2.5第五章 连续梁桥的设计与计算

合集下载

连续刚构桥设计方法

连续刚构桥设计方法

连续刚构桥设计方法一、连续刚构桥的特点作为梁桥的一种,连续梁桥有着结构刚度大、变形小;动力性能好;无伸缩缝、行车平顺的优点。

而连续刚构桥是由t型刚构桥演变而来的,其结构特点是梁体连续、梁墩固结。

这样既保持了连续梁无伸缩缝、行车平顺的优点,又保持了t型刚构不设支座、不需转换体系的优点。

且有很大的顺桥向抗弯刚度和横向抗扭刚度,能满足大跨度桥梁的受力要求。

二、连续刚构桥的适用范围连续刚构桥上部主梁的受力与连续梁桥基本相似;下部桥墩由于结构的整体性,温度和收缩徐变造成的内力十分显著。

因此其桥墩应该有一定的柔度。

使用高强度、轻质混凝土是大跨度梁桥的发展方向之一。

目前世界上已建成的连续刚构桥最大单跨为挪威斯托尔马桥(stolma),主跨301米,国内最大单跨为虎门大桥辅航道桥,主跨270米。

三、设计时需收集的基础资料设计时应围绕桥位选择、桥墩位置、跨径、立面布置、结构体系、施工方法等因素,对桥梁建设的自然条件和功能要求有充分的了解。

1、自然条件包括(1)地形地貌、控制物等;(2)工程地质条件;(3)水文条件;(4)气象条件;(5)地震。

2、功能要求包括(1)桥梁本身使用功能,如铁路桥梁、公路桥梁、城市桥梁、轨道交通、人行桥等;(2)桥下功能要求,如通车、通航等。

四、桥型方案的选择设计时应根据桥梁建设条件,结合技术可行性、施工难度、工程风险与进度、经济合理性、景观协调性等因素,进行桥型比选,确定桥梁的跨径布置。

五、上部结构构造尺寸连续刚构桥设计时,可根据工程实践统计,初步拟定构造尺寸,再进行具体计算复核。

1、边、中跨跨径比一般在0.52~0.58之间。

当边、中跨比较小时,边跨现浇段较短,可减少边跨现浇段支架,对施工有利,但应保证各种工况下边墩处支座不出现负反力。

2、梁的截面形式连续刚构桥多采用箱形截面,其具有良好的抗弯和抗扭性能。

根据桥梁宽度,可采用单箱单室、单箱多室等截面形式。

3、梁高桥梁跨度在60米以内时,可考虑采用等截面高度,构造简单,施工快捷。

桥梁工程毕业设计计算书(五跨等截面连续梁桥)

桥梁工程毕业设计计算书(五跨等截面连续梁桥)

1 设计基本资料1.1概述跨线桥应因地制宜,充分与地形和自然环境相结合。

跨线桥的建筑高度选取除保证必要的桥下净空外,还需结合地形以减少桥头接线挖方或填方量,最终再谈到经济实用的目的。

如果桥两端地势较低,主要采用梁式桥;略高的则主要采用中承式拱肋桥;更高的则宜采用斜腿刚构、双向坡拱等形式。

在桥型的选择时,一方面从“轻型”着手,以减少圬工体积,另一方面结合当地的资源材料条件,以满足就地取材的原则。

随着社会和经济的发展,生态环境越来越受到人们的关注与重视,高速公路跨线桥将作为一种人文景观,与自然相协调将会带来“点石成金"的效果.高速公路上跨线桥常常是一种标志性建筑物,桥型本身具有的曲线美,能够与周围环境优美结合。

茶庵铺互通式立体交叉K65+687跨线桥,必须遵照“安全、适用、经济、美观”的基本原则进行设计,同时应充分考虑建造技术的先进性以及环境保护和可持续发展的要求。

1.1.1设计依据按设计任务书、指导书及地质断面图进行设计.1.1.2技术标准(1)设计等级:公路—I级;高速公路桥,无人群荷载;(2)桥面净宽:净—11.75m + 2×0。

