复数的几种表示形式的转换及计算.
1.2复数的几种表示形式

(3) | z | | z |;
P6
arg z - arg z , ( arg z π );
| z |2 z z .
z
|z| Im z
Re z
z2
z1 z2
z1
z1 - z2
|z| z
arg z arg z
|z| z
P8
证 | z1 z2 |2 (z1 z2 )( z1 z2 ) (z1 z2 )( z1 z2 )
复数 z 的乘幂,记为 zn , 即 zn z z z .
n个
利用复数的指数表示式可以很快得到乘幂法则。
法则 设 z r ei , 则 zn (r ei )n r n ein .
三、复数的乘幂与方根
1. 复数的乘幂 棣莫弗(De Moivre)公式 由 zn (r ei )n r n ein 以及复数的三角表示式可得
欧拉
Leonhard Euler (1707~1783)
瑞士数学家、自然科学家
十八世纪数学界最杰出的人物之一。 数学史上最多产的数学家。 不但为数学界作出贡献, 而且把数学推至几乎整个物理领域。
附:人物介绍 —— 欧拉
欧拉是科学史上最多产的一位杰出的数学家。 以每年平均 800 页的速度写出创造性论文。 一生共写下了 886 本书籍和论文。
注: 复数 0 的模为 0,辐角无意义。
一、复数的几何表示
2. 复数的模与辐角
主辐角 对于给定的复数 z 0 , 设有 满足: Arg z 且 - π π ,
则称 为复数 z 的主辐角或辐角主值,记作 arg z .
由此就有如下关系: Arg z arg z 2kπ , k 0 , 1, 2 , .
复数公式及运算法则

复数公式及运算法则
复数公式:复数是由实部和虚部组成的数。
复数通常写成a + bi 的形式,其中a和b都是实数,而i是一个虚数单位,满足i² = -1。
复数的运算法则:
1.复数的加法和减法:将实部与实部、虚部与虚部分别相加或相减。
(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi) - (c + di) = (a - c) + (b - d)i
2.复数的乘法:使用分配律将两个复数相乘。
(a + bi) * (c + di) = ac + adi + bci + bdi²
因为i²=-1,所以可以将上式简化为:
(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
3.复数的除法:用分子分母都乘以分母的共轭复数(实部保持不变,虚部取负数),然后将分母变为实数。
(a + bi) / (c + di) = (a + bi) * (c - di) / (c² + d²)
因为乘法和除法都需要分别计算实部和虚部,所以计算复数的乘
法和除法时需要注意分配律和运用恒等式。
拓展:复数在物理学、工程学、数学等多个领域都有广泛应用,
如在电路分析、信号处理、量子力学等方面。
由于虚部可以表示位移、相位差等概念,复数可以用来表示波形、振动、旋转等物理量。
同时,复数的数学理论也非常丰富,包括复数拓扑学、复变函数论等多个分支。
经典的复数知识

各种表示形式之间的相互转换
一、复数的形式
1、代数形式
A = a + jb
j
1
为虚单位 Re[A ] = a
b
+j A
复数A 的实部
复数A 的虚部 Im[A ] = b
O 复数 A = a + jb 在复平面上可以用一条 从原点O 指向A 对应坐标点的有向线段 一一对应[点A(a,b)]。
虚轴等于把实轴+1乘以j而得到的。
例:设A1=3-j4,A2=10 /135°
求 : A1+ A2 和 A1/ A2 。
解:求复数的代数和用代数形式:
A2 = 10 /135°
=10(cos135°+jsin135°)
= -7.07 + j7.07
A1 + A2 = ( 3 - j 4 ) + ( -7.07 + j 7.07 )
几何意义 +j
A1 A2
A1
A2
O
+1
2、减法 用代数形式进行, 设 A1 a1
jb1 A2 a2 jb2
A1 A2 (a1 jb1 ) (a2 jb2 ) ( a1 a2 ) j (b1 b2 )
几何意义
+j
A1 A2
A1
A1 A2
e
j
1/
是一个模等于1,辐角为θ的复数。
任意复数A乘以e jθ
等于把复数A逆时针旋转一个角度θ, 而A的模值不变。
e
j
2
j
e
j
2
-j
eБайду номын сангаас
复数的几种表示形式

