天体运动与人造卫星运动的两个基本模型

合集下载

天体运动问题的基本模型和方法

天体运动问题的基本模型和方法

天体运动问题的基本模型和方法天体运动问题的基本模型与方法天体运行问题的分析与求解,是牛顿第二定律与万有引力定律的综合运用,问题的分析与求解的关键是建模能力。

一、基本模型计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心,一天体绕另一天体的稳定运行视为匀速圆周运动,研究天体的自转运动时,将天体视为均匀球体。

二、基本规律1,天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。

所需向心力由中心天体对它的万有引力提供。

设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由牛顿第二定律及万有引力定律有:。

这就是分析与求解天体运行问题的基本关系式,由于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示为:或。

2,在天体表面,物体所受万有引力近似等于所受重力。

设天体质量为M,半径为R,其,由这一近似关系有:,即。

这一关系式的表面的重力加速度为g应用,可实现天体表面重力加速度g与的相互替代,因此称为“黄金代换”。

3,天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最大,所需向心力最大。

对于赤道上的物体,由万有引力定律及牛顿第二定律有:,式中N为天体表面对物体的支持力。

如果天体自转角速度过大,赤道上的物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天体不瓦解所对应的最大自转角速度,如果已知天体自转的角速度,由及可计算出天体不瓦解的最小密度。

三、常见题型题型一:平抛运动与圆周运动相结合,例1,雨伞边缘半径为r,且离地面高为h。

现让雨伞以角速,度绕伞柄匀速旋转,使雨滴从边缘甩出并落在地面上形成一圆圈,试求此圆圈的半径为R。

,解析,所述情景如图所示,设伞柄在地面上的投影为O,雨滴从伞的O R rA s B12边缘甩出后将做平抛运动,其初速度为v=r,落地时间为t,故h,gt。

雨滴在这段,02时间内的水平位移为s= vt。

(精)解决天体运动问题的方法

(精)解决天体运动问题的方法

解决天体运动问题的方法一、基本模型计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。

二、基本规律1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。

所需向心力由中心天体对它的万有引力提供。

设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由牛顿第二定律及万有引力定律有:。

这就是分析与求解天体运行问题的基本关系式,由于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示为:或。

2.在天体表面,物体所受万有引力近似等于所受重力。

设天体质量为M,半径为R,其表面的重力加速度为g,由这一近似关系有:,即。

这一关系式的应用,可实现天体表面重力加速度g与的相互替代,因此称为“黄金代换”。

3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最大,所需向心力最大。

对于赤道上的物体,由万有引力定律及牛顿第二定律有:,式中N为天体表面对物体的支持力。

如果天体自转角速度过大,赤道上的物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由及可计算出天体不瓦解的最小密度。

三、常见题型1.估算天体质量问题由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周期,可估算出被绕天体的质量。

例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。

若还知道引力常量和月球半径,仅利用以上条件不能求出的是A.月球表面的重力加速度B.月球对卫星的吸引力C.卫星绕月运行的速度D.卫星绕月运行的加速度解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。

(完整版)万有引力与航天公式总结

(完整版)万有引力与航天公式总结

万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2.双星模型:将两颗彼此距离较近的恒星称为双星 ,它们相互之间的万有引力提供各自转动的向心力。

3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。

二.两种学说1.地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。

第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴 R 的三次方跟公转周期 T 的二次方的比值都相等。

表达式为:R3 = K(K = GM ) k 只与中心天体质量有关的24π2T定值与行星无关2.牛顿万有引力定律1687 年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的 .两个物体间引力的方向在它们的连线上 ,引力的大小跟它们的质量的乘积成正比 ,跟它们之间的距离的二次方成反比 .Mm⑵.数学表达式 : F万= G r2⑶.适用条件 :a.适用于两个质点或者两个均匀球体之间的相互作用。