5 m防撞栏;(3)桥面横坡:2。

0%;1。

1。

3地质条件桥址处的地质断面有所起伏,桥台处高,桥跨内低,桥跨内工程地质情况为(从上到下):碎石质土、强分化砾岩、弱分化砾岩,两端桥台处工程地质情况为:弱分化砾岩。

1.1。

4采用规范JTG D60—2004《公路桥涵设计通用规范》;JTG D62—2004 《公路钢筋砼及预应力砼桥涵设计规范》;JTG D50—2006 《公路沥青路面设计规范》JTJ 022—2004 《公路砖石及砼桥涵设计规范》;1.2桥型方案经过方案比选,通过对设计方案的评价和比较要全面考虑各项指标,综合分析每一方案的优缺点,最后选定一个最佳的推荐方案。

按桥梁的设计原则、造价低、材料省、劳动力少和桥型美观的应是优秀方案。

独塔单索面斜拉桥比较美观,但是预应力混凝土等截面连续梁桥桥梁建筑高度小,工程量小,施工难度小,可以采用多种施工方法,工期较短,易于养护。

先简支后连续梁支座计算

先简支后连续梁支座计算

先简支后连续梁支座计算简支和连续梁是常见的桥梁结构形式,而支座则是桥梁结构中的重要组成部分。

在桥梁设计中,支座的设计和计算是十分关键的。

本文将重点介绍以先简支后连续梁支座计算的相关内容。

简支和连续梁支座的设计和计算是有所区别的。

简支梁支座计算主要考虑梁端的转动和水平力,而连续梁支座计算则需要考虑梁端的转动、水平力和垂直力。

两者的设计和计算方法有一定的差异,需要根据具体的桥梁结构形式进行选择。

对于先简支后连续梁结构,首先需要确定简支段和连续段的边界位置。

在边界位置处,支座需要能够满足简支段和连续段之间的转动和水平力的传递。

通常情况下,简支段的支座设计可以采用简单支座,而连续段的支座设计则需要考虑连续梁的特点。

在简支段的支座计算中,主要考虑的是梁端的转动和水平力。

转动可以通过简支段的支座进行传递,而水平力则需要通过支座的摩擦力来平衡。

支座的摩擦力大小与梁端水平力的大小有关,需要根据具体情况进行计算。

在连续段的支座计算中,除了考虑梁端的转动和水平力外,还需要考虑垂直力。

由于连续梁在连续段上存在弯矩和剪力,梁端会受到垂直方向上的力的作用。

支座需要能够承受这些垂直力,并将其传递到桥墩或基础上。

在进行支座计算时,需要考虑支座的承载能力和稳定性。

支座的承载能力需要满足桥梁的荷载要求,同时还需要考虑支座的材料和结构的强度。

支座的稳定性则需要满足桥梁结构的位移和变形要求,避免桥梁的不稳定和破坏。

在具体的支座计算中,可以采用一些经验公式和计算方法。

例如,可以根据支座的类型和桥梁的参数来选择合适的公式。

同时,还需要结合实际工程经验和设计规范进行综合考虑,以确保支座的设计和计算的准确性和可靠性。

先简支后连续梁支座计算是桥梁设计中的重要内容。

通过合理的支座设计和计算,可以确保桥梁结构的安全和稳定。

在实际工程中,需要根据具体情况和设计要求进行选择和应用,以满足桥梁结构的需求。

同时,还需要注意支座的施工和维护,以确保桥梁的长期使用和运营。

第1章+连续梁桥计算

第1章+连续梁桥计算

第1章:连续梁桥计算连续梁桥是一种应用广泛的桥梁结构,具有多跨、多支承、结构连续等特点。

这种桥梁结构需要进行复杂的计算才能保证其安全可靠。

本章将介绍连续梁桥的计算方法和应用。

连续梁桥的基本结构连续梁桥由多个跨距相等的梁段组成,每个梁段之间通过支承连接。

在连续梁桥结构中,跨中和支点处的内力是最大的,因此需要进行合理的设计和计算。

另外,在计算过程中需要考虑桥梁的自重、荷载和温度等因素的影响。

连续梁桥的计算方法静力计算法静力计算法是一种较为简单的连续梁桥计算方法,其基本思想是将桥梁看作任意形状的集合,通过应力、弯曲、剪切力、反力等来计算桥梁的内力和应力。