复数主要有三种表示形式:坐标式,三角式,指数式。
坐标形式: z=a+bi 。
这个就非常简单了,它是复数的定义。
自从 i 这个数产生以后,我们就规定了 a+bi 是复数,并且 b=0 时就是我们以前的实数。
(a,b )对应复数在复平面上的坐标。
三角形式: z=r(cos θ+isin θ)这个结合几何意义容易看出来:记复数 z 的模为 r,幅角为θ,显然有 a=rcos θ ,b=rsin θ代入坐标形式里即有:Z1z2 =r1r2(cos θ1cos θ2-sin θ1sin θ2+i(sinθ1cos θ2 + cos θ1sin θ2)) = r1r2(cos( θ1 +θ2)+isin( θ1 +θ2) )通过三角形式我们不难发现,两个复数积的模等于两个复数的模的积,一个复数乘以另一个复数相当于将这个复数拉长另一个复数的模的倍数,一个角度(这个角是另一个复数的幅角),特别地,如果乘以的复数的模为则该复数只起到旋转的效果,例如:而且在旋转1,在旋转的几何背景下,我们还容易发现:Z n=r n(cos(n θ )+isin(nθ))特别地,令 r=1 ,可以得到著名的王陆杰公式:n这个公式很有用,我们下一次再谈。
i θ因此有 e iθ= cos θ+isin θ从而有 z=r(cos θ+isin θ)=re iθ借助指数形式我们更容易看出复数旋转的性质,以及刚才的王陆杰公式e i(nθ) = cosn θ+isinn θ= (e iθ ) n=( cos θ+isin θ) n这里面还藏着一个号称数学最美的式子:i π特别地,令θ=π,则 e=-1 。
我们不得不惊叹复数的形式看似简朴,但真正是藏龙卧虎,以往数学中的各种看似没有瓜葛的对象都被联系起来了,关于复数这些形式的进一步研究,我们以后再说。
高中数学-复数2-表现形式

复数的各类表达形式和运算代数形式表示形式:表示一个复数复数有多种表示形式,常用形式z=a+bi 叫做代数形式。
代数形式运算:表示复数的加减乘除运算设z1=a+bi,z2=c+di,则有以下法则z线性运算加减:(a+bi)±(c+di)=(a±c)+(b±d)i数乘: c *(a+bi)=(a*c)+(b*c)iz非线性运算乘除:(a+bi)*(c+di)=(ac-bd)+(bc+ad)i,(a+bi)÷(c+di)=[(ac+bd) / (c^2+d^2)]+[(bc-ad) / (c^2+d^2)] i,其中(c+di)≠0。
z z12 + z22 – z1*z2 = 0 => (z1/z2) 2 - (z1/z2) + 1 = 0复数的模的计算z| z |n = | z n |;| z |2 = | z 2 | = z*z’|z|表示复数的模,见上面定义,z = a+bi => |z| =√(a2+b2)注意:如果用后文的复数三角形式来理解这个公式更容易。
z2|z1|2 + 2|z2|2 = |z1+z2|2 + |z1 – z2|2注意:直接用复数的定义求这个公式。
复数的共轭计算z无论对于加减乘除,复数的共轭“—”均可移。
即:(z1±z2)’ = (z1’±z2’)(z1*z2)’ = (z1’*z2’)(z1/z2)’ = (z1’/z2’)复数的不等式计算z||z1|-|z2|| ≦ |z1+-z2| ≦ |z1| + |z2|注意:如果用后文的复数几何形式来理解这个公式更容易。
几何形式点的表示形式:表示复平满的一个点在直角坐标系中,以x为实轴,y为虚轴,O为原点形成的坐标系叫做复平面,这样所有复数都可以复平面上的点表示被唯一确定。
复数z=a+bi 用复平面上的点 z(a,b )表示。
这种形式使复数的问题可以借助图形来研究。
1.2复数的几种表示

)
Arg
z1
-
Arg z2
.
(在集合意义下)
两个复数的商的 模等于它们的模的商;
幅角等于它们幅角的差。
13
§1.2 复数的几种表示
第 例 计算 i .
一
1- i
章 复
解
由
i
πi
e2 ,
1-i
-πi
2e 4
有
数 与 复 变
i 1- i
πi
e2
-πi
2e 4
1
( π π )i
e2 4
1
3π i
e4
2
§1.2 复数的几种表示
第 一、复数的几何表示
一 章
2. 复数的模与辐角 P5
将复数和向量对应之后,除了利用
复
数
实部与虚部来给定一个复数以外,
与
还可以借助向量的长度与方向来给
复
变
定一个复数。
函
数 定义 设 z 的是一个不为 0 的复数,
y
y
r
O
z x yi
x
x
(1) 向量 z 的长度 r 称为复数 z 的模,记为 | z |.
复 数
令 π 有 eiπ 1 0 . 克莱茵认为这是数学中最卓越的
与
公式之一,它把五个最重要的数 1, 0, i, π,e 联系起来。
复
变
ei( ) cos( ) i sin( ) ,
函
数
ei ei (cos i sin )(cos i sin )
(cos cos - sin sin ) i (sin cos cos sin ),
复 变
即 n(cos n i sin n ) r(cos i sin ) ,
复数的运算和表示方法