(两物体为均匀球体时,r 为两球心间的距离)b. 当r 0 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当r 0 时,引力F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。

c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义 .d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关 .与所在空间的性质无关 ,与周期及有无其它物体无关 .(5)引力常数G:①大小: G = 6.67 x 10一11N . m 2 / kg 2,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为 1kg 的物体,相距为 1 米时相互作用力为: 6.67 x10一11N四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:F万= F 向 即: F 万 = G = ma n = m r v 2= mr= mr 负22. 天体对其表面物体的万有引力近似等于重力:Mm G = m gR 2即 GM = gR 2 (又叫黄金代换式)注意:①地面物体的重力加速度: g =R≈9.8m/s 2②高空物体的重力加速度: g '= (R)2〈 9.8m/s 2g'R 2③关系: — =g (R + h)2五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。

2020高考备考物理重难点《天体运动与人造航天器》(附答案解析版)

2020高考备考物理重难点《天体运动与人造航天器》(附答案解析版)

重难点05 天体运动与人造航天器【知识梳理】考点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即ma r mv r T m r m rMm G ====2222)2(πω(2)在中心天体表面或附近运动时,万有引力近似等于重力,即2R MmG mg =(g 表示天体表面的重力加速度).(2)利用此关系可求行星表面重力加速度、轨道处重力加速度: 在行星表面重力加速度:2R Mm Gmg =,所以2R MG g = 在离地面高为h 的轨道处重力加速度:2)(h R Mm G g m +=',得2)(h R MG g +=' 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于2R Mm G mg =,故天体质量GgR M 2=天体密度:GRgV M πρ43==(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即r T m rMm G 22)2(π=,得出中心天体质量2324GT r M π=;②若已知天体半径R ,则天体的平均密度3233RGT r V M πρ== ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度23GTV M πρ==.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 【重点归纳】 1.黄金代换公式(1)在研究卫星的问题中,若已知中心天体表面的重力加速度g 时,常运用GM =gR 2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用很大,此式通常称为黄金代换公式. 2. 估算天体问题应注意三点(1)天体质量估算中常有隐含条件,如地球的自转周期为24 h ,公转周期为365天等. (2)注意黄金代换式GM =gR 2的应用. (3)注意密度公式23GTπρ=的理解和应用. 考点二 卫星运行参量的比较与运算 1.卫星的动力学规律由万有引力提供向心力,ma r mv r T m r m rMm G ====2222)2(πω2.卫星的各物理量随轨道半径变化的规律r GM v =;3r GM =ω;GMr T 32π=;2r GM a = (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其它量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心. 【重点归纳】1.利用万有引力定律解决卫星运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式卫星运动的向心力来源于万有引力:ma r mv r T m r m rMm G ====2222)2(πω在中心天体表面或附近运动时,万有引力近似等于重力,即:2R MmGmg = (g 为星体表面处的重2.卫星的线速度、角速度、周期与轨道半径的关系⎪⎪⎩⎪⎪⎨⎧⇒⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫====减小增大减小减小增大时当半径a T v r r GM a GM r T r GM r GM v ωπω2332 考点三 宇宙速度 卫星变轨问题的分析1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的两种求法:(1)r mv r Mm G 212=,所以r GMv =1 (2)rmv mg 21=,所以gR v =1.3.第二、第三宇宙速度也都是指发射速度.4.当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增加时,r mv rMm G 22<,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,r mv rMm G 22>,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.1.处理卫星变轨问题的思路和方法(1)要增大卫星的轨道半径,必须加速;(2)当轨道半径增大时,卫星的机械能随之增大.2.卫星变轨问题的判断:(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大.(2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.3.特别提醒:“三个不同”(1)两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度(3)两个半径——天体半径R和卫星轨道半径r的不同【限时检测】(建议用时:30分钟)1.(2019·新课标全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。