有限元法有限元法是一种基于数值计算的连续梁桥计算方法,其特点是能够考虑桥梁结构的非线性、动态和破坏情况等因素。

目前,有限元法已成为桥梁结构计算中最常用的方法之一。

连续梁桥的设计应用连续梁桥的设计应用是建造一个安全、可靠的桥梁结构的重要一步。

在设计过程中需要考虑桥梁结构的材料选择、跨径和支承的位置、桥梁的承载能力等因素。

设计师需要综合考虑以上因素,并根据具体情况判断,得出最终的桥梁设计方案。

连续梁桥的施工与检测在连续梁桥的施工过程中,需要保证结构的安全性和施工效率。

在桥梁建成后,需要对其进行检测,以确保桥梁运行安全。

检测的方法包括:目视检查、测量检查、声波检测和超声波检测等。

结论连续梁桥是一种应用广泛的桥梁结构,其计算方法和应用必须掌握,才能确保桥梁的结构安全可靠。

连续梁桥的设计、施工和检测也是确保桥梁运行安全的重要保障,需要加强相关人员的培训和管理,提高桥梁的建设质量和运营效率。

桥梁工程毕业设计计算书(五跨等截面连续梁桥)

桥梁工程毕业设计计算书(五跨等截面连续梁桥)

1 设计基本资料1.1 概述跨线桥应因地制宜,充分与地形和自然环境相结合。

跨线桥的建筑高度选取除保证必要的桥下净空外,还需结合地形以减少桥头接线挖方或填方量,最终再谈到经济实用的目的。

如果桥两端地势较低,主要采用梁式桥;略高的则主要采用中承式拱肋桥;更高的则宜采用斜腿刚构、双向坡拱等形式。

在桥型的选择时,一方面从“轻型”着手,以减少圬工体积,另一方面结合当地的资源材料条件,以满足就地取材的原则。

随着社会和经济的发展,生态环境越来越受到人们的关注与重视,高速公路跨线桥将作为一种人文景观,与自然相协调将会带来“点石成金”的效果。

高速公路上跨线桥常常是一种标志性建筑物,桥型本身具有的曲线美,能够与周围环境优美结合。

茶庵铺互通式立体交叉K65+687跨线桥,必须遵照“安全、适用、经济、美观”的基本原则进行设计,同时应充分考虑建造技术的先进性以及环境保护和可持续发展的要求。

1.1.1设计依据按设计任务书、指导书及地质断面图进行设计。

1.1.2 技术标准(1)设计等级:公路—I级;高速公路桥,无人群荷载;(2)桥面净宽:净—11.75m + 2×0.5 m防撞栏;(3)桥面横坡:2.0%;1.1.3 地质条件桥址处的地质断面有所起伏,桥台处高,桥跨内低,桥跨内工程地质情况为(从上到下):碎石质土、强分化砾岩、弱分化砾岩,两端桥台处工程地质情况为:弱分化砾岩。

1.1.4 采用规范JTG D60-2004 《公路桥涵设计通用规范》;JTG D62-2004 《公路钢筋砼及预应力砼桥涵设计规范》;JTG D50-2006 《公路沥青路面设计规范》JTJ 022-2004 《公路砖石及砼桥涵设计规范》;1.2 桥型方案经过方案比选,通过对设计方案的评价和比较要全面考虑各项指标,综合分析每一方案的优缺点,最后选定一个最佳的推荐方案。

