疑:为什么多了“减号”?导入新课《有理数》。

【《探索月球》的视频给学生扩充科普知识的同时,让学生带着问题去观赏与寻找,培养了学生有意识观察事物的能力,生动的影像更是增强了学生探究新知的兴趣,带动了课堂气氛。

】(二)交流讨论,探索新知师:视频中提到的“123度”和“-233度”分别表示什么?利用PPT呈现以下内容(1)今日最高气温5度,最低气温零下4度;(2)小王向行驶了3千米,向西行驶了2千米;(3)爸爸从8楼到地下1层的车库;(4)新疆乌鲁木齐市高于海平面918米,吐鲁番盆地最低点低于海平面 155米。

浙教版七年级上册数学教案1.1 从自然数到有理数

浙教版七年级上册数学教案1.1 从自然数到有理数

1.1从自然数到有理数(1)一、教学目标:1. 了解自然数和分数是由于人们生活和生产实践的需要而产生的。

2. 了解自然数和分数的应用。

3. 经历数在解决实际问题的过程中的应用,感受数还需作进一步拓展。

二、教学重点和难点:重点:认识数的发展过程,感受由于生活与生产实践的需要,数还需从自然数和分数进一步的扩展。

难点:本节“合作学习”第2(2)题学生不易理解三、教学过程1.奥运报道:2012年伦敦奥运会中国体育代表团共由621人组成,其中运动员396人,参加本届奥运会23个大项,212个分项的比赛。

在本届奥运会上,中国体育代表团共获得奖牌88枚,其中金牌38枚,银牌27枚,铜牌23枚。

你在这段报道中看到了哪些数?它们都属于哪一类数?2.请阅读下面一段报道:世界上最长的跨海大桥——杭州湾跨海大桥于2003年6月8日奠基,于2008年5月1日全线通车。

这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,是中国大陆的第1座跨海大桥。

自然数有些是用来计数和测量的,而有些是用来标号或排序的。

做一做:下列语句中用到的数,哪些属于计数和测量?哪些表示标号或排序?(1)2002年全国共有高等学校2 003所;(2)小明哥哥乘1 425次列车从北京到天津;(3)香港特别行政区的中国银行大厦高369米,地上70层,至1990年为止,是世界第5高楼。

3.在解答下列问题时,你会选用哪一类数?为什么?(1)小华和她的7位朋友一起过生日,要平均分一块生日蛋糕,每人可得多少蛋糕?(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?4.完成合作学习的第1个问题,并在小组内交流.①T32次火车发车时间是________;②小慧坐火车从温州到杭州需______时;③小慧在市内交通和检票进站最少需_________分钟;④你是怎样理解“最迟”的含义的?⑤小慧最迟在________时从温州出发才一定赶得上火车.用自然数列式:___________________;用分数列式:_______________________.5.你对合作学习第2个问题中第二问方案可行不可行怎么理解?①硬卧下车票___________元/张?②小慧打算买一张硬卧下车票后还剩_______元,她实际有_____元钱?③方案可不可行,怎样计算?四、课堂小結:1.回顾一下小学里我们学过哪些数?2.找一找我们身边有哪些数的应用?想一想这些数有什么作用?3.想一想为什么有了自然数后还要引入分数或小数?在解决实际问题时,自然数和分数够用了吗?五、拓展训练1.某航空公司把从城市A到城市B的机票因燃油涨价而上涨了15%,三个月后又因燃油价格的落而重新下调15%.问下调后的票价与上涨前比是贵了,还是便宜了?2.如图一个台阶要铺地毯,则至少要买地毯m.六、学后反思1.1从自然数到有理数(2)一、教学目标:1.进一步理解正数、负数的意义,了解从自然数到有理数的扩展过程。

浙教版七年级上册数学1.1《从自然数到有理数》课件 (共18张PPT)

浙教版七年级上册数学1.1《从自然数到有理数》课件 (共18张PPT)

月球表面白天气温可高达123℃, 夜晚可低至-233℃. 图中阿波罗 11号的宇航员登上月球后不得不 穿着既防寒又御热的太空服.
上面123℃和-233℃这两个量分 别表示什么吗?
你留意了吗? 在日常生活和生产实践中,我们经常会遇到具
有相反意义的量,如:
温度有“零上”和“零下” 路程有“向东”和“向西” 水位变化有“升高”和“降低” 经营情况有“盈利” 和“亏损” 说明: 具有相反意义的量的含义:一是两个量,数字部分 可以不相等;二是必须要具有相反的意义,缺一不可.
用心理解!
为了表示具有相反意义的量,我们把一种意义的 量规定为正,用过去学过的数(零除外),如123,15, 3.14等来表示,这样的数叫做正数.正数前面可加正号 “+”来表示(“+”常省略不写);把另一种与之意义 相反的量规定为负,用过去学过的数(零除外)前面放 上负号“-”来表示,
如23, 360, 2, 0.5等, 这样的数叫做负数. 3
想一想
1,为什么学了自然数还要学分数? 2,有了自然数、分数够了吗?为什么? 3,分数与小数怎么样相互转化?
1.1从自然数到有理数
下列句子中用到的数,哪些属于计数和
排序 测量?哪些属于标号和排序?
计数
1、2002年全国共标号有高等学校2003所;
2、小明哥哥乘1425次列车从北京到天津测;量
3、香港特别行政区的中国银行大夏高368米, 地上70层,至1993年为止,是世界第5高楼.
整数
正整数 零
自然数
有理数 分数
负整数 正分数
负分数
数的分类
正整数
正有理数
有理数