复数的运算和表示方法复数是由实部和虚部组成的数,可以用来表示在数轴上的点。
本文将介绍复数的运算规则以及常见的复数表示方法。
一、复数的基本概念复数可以表示为 a + bi 的形式,其中 a 表示实部,b 表示虚部,i 表示虚数单位。
实部和虚部都是实数。
例如,3 + 2i 就是一个复数,其中实部为 3,虚部为 2。
二、复数的加法和减法复数的加法和减法运算与实数类似,实部与实部相加(减),虚部与虚部相加(减)。
例如,(3 + 2i) + (2 + 4i) = 5 + 6i,(3 + 2i) - (2 + 4i)= 1 - 2i。
三、复数的乘法复数的乘法遵循分配律和虚数单位平方为 -1 的规则。
具体操作如下:(3 + 2i) × (2 + 4i) = 6 + 12i + 4i + 8i² = 6 + 16i - 8 = -2 + 16i四、复数的除法复数的除法可以通过乘以倒数的方式进行。
具体操作如下:(6 + 2i) ÷ (3 + 1i) = (6 + 2i) × (3 - 1i) ÷ ((3 + 1i) × (3 - 1i)) = (18 - 6i +6i - 2i²) ÷ (9 + 3i - 3i - i²)= (18 - 2) ÷ (9 + 1) = 16 ÷ 10 = 1.6五、复数的共轭复数的共轭是将复数的虚部取负数得到的新复数。
例如,对于复数3 + 2i,它的共轭为 3 - 2i。
六、复数的绝对值复数的绝对值表示复数到原点的距离,可以用勾股定理计算。
对于复数 a + bi,它的绝对值为√(a² + b²)。
七、复数的表示方法常见的复数表示方法有三种:代数形式、三角形式和指数形式。
1. 代数形式:a + bi,将实部和虚部直接表示出来。
如 3 + 2i。
2. 三角形式:r(cosθ + isinθ),使用极坐标表示,其中 r 表示模长,θ 表示辐角。
高中数学复数的运算