按桥梁的设计原则、造价低、材料省、劳动力少和桥型美观的应是优秀方案。

独塔单索面斜拉桥比较美观,但是预应力混凝土等截面连续梁桥桥梁建筑高度小,工程量小,施工难度小,可以采用多种施工方法,工期较短,易于养护。

连续梁桥计算

连续梁桥计算
n
M0
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
1
0
-1
2
0
0.250000
-1
3
0
-0.066667
0.266667
-1
4
0
0.017857
-0.071429
0.267857
-1
5
0
-0.004785
0.019139
-0.071771
0.267943
-1
6
0
0.001282
-0.005128
0.019231
阶段图式1在主墩上悬臂浇注砼2边跨合龙3中跨合龙4拆除合龙段挂篮5上二期恒载图11采用悬臂浇筑法施工时连续梁自重内力计算图式四阶段4拆除合龙段的挂篮此时全桥已经形成整体结构超静定结构拆除合龙段挂篮后原先由挂篮承担的合龙段自重转而作用于整体结构上
第一章 混凝土悬臂体系和连续体系梁桥的计算
第一节 结构恒载内力计算
阶段
图 式
1
在主墩上悬臂浇注砼
2
边跨合龙
3
中跨合龙
4
拆除合龙段挂篮
5





图1-1采用悬臂浇筑法施工时连续梁自重内力计算图式
(四)阶段4 拆除合龙段的挂篮
此时全桥已经形成整体结构(超静定结构),拆除合龙段挂篮后,原先由挂篮承担的合龙段自重转而作用于整体结构上。
(五)阶段5 上二期恒载
在桥面均布二期恒载 的作用下,可得到三跨连续梁桥的相应弯矩图。
顶推连续梁的内力呈动态型的,其内力值与主梁和导梁二者的自重比,跨长比和刚度比等因素有关,很难用某个公式来确定图1-2b中最大正弯矩截面的所在位置,因此,只能借助有限元计算程序和通过试算来确定。但在初步设计中,可以近似地按图1-4的三跨连续梁计算图式估算。其理由是距顶推连续梁端部0.4 截面处的正弯矩影响线面积之和相对最大,虽然在导梁的覆盖区也有负弯矩影响线面积,但导梁自重轻,故影响较小。

连续梁桥(T构)计算

连续梁桥(T构)计算

计算方法
结果分析
采用有限元法进行计算,将主梁离散化为 多个单元,建立整体有限元模型。
通过计算和分析,得出主梁在各种工况下 的应力、应变和挠度等结果,验证主梁的 受力性能是否满足设计要求。
某高速公路的T构优化设计
工程概况
某高速公路连续梁桥(T构)需 要进行优化设计,以提高结构 的承载能力和稳定性。
优化内容
和意外事故。
提高施工质量
施工控制有助于提高桥梁的施工 质量,通过控制施工过程中的各 项参数,确保桥梁的线形、内力
和变形等指标符合设计要求。
节约成本
合理的施工控制可以避免施工过 程中的浪费和不必要的返工,从
而节约施工成本。
施工控制的主要内容
施工监控
对桥梁施工过程中的线形、内力和变形进行实时 监测,确保施工状态符合设计要求。
对主梁的截面尺寸、配筋和桥墩 的布置进行优化设计,降低结构 的自重和提高结构的刚度。
优化方法
采用有限元法进行计算和分析, 通过调整结构参数和材料属性, 对结构进行多方案比较和优化。
结果分析
经过优化设计,结构的承载能力 和稳定性得到了显著提高,同时
降低了结构的自重和造价。
某铁路桥的T构施工控制与监测
03
需要保证桥面平度的桥梁
连续梁桥(T构)的桥面平度较高,能够满足高速铁路、高速公路等对桥
面平度的要求。
02
T构的力学分析
静力学分析
1
计算T构在静力作用下的内力和变形,包括恒载 和活载。
2
分析T构在不同工况下的应力分布和最大、最小 应力值。
3
评估T构的承载能力和稳定性,确保满足设计要 求和使用安全。
在满足安全性和功能性 的前提下,降低T构的造