万有引力定律

万有引力定律

万有引力定律专题一、知识回顾1、万有引力定律的表达式:式中21m m 位置互换后结果不变说明: 适用于两个 或 球体;r 为 ;G 为 =G 2、处理天体运动问题的基本模型: 1.人间模型(1)原始方程: (2)基本结论:① ②③ ④2.天上模型(1)原始方程: (2)基本结论:① ②③ ④合起来称为“天上人间”模型. 模图 一、开普勒定律1、我国的人造卫星围绕地球的运动,有近地点和远地点,由开普勒定律可知卫星在远地点运动速率比近地点运动的速率小,如果近地点距地心距离为R 1,远地点距地心距离为R 2,则该卫星在远地点运动速率和近地点运动的速率之比为 A .12R R B. 21RR C.D.2、飞船沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某点A 处,将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道和地球表面相切,如图所示,如果地球半径为R 0,求飞船由A 点回到B 点所需时间。

二、万有引力定律:1、如下图所示,设想质量为m 的物体放到地球的中心,地球质量为M ,半径为R ,则物体与地球间的万有引力是:A .零B .无穷大C .2MmF GR = D .无法确定 2、设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀球体,月球仍沿开采前的圆轨道运动,则与开采前相比:A .地球与月球间的万有引力将变大B .地球与月球将的万有引力将变小C .月球绕地球运动的周期将变大D .月球绕地球运动的周期将变短3、如下图所示,在半径R =20cm 、质量M =168kg 的均匀铜球中,挖去一球形空穴,空穴的半径为10cm ,并且跟铜球相切,在铜球外有一质量m =1kg 、体积可忽略不计的小球,这个小球位于连接铜球球心跟空穴中心的直线上,并且在空穴一边,两球心相距是d =2m ,试求它们之间的相互吸引力.4、(09年全国高考))如图,P 、Q 为某地区水平地面上的两点,在P 点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔。

漫谈天体运动问题的十种物理模型

漫谈天体运动问题的十种物理模型

漫谈天体运动问题的十种物理模型闫俊仁(山西省忻州市第一中学 034000)航空航天与宇宙探测是现代科技中的重点内容,也是高考理综物理命题的热点内容,所涉及到的知识内容比较抽象,习题类型较多,不少学生普遍感觉到建模困难,导致解题时找不到切入点.下面就本模块不同类型习题的建模与解题方法做一归类分析。

一、“椭圆轨道”模型指行星(卫星)的运动轨道为椭圆,恒星(或行星)位于该椭圆轨道的一个焦点上. 由于受数学知识的限制,此类模型适宜高中生做的题目不多,所用知识为开普勒第三定律及椭圆轨道的对称性。

例1 天文学家观察到哈雷彗星的周期约是75年,离太阳最近的距离是8.9X1010m ,但它离太阳的最远距离不能测出。

试根据开普勒定律计算这个最远距离,已知太阳系的开普勒常量k =3.354X1018m 3/s 2。

解析 设哈雷彗星离太阳的最近距离为,最远距离为R 2,则椭圆轨道半长 轴为221R R R += 根据开普勒第三定律k TR =23,得 13222R kT R -==m m 103218109.83600243657510354.38⨯-⨯⨯⨯⨯⨯)(=5.224⨯1012m二、“中心天体——圆周轨道”模型指一个天体(中心天体)位于中心位置不动(自转除外),另一个天体(环绕天体)以它为圆心做匀速圆周运动,环绕天体只受中心天体对它的万有引力作用。

解答思路 由万有引力提供环绕天体做圆周运动的向心力,据牛顿第二定律,得r Tm r mw r v m ma r Mm G n 2222)2(π==== 式中M 为中心天体的质量,m 为环绕天体的质量, a n 、v 、w 和T 分别表示环绕天体做圆周运动的向心加速度、线速度、角速度和周期.根据问题的特点条件,灵活选用的相应的公式进行分析求解。

此类模型所能求出的物理量也是最多的。

(1)对中心天体而言,可求量有两个:①质量M=2324GT r π,②密度ρ=3233R GT r π,特殊地,当环绕天体为近地卫星时(r =R),有ρ=23GT π。