高中数学复数的运算复数是数学中一个重要的概念,它由实部和虚部构成,可以用来描述平面上的向量、电路中的电压和电流等等。
复数的运算包括加法、减法、乘法和除法等,下面将详细讨论这些运算的规则。
一、复数的表示形式复数可以用代数形式和三角形式表示。
代数形式为a+bi,其中a为实部,bi为虚部,i表示虚数单位。
三角形式为r(cosθ+isinθ),其中r为模长,θ为辐角。
二、复数的加法两个复数相加,实部与实部相加,虚部与虚部相加。
例如:(a+bi)+(c+di)=(a+c)+(b+d)i。
三、复数的减法两个复数相减,实部与实部相减,虚部与虚部相减。
例如:(a+bi)-(c+di)=(a-c)+(b-d)i。
四、复数的乘法两个复数相乘,按照分配律,实部和虚部相互乘。
例如:(a+bi)(c+di)=(ac-bd)+(ad+bc)i。
五、复数的除法两个复数相除,可以通过乘以共轭复数来进行。
即,对于复数a+bi 来说,它的共轭复数为a-bi。
将两个复数相乘再除以共轭复数的模的平方。
例如:(a+bi)/(c+di)=[(a+bi)(c-di)]/[c^2+d^2]=(ac+bd)/(c^2+d^2)+((bc-ad)/(c^2+d^2))i。
六、复数的运算性质复数的运算满足交换律、结合律和分配律。
七、复数的乘方和开方运算复数的乘方运算可以通过将其转化为三角形式来进行。
例如:(a+bi)^n=r^n(cos(nθ)+isin(nθ)),其中r为模长,θ为辐角。
复数的开方运算可以通过将其转化为代数形式,并利用公式进行计算。
综上所述,高中数学中涉及到复数的运算,包括加法、减法、乘法和除法等。
我们可以使用代数形式或者三角形式来表示复数,并利用相应的运算规则进行计算。
熟练掌握复数的运算规则,将有助于解决实际问题和应用到其他数学领域中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ƒ --自然频率,单位:Hz(赫兹)
ƒ=50Hz--工频
ƒ=1/T
ω --角频率:正弦量的相位随时间变化的速度。
2f 2
T
单位:rad/s(弧度/秒)
二、正弦量的三要素
3.初相位:
ω t+ --相位,又称相角:随时间变化的角度。
单位:弧度
初相位:正弦量在t=0时刻的相位,简称初相。
⑤|12|=π
--u1和i2反相。
§8-3 相量法的基础
一、相量法的引入
正弦稳态电路频率特点: 在线性电路中,如果电路的激励都是同一频率
的正弦量,则电路全部的稳态响应都将是同频率的 正弦量。
由于正弦稳态电路频率的特点,将同频率的正 弦量的三要素之一()省去,其余两要素用复数形 式来表示正弦量的方法称为相量法。
2
F1
O
1
+1
复数的乘法
3.除法运算:
①代数形式:
F1 F2
a1 a2
jb1 jb2
((aa21
jb1)(a2 jb2)(a2
jb2) jb2)
(aa12)a22
b1b2 (b2)2
j(aa22)b21
a1b2 (b2)2
②指数形式:
④图解法:
F1 F2
1 T
T 0
Im2cos(2 t
i)dt
--均方根值
I Im / 2 0.707Im
工程中使用的交流电气设备铭牌上标注的额定电压、
电流的数值,以及交流电压表、电流表表面上标注的数字 都是有效值。
三、几个概念
2.相位差:
同频率正弦量的相位之差,为一常数,与时间无关。
u1
2Ucos(t
实部与实部相加减, 虚部与虚部相加减。
②图解法:
++jj F2
F2
O
O
F1 F1+F2
++j j F2
+1F2
O
F1-F2
F1 -F2
复数减法的平行四+1边形法和三O角形法
复数加法的平行四边形法和三角形法
F1-F2 F1 F1+F2 F2 +1
F1
+1
2.乘法运算:
①代数形式:
F1F2 ( a1 jb1 )( a2 jb2 ) ( a1a2 b1b2 ) j( a2b1 a1b2 )
②指数形式:
F1F2 | F1 | e j1 | F2 | e j2 | F1 || F2 | e j(1 2)
③极坐标形式:
F1F2 | F1 | 1 | F2 | 2 | F1 || F2 | 1 2
模相乘,辐角相加。
④图解法:
+j
F1F2
F2
1 + 2
解: | F2 | ( 20)2 ( 40)2 44.7
F2在第三象限,
arctan( 40) 180 63.4 180 243.4
20
F2 44.7243.4
二、复数的四则运算
1.加、减法运算:
①代数法:
F1 F2 ( a1 jb1 ) ( a2 jb2 ) ( a1 a2 ) j( b1 b2 )
指数形式:
由欧拉公式: e j cos jsin
F F e j
5.极坐标形式: F F
负数几种形式的转换
例1:将 F1 9.573 化为直角坐标形式。
解: F1 9.5cos73 j9.5sin73 2.78 j9.08
例2:将 F2 20 j40 化为极坐标形式。
二、正弦量的相量
u(t) Umcos(t )
e j 1
F2
--旋转因子 jF1
F1 -jF2
j
e2
j
,e
-
j
2
j
,e j
-1
O
+1
旋转因子示意
乘以j,即把复数逆时针旋转π/2; 乘以-j(除以j),即把复数顺时针旋转π/2。
§8-2 正弦量
一、正弦电压和电流
1.定义:
随时间按正弦规律变换的电压和电流。
2.数学表达式:
u(t)
U
m
cos(t
)
u
i(t)
I m cos(t
)
i
--本书采用cosine函数。
二、正弦量的三要素
1.幅值Um/Im:
Um、Im --振幅,正弦量的极大值 当cos(ω t+)=1时,imax=Im;当cos(ω t+)=-1时,imin=-Im。 Imax-Imin=2Im --正弦量的峰-峰值
(ω t+)|t=0 =
单位:弧度
通常,||≤180°--主值范围。
三、几个概念
1.有效值:
工程中常将周期电流或电压在一个周期内产生的平均效 应换算为在效应上与之相等的直流量,以衡量和比较周期电 流或电压的效应,这一直流量就称为周期量的有效值。用相 应的大写字母表示。
I def
1 T i 2dt T0
)
u1
i2
2
Icos(t
)
i2
12 (t u1)(t i2) u1 i2
①12>0 ②12<0 ③12=0 ④|12|=π /2
--u1超前i2; --u1滞后i2; --u1和i2同相; --u1和i2正交;
主值12 〔 ,〕, 若12 〔 ,〕,则用 12 2 来规范它。
第八章 相量法
重点
1、复数的几种表示形式的转换及计算 2、正弦量的三要素 3、 KCL、KVL 、VCR的相量表示
难点
理解相量法的实质
§8-1 复 数
一、复数的几种表示形式
1.代数形式: F a jb
Re[F] a --复数F的实部
Im[F] b --复数F的虚部
2.向量形式:
| |
F1 F2
| |
e e
j 1 j 2
| F1 | e j(1 2) | F2 |
+j
F1
③极坐标形式:
F1 F2
| F1 | F2
| 1 | 2
| F1 | F2
| |
1
2
模相除,辐角相减。
F1/F2
1 1 - 2
F2
O
2
+1
复数的乘法
4.旋转因子: +j
a F cos
b F sin
+j
F a2 b2 --复数F的模(值)
b |F|
argF --复数F的辐角
由
于
主
值arctan(b)〔
,
〕,
若
O
实部为负
数
,
a
22
则arctan(b) 才是正确的辐角。
a
F
a
+1
§8-1 复 数
一、复数的几种表示形式
3.三角形式: F F(cos jsin)