第五章 混凝土简支梁桥

第五章  混凝土简支梁桥

装配式斜板桥的钢筋布置与正交板有所不同。下 图为斜交角30°时斜板的顶层、底层钢筋布置,其 余钢筋布置与正交板相同。
图为标准跨径16m的后张预应力混凝土简支空心 板的截面和预应力筋布置图。板高为0.75m,采用 C40混凝土预制,两肋下部各布置2束钢绞线,每束由 6根Φ15钢绞线组成。《公路桥涵标准设计》中采用 强度等级为1570MPa的钢绞线,目前工程中较多采用 强度等级为1860MPa的钢绞线,在设计中作等效替换 即可。在顶板和底板布置有48的纵向钢筋以增强板的 抗裂性。箍筋在板端加密,以承受剪力。
(3)在均布荷载作用下,当桥轴线方向的跨长相同 时,斜板桥的最大跨内弯矩比正板桥要小,跨内纵向 最大弯矩或最大应力的位置,随斜交角 φ的变大而由 中央向钝角方向移动。图表示在满布均布荷载时,跨 内最大弯矩位置沿板宽的变化曲线,由图可知,当斜 交角φ在15°以内时,可以近似地按正交板桥计算, 因此《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62—2004)便作了这样的规定。
3.整体式斜交板桥的受力特点与构造
在桥梁建设中,由于桥位处的地形限制、或由于 路线线形的要求而将桥梁做成斜交。斜交板桥的桥轴 线与支承线的垂线呈某一夹角,此角称作斜交角φ。 斜板桥的受力状态是很复杂的,迄今尚无力学经典解 答,多借助计算机以求得数值解。为了对斜板桥的受 力性能有个定性的了解,以便从构造上予以保证,这 里只作简单介绍。
2.钢筋构造 截面配筋应依据计算的纵、横弯矩来定,主钢筋直径 应不小于12mm,间距应不大于200mm,一般也不宜小于 70mm;由于汽车荷载在板边缘的分布范围比跨中小,因而 两侧各1/6板宽范围内的主筋宜较中间板带增加15%。图 为整体式简支板桥的构造图。其标准跨径6m,桥面净宽 8.5m(与路基同宽),两边有0.25m的安全带,计算路径为 5.69m,板厚320mm,约为跨径的1/18。纵向主筋采用 Φ20,在跨径两端l/4—1/6的范围内呈30°弯起;分布 钢筋采用Φ10,按单位板宽上主筋面积的15%配置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 变高度梁——实用于大跨径连续梁,100米 以上,90%为变高度连续梁
桥型 等高度连续梁 变高度(折线形)连续梁 变高度(曲线形)连续梁
支 点 梁 高 (m)
跨 中 梁 高 (m)
H = (115
1
30
)l 常用(118
1
20
)l
H = (116
1
20
)l
h = (212
1
28
)l
11
H = (16 20 )l
t, t,00 t , t ,0 ,0 k 0 ( 1 e t) k 0 ( 1 e ) k0(e et) k0e[1 e(t )] k[1e(t)]
• 先天理论
– 不同加载龄期的混 凝土徐变增长规律 都一样
(t,) 0 t
k0[1e(t)]
– 混凝土的徐变终极值不因加载龄期不同而异, 而是一个常值
稳定
2)徐变系数与加载龄期的关系 • 老化理论
– 不同加载龄期的 混凝土徐变曲线在 任 意 时 刻 t(t>) , 徐变增长率都相同
t, t,00
– 随着加载龄期的增大,徐变系数将不断减小, 当加载龄期足够长时徐变系数为零
– 该理论较符合新混凝土的特性
将Dinshinger公式应用与老化理论
M N B N y e N y (f e ) 1 N y f
梁端有偏心矩时
1 N 3 N E y[ l1 f I 1 l2 f 2 1 2 ( l1 e a l2 e c ) e ( l1 l2 )]
11 (l1l2)/3EI