天体运动与人造卫星

天体运动与人造卫星

天体运动与人造卫星一、宇宙速度 1.环绕速度(1)第一宇宙速度又叫环绕速度,其数值为7.9 km/s.(2)第一宇宙速度是人造卫星在地面附近环绕地球做匀速圆周运动时具有的速度. (3)第一宇宙速度是人造卫星最小的发射速度,也是人造卫星的最大环绕速度. 2.第二宇宙速度(脱离速度)使物体挣脱地球引力束缚的最小发射速度,其数值为11.2 km/s. 3.第三宇宙速度(逃逸速度)使物体挣脱太阳引力束缚的最小发射速度,其数值为16.7 km/s.1.第一宇宙速度的推导 方法一:由G MmR 2=m v 12R,得v 1=GMR=7.9×103 m/s. 方法二:由mg =m v 12R,得v 1=gR =7.9×103 m/s.第一宇宙速度是发射地球人造卫星的最小速度,也是地球人造卫星的最大环绕速度,此时它的运行周期最短,T min=2πRg=84.6 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动.(2)7.9 km/s <v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km /s≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.例I1.[三种宇宙速度] (多选)下列关于三种宇宙速度的说法正确的是( )A .第一宇宙速度v 1=7.9 km/s ,第二宇宙速度v 2=11.2 km/s ,则人造卫星绕地球在圆轨道上运行时的速度大于等于v 1,小于v 2B .美国发射的“凤凰号”火星探测卫星,其发射速度大于第三宇宙速度C .第二宇宙速度是使物体可以挣脱地球引力束缚,成为绕太阳运行的人造行星的最小发射速度D .第一宇宙速度7.9 km/s 是人造地球卫星绕地球做圆周运动的最大运行速度 答案:CD2.[第一宇宙速度的计算] (2019·山东潍坊高三统考)已知地球半径约为火星半径的2倍,地球密度约为火星密度的1.5倍,则地球第一宇宙速度与火星第一宇宙速度的比值为( )A.6B.32C.23D.16答案:A 二、地球卫星1.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种.(2)极地轨道:卫星的轨道过南北两极,即在垂直于赤道的平面内,如极地气象卫星. (3)其他轨道:除以上两种轨道外的卫星轨道. 所有卫星的轨道平面一定通过地球的球心. 2.地球同步卫星相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.同步卫星有以下特点: (1)轨道平面一定:轨道平面与赤道平面共面. (2)周期一定:与地球自转周期相同,即T =24__h. (3)角速度一定:与地球自转的角速度相同.(4)高度一定:根据G Mm r 2=m 4π2T 2r 得,r =3GMT 24π2=4.23×104km ,卫星离地面高度h =r -R ≈5.6R (为恒量). (5)绕行方向一定:与地球自转的方向一致. 3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.1.卫星的运行轨道(如图所示)注意:轨道平面一定通过地球的球心. 2.卫星的各物理量随轨道半径变化的规律规律⎩⎪⎪⎨⎪⎪⎧G Mm r 2=(r =R 地+h )⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m v 2r→v = GM r →v ∝1rmω2r →ω=GM r 3→ω∝1r 3m 4π2T 2r →T = 4π2r 3GM→T ∝r 3ma →a =GM r 2→a ∝1r2越高越慢mg =GMm R地2(近地时)→GM =gR 地23.同步卫星的六个“一定”例II2017年10月24日,在地球观测组织(GEO)全会期间举办的“中国日”活动上,我国正式向国际社会免费开放共享我国新一代地球同步静止轨道气象卫星“风云四号”(如图所示)和全球第一颗二氧化碳监测科学实验卫星(简称“碳卫星”)的数据.