正分数
负整数
负有理数
负分数

新浙教版1.1_从自然数到有理数导学案

新浙教版1.1_从自然数到有理数导学案

1.1从自然数到有理数(1)教学目标:1、感受自然数和分数在实际生活中的作用。

2、了解分数(小数)的意义和形式。

3、利用自然数和分数的运算解决相关问题。

一、创设情境2004年8月13日到8月29日,第28届奥运会在雅典召开,我国体育代表团以32枚金牌,17枚银牌,14枚铜牌,获得奖牌榜的第二名,为国家争得了荣誉。

我国金牌数约占总金牌数的。

跨栏运动员刘翔在男子100米栏决赛中以12秒91的成绩获得冠军,并打破奥运会纪录,平了世界纪录,刘翔是我国运动员在世界大赛中短距离竞赛项目获得冠军的第一人。

你在这篇报道中看到了哪些数?并指出它们分别属于哪一类数?分别表示什么?二、新授1、自然数的作用(1)计数:一般地,用数数的方法得到的数据。

(2)排序:为了表示某一种顺序的数据。

如年份、月份、名次等。

(3)标号:人为的编号,像门牌号、学号、座位号、车牌号、邮政编码、城市的公共汽车路线等。

(4)测量:一般地,借助工具得到的数据。

做一做⑴2002年全国共有高等学校2003所;(2)小明哥哥乘1425次列车从北京到天津;(3)香港特别行政区的中国银行大夏高368米,地上70层,至1993年为止,是世界第5高楼。

(4)刘翔在雅典奥运会中的号码1363。

2、分数与小数(1)能否把下列分数化成小数?(2)能否把下列小数化成分数?3.14= 0.1=(3)小结:所有的有限小数,无限循环小数都可以看成是分数.(4)判断:0.101 和0.101001000100001……都是分数,对吗?三、课堂小结1.自然数的作用:2.分数与小数:1.1从自然数到有理数(2)教学目标:1、理解有理数的概念,会判断一个数是正数还是负数。

2、会用正数和负数表示生活中具有相反意义的量。

3、掌握有理数的分类,体会数学分类讨论的思想。

一、创设情境你能用已学过的数表示某一天的最高气温是5摄氏度,最低气温是零下5摄氏度吗?二、合作探究(一)正数与负数的意义为了表示具有相反意义的量,我们把其中的一种意义的量规定为正,小学学过的数(零除外),如123,25,2.5等数叫做正数(positive number)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)课堂小节
让学生谈谈学了本节课后,对数的认识和了解。
(1)自然数在实际应用中,有计数,测量结果,标号,排序的作用。
(2)分数在实际应用中,起着分配和测量结果的作用。
(四)布置作业
见作业本。




指导
教师
意见
签字:年月日
学校
抽查
意见
签字:年月日
2、某市民政局举行一次福利彩票销售活动,销售总额度为4000万元。其中发行成本占总额度的15%,1400万元作为社会福利资金,其余作为中奖着奖金。
(1)你能算出奖金总额是多少吗?你是怎样算的?
(2)为了使福利资金提高10%,而发行的成本保持不变,有人提出把奖金总额减小6%。你认为这个方案可行吗?你是怎样获得结论的?
计数简单的理解,可以看成用来统计的结果的自然数。而测量的结果的自然数是用工具测量。
让学生举出一些实际生活的例子,并说明这些自然数起的作用。
练习,并有学生回答,及时校对。
做一做:下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?
(1)2002年全国共有高等学校2003所;
(2)小明哥哥乘1425次列车从北京到天津;
(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?
分数可以看作两个整数相除,例如, =3/5=0.6, =0.3,1.31= ,0.0062= = 。
伴随着数的概念而来的是数的运算,数的运算是人们分析、判断和解决实际问题的重要手段。
完成“合作学习”(见课本)
你能帮小慧列出算式吗?如果利用自然数怎样列算式?用分数呢?
1.1从自然数到分数
课 题
1.1从自然数到分数
课时安排
1




1 .回顾小学中关于“数”的知识;
2 .理解自然数、分数的产生和发展的实在计数、测量、排序、编号等方面的应用。
重点
认识数的发展过程,感受由于生活与生产实践的需要,数还需从自然数和分数作进一步的扩展。
上面问题2中的第(2)题可以用如下算式求解:
2000×6%-1400×10%=120-140
算式中被减数小于减数,在这种情况下,能否进行运算?能否用我们已经学过的自然数和分数来表示结果?看来数还需作进一步的扩展。
目的:一是让学生进一步体验数的运算是人们分析、判断、解决实际问题的重要工具;二是从解决实际问题的过程中让学生感受到,光有自然数和分数仍是不够的,数需作进一步的扩展。
难点
本节的“合作学习”中的第2题学生不易理解。
教具准备
多媒体,投影仪
教 学 过 程
(一)自然数的由来和作用。
请阅读下面这段报道:
世界上最长的跨海大桥——杭州湾跨海大桥于2003年6月8日奠基,计划在5年后建成通车,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,将是中国大陆的第一座跨海大桥。
你在这段报道中看到了哪些数?它们都属于哪一类数?
在小学里我们已经学过自然数0,1,3,4,5…自然数是人类历史上最早出现的数。自然数在计数和测量中有着广泛的应用,如5年后建成通车,日通车量为8万辆,全长36千米等。人们还常常用自然数来给事物标号和排序,如城市的公共汽车路线,门牌号码,邮政编码,上述报道中的2003年,第一座跨还大桥等。
(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼。
课后反馈
教 学 过 程
(二)讲解分数的由来及应用。
在小学里,我们还学习了分数和小数,它们是由于测量和分配等实际需要而产生的。在解答下列问题时,你会选用哪一类数?为什么?
(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?
相关文档
最新文档