x1Ny(f
e1 e) 2
M N M 0 x 1 M 1 M 0 N y(f e 2 1 e )M 1
11
h = (30 50 )l
4、腹板及顶、底板厚度 • 顶板——满足横向抗弯及纵向抗压要求
一般采用等厚度,主要由横向抗 弯控制
• 腹板——主要承担剪应力和主拉应力 一般采用变厚度腹板,靠近跨中 处受构造要求控制,靠近支点 处受主拉应力控制,需加厚。
• 底板——满足纵向抗压要求 一般采用变厚度,跨中主要受 构造要求控制,支点主要受纵向 压应力控制,需加厚
1/44.4 1/44 1/40.7
二、构造特点
1、跨径布置
– 布置原则:减小弯矩、增加刚度、方便施工、 美观要求
– 不等跨布置——大部分大跨度连续梁 边跨为0.5~0.8中跨
– 等跨布置——中小跨度连续梁 – 短边跨布置——特殊使用要求
3、梁高——与跨径、施工方法有关
– 等高度梁——实用于中、小跨径连续梁,一 般跨径在50~60米以下
单箱单室
8.53 1/18.1 2.83
单箱单室
7.7 1/16.2 3.2
H 中/L 1/55 1/54.4 1/39.1
4 黄浦江奉浦大桥 5 潭洲大桥 6 常德沅水大桥 7 风陵渡黄河大桥 8 沙洋汉江大桥 9 江门外海桥 10 珠江三桥
85+3125+85 75+125+75 84+3120+84 87+7114+87 63+6111+63 55+7110+55 80+110+80
次力矩为零时的配束称吻合索
iN
M 0M idx 0(i1..n .). EIΒιβλιοθήκη 多跨连续梁在任意荷载作用下
in
M pM id EI
x 0(i1...n.)..
结论: 按外荷载弯矩图形状布置预应力束及为 吻合束 吻合束有任意多条
均布荷载q 集中荷载q
三、等效荷载法求解总预矩
把预应力束筋和混凝 土视为相互独立的脱 离体,预加力对混凝 土的作用可以用等效 荷载代替
矩 – 如果等效荷载直接作用在连续梁上支反力
等于0,此时为吻合束 – 只有改变预应力束曲率半径或梁端高度才
能改变总预矩
第五节 徐变、收缩次内力计算
一、徐变、收缩理论
– 收缩——与荷载无关 – 徐变——与荷载有关 – 收缩、徐变与材料、配合比、温度、湿度、
截面形式、护条件、混凝土龄期有关
1、混凝土变形过程
专题(四) 文化建设
2.5第五章 连续梁桥的设计与计算
第一节 连续梁桥的体系 与构造特点
一、体系特点
• 由于支点负弯矩的卸载作用,跨中正弯 矩大大减小,恒载、活载均有卸载作用
• 由于弯矩图面积的减小,跨越能力增大 • 超静定结构,对基础变形及温差荷载较
敏感 • 行车条件好
均布荷载q 连续梁桥 均布荷载q
(x,y)(x,y)[1(t,)]
E – 变形计算公式
k pL F (x ,y )(x ,y )dF dx
k pL M p ( E x )( M x ) k I (x )d x L M p ( E x )( M x ) k I (x )d( x t,)
kp [1(t,)]
静定结构可以满足应力不变的条件
MN B
M0
Ny(
f
e1 2
e)
M1
Ny(
f
e1) 2
3、局部配筋
局部直线配筋
11 (l1l2)/3EI
1NE 2[N Iye4 l7 8]7 1N E 6 yelI
x11N/1
21 132 Nye
M N BN ye3 2N 2 1ye1 3N 1 2ye
局部曲线配筋
11 (l1l2)/3EI
2 13
• 横隔板——一般在支点截面设置横隔板
5、配筋特点 • 纵向钢筋
– 悬臂施工阶段配筋
• 主筋没有下弯时布置在腹板加掖中 • 需下弯时平弯至腹板位置 • 一般在锚固前竖弯,以抵抗剪力
– 连续梁后期配筋
• 各跨跨中底板配置连续束