“碳卫星”是绕地球极地运行的卫星,在离地球表面700公里的圆轨道对地球进行扫描,汇集约140天的数据可制作一张无缝隙全球覆盖的二氧化碳监测图.有关这两颗卫星的说法正确的是( )A .“风云四号”卫星的向心加速度大于“碳卫星”的向心加速度B .“风云四号”卫星的线速度小于“碳卫星”的线速度C .“碳卫星”的运行轨道理论上可以和地球某一条经线重合D .“风云四号”卫星的线速度大于第一宇宙速度 [答案] B[方法技巧]利用万有引力定律解决卫星运动的技巧(1)一个模型:天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式①G Mm r 2=m v 2r =mω2r =m 4π2T2r =ma .②mg =GMmR2(g 为星体表面处的重力加速度).(3)a 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较,最终归结到半径的比较.例III1.[卫星运行参数的比较] (2018·高考江苏卷)我国高分系列卫星的高分辨对地观察能力不断提高,今年5月9日发射的“高分五号”轨道高度约为705 km ,之前已运行的“高分四号”轨道高度约为36 000 km ,它们都绕地球做圆周运动.与“高分四号”相比,下列物理量中“高分五号”较小的是( )A .周期B .角速度C .线速度D .向心加速度答案:A2.[同步卫星的特点] 我国自主研发的“北斗”卫星导航系统中含有地球同步卫星.关于地球同步卫星,下列说法正确的是( )A .同步卫星处于平衡状态B .同步卫星的速度是不变的C .同步卫星的高度是一定的D .同步卫星的线速度应大于第二宇宙速度 答案:C3.[同步卫星与其他卫星运行参数的比较] (多选)地球同步卫星离地心的距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,地球的第一宇宙速度为v 2,半径为R ,则下列比例关系中正确的是( )A.a 1a 2=r RB.a 1a 2=(r R )2C.v 1v 2=r RD.v 1v 2=R r答案:AD■判一判 记一记(1)近地卫星距离地球最近,环绕速度最小.( )(2)人造地球卫星绕地球运动,其轨道平面一定过地心.( ) (3)地球同步卫星根据需要可以定点在北京正上空.( )(4)极地卫星通过地球两极,且始终和地球某一经线平面重合.( ) (5)发射火星探测器的速度必须大于11.2 km/s.( )(6)不同的同步卫星的质量不同,但离地面的高度是相同的.( ) (7)地球同步卫星的运行速度一定小于地球的第一宇宙速度.( )(8)若物体的发射速度大于第二宇宙速度,小于第三宇宙速度,则物体可以绕太阳运行.( )卫星变轨与追及问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道.如图所示,发射卫星的过程大致有以下几个步骤:(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上. (2)在A 处点火加速,由于速度变大,进入椭圆轨道Ⅱ. (3)在B 处(远地点)再次点火加速进入圆形轨道Ⅲ. 2.卫星变轨的实质例IV1.[变轨问题中运行参数分析](2016·高考北京卷)如图所示,一颗人造卫星原来在椭圆轨道1绕地球E运行,在P点变轨后进入轨道2做匀速圆周运动.下列说法正确的是()A.不论在轨道1还是轨道2运行,卫星在P点的速度都相同B.不论在轨道1还是轨道2运行,卫星在P点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量答案:B2.[卫星运动的追及问题](多选)(2019·辽宁鞍山一中等六校联考)如图所示,质量相同的三颗卫星a、b、c绕地球做匀速圆周运动,其中b、c在地球的同步轨道上,a距离地球表面的高度为R,此时a、b恰好相距最近.已知地球质量为M、半径为R、地球自转的角速度为ω,万有引力常量为G,则()A.发射卫星b时速度要大于11.2 km/sB.若要卫星a与b实现对接,可调节卫星a,使其在b的后下方加速C.