• 顶板——配制横向钢筋或 横向预应力钢筋
• 腹板——下弯的纵向钢筋 需要时布置竖向预应力钢筋
– 收缩 – 弹性变形 – 回复弹性变形 – 滞后弹性变形 – 屈服应变
2、收缩徐变的影响
– 结构在受压区的徐变和收缩会增大挠度; – 徐变会增大偏压柱的弯曲,由此增大初始偏
心,降低其承载能力;
– 预应力混凝土构件中,徐变和收缩会导致预 应力的损失;
– 徐变将导致截面上应力重分布。 – 对于超静定结构,混凝土徐变将导致结构内
预应力次弯矩:
M
总预矩:
M NM 0M
压力线:
e MN Ny
– 简支梁压力线与预 应力筋位置重合
– 连续梁压力线与预 应力筋位置相差
e M Ny
一、用力法解预加力次力矩
1、直线配筋
• 力法方程
1x 111N0
• 变位系数
11
2l 3EI
• 赘余力
1N
Nyel EI
x1
1N
11
3 2Nye
1、纵向——某些截面可能出现正负最不利 弯矩,必须用影响线加载
2、横向 – 箱梁——专门分析 – 多梁式——横向分布系数计算,等刚度法
三、超静定次内力计算
1、产生原因——结构因各种原因产生变形, 在多余约束处将产生约束力,从而引起结构 附加内力(或称二次力)
2、连续梁产生次内力的外界原因 – 预应力 –墩台基础沉降 –温度变形 –徐变与收缩
2、简支变连续施工
一期恒载作用在简支梁上,二期恒载作用在连 续梁上
3、逐跨施工
主梁自重内力图,应由各施工阶段时的自重 内力图迭加而成
4、顶推施工
– 顶推过程中,梁体内力不断发生改变,梁段 各截面在经过支点时要承受负弯矩,在经过 跨中区段时产生正弯矩
– 施工阶段的内力状态与使用阶段的内力状态 不一致
四、变形计算
– 必须考虑施工过程中的体系转换,不同的荷 载作用在不同的体系上
– 根据恒载及活载变形设置预拱度——大跨径 时必须专门研究——大跨径桥梁施工控制
– 预拱度设置原则:
某节点预拱度 = -(所有在该节点出现后的 荷载或体系转换产生的位移)
第四节 预应力次内力计算
预应力初弯矩:
M0 Nye
我国采用的公式 t τ , β a τ d B d t τ f β f t β f τ ε s tτ , ε s 0 β s t β s τ
2、徐变系数数学模型
1)基本曲线——Dinshinger公式
t,0 k0(1et)
– 徐变在加载时刻有急 变
– 在加载初期徐变较大 – 随时间增长逐渐趋于
– 配筋必须满足施工阶段内力包络图
• 主梁最大正弯矩发生在导梁刚顶出支点 外时
• 最大负弯矩——与导梁刚度及重量有关
– 导梁刚接近前方支点 – 刚通过前方支点
5、平衡悬臂施工 – 分清荷载作用的结构 – 体现约束条件的转换
– 主梁自重内力图,应由各施工阶段时的自重 内力图迭加而成
二、活载内力
– 该理论较符合加载龄期长的混凝土的特性
• 混合理论
– 对新混凝土采用老 化理论,对加载龄 期长的混凝土采用 先天理论
三、结构因混凝土徐变引起的 变形计算
1、基本假定
– 不考虑钢筋对混凝土徐变的约束作用 – 混凝土弹性模量为常数 – 线性徐变理论
2、应力不变条件下的徐变变形计算
– 应力应变公式
力重分布,即引起结构的徐变次内力。
– 混凝土收缩会使较厚构件的表面开裂
3、线性徐变
– 当混凝土棱柱体在持续应力不大与0.5Ra时, 徐变变形与初始弹性变形成线性比例关系
– 徐变系数——徐变与弹性应变之比
cllc
lcle le l
e
c /e
二、 徐变、收缩量计算表达
1、实验拟合曲线法
建立一个公式,参数通过查表计算, 各国参数取法不相同,常用公式有: – CEB—FIP 1970年公式 – 联邦德国规范1979年公式 – 国际预应力协会(FIP)1978年公式——
相关文档
最新文档