若要卫星c与b实现对接,可让卫星c直接在原轨道加速D.卫星a和b下次相距最近还需经过t=2πGM8R3-ω答案:BD3.[变轨问题中能量分析](多选)我国计划于2019年在海南文昌发射场将“嫦娥五号”送上38万公里外的月球,采回月壤,实现航天工程绕、落、回的收关阶段.到时着陆器将自动从月面取样后从月表起飞,并在近月轨道实现自动交会对接后和返回舱一起返回地面,供科学家分析.了解这则新闻后物理兴趣小组进行了热烈讨论,绘制出了“嫦娥五号”奔向月球和返回地球的示意图,图中对接为取样后的对接点,实线圆为绕行器在半径为r 的圆轨道绕月等待着陆器返回的轨道,设着陆器取样并返回到绕行器的时间t 内绕行器飞行N 圈,全过程不考虑空气阻力的影响.已知引力常量为G ,月球的半径为R ,则兴趣小组提出了下列有关结论,其中表示正确的是( )A .从地表发射后的“嫦娥五号”需要进行多次变轨,当其速度达到第二宇宙速度时才能飞抵月球B .“嫦娥五号”沿椭圆轨道向38万公里外的月球飞行时,只有月球也运动到椭圆轨道的远地点附近时才能将“嫦娥五号”捕获,否则还要沿椭圆轨道返回C .结合题中信息可知月球的质量为4π2r 3N 2Gt 2,二者在对接过程中有一定的机械能损失D .绕行器携带样品沿椭圆轨道返回地球时,虽然引力做功,动能增大,但系统的机械能不变 答案:BC1.某行星的同步卫星下方的行星表面上有一观察者,行星的自转周期为T ,他用天文望远镜观察被太阳光照射的此卫星,发现日落的T 2时间内有T6的时间看不见此卫星,不考虑大气对光的折射,则该行星的密度为( )A.24πGT 2 B.3πGT 2 C.8πGT2 D.16πGT2 [解析] 设行星质量为M ,半径为R ,密度为ρ,卫星质量为m ,如图所示,发现日落的T 2时间内有T6的时间看不见同步卫星,则θ=360°6=60°,故φ=60°,r =R cos φ=2R ,根据G Mm (2R )2=m (2πT )2·2R ,M =ρ·43πR 3,解得ρ=24πGT 2.选项A 正确.[答案] A2.(2016·高考全国卷Ⅰ)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A .1 hB .4 hC .8 hD .16 h解析:万有引力提供向心力,对同步卫星有:GMm r 2=mr 4π2T 2,整理得GM =4π2r 3T 2 当r =6.6R 地时,T =24 h若地球的自转周期变小,轨道半径最小为2R 地 三颗同步卫星A 、B 、C 如图所示分布则有4π2(6.6R 地)3T 2=4π2(2R 地)3T ′2解得T ′≈T6=4 h ,选项B 正确.答案:B3.(2019·湖南五校高三联考)每年的某段时间内太阳光会直射地球赤道,如图所示,一颗卫星在赤道正上方绕地球做匀速圆周运动,运动方向与地球自转方向相同,每绕地球一周,黑夜与白天的时间比为1∶5.设地球表面重力加速度为g ,地球半径为R ,地球自转角速度为ω.忽略大气及太阳照射偏移的影响,则赤道上某定点能够直接持续观测到此卫星的最长时间为( )A.2π3( g8R +ω) B.π3( g8R -ω) C.2π3(g8R-ω) D.π3(g8R+ω) 解析:如图a ,当卫星处于地球的阴影中时,卫星处于“黑夜”,设阴影的边缘与地球球心的连线之间的夹角为α,由于转动的角度与经历的时间成正比,可得α360°-α=t 1t 2=15所以α=60°由几何关系可得sin α2=Rr可得r =2R设轨道半径为R 的卫星周期为T 1,该卫星的周期为T 2,则有mg =mR 4π2T 12,T 12T 22=R 3(2R )3,联立解得T 2=2πg 8R =2πω2,则ω2=g8R.设人在B 2位置刚好看见卫星出现在A 2位置,最后在B 1位置刚好看见卫星消失在A 1位置,如图b.由几何关系可知,在地球上能够直接观测到该卫星的角度为120°,即能够直接观测到该卫星的时间为该卫星相对地球运动120°的时间,卫星相对地球赤道上某点运动一周所用时间为t =2πg8R-ω,则赤道上某定点可直接持续观测到此卫星的最长时间为t ′=t3=2π3(g8R-ω),选项C 正确. 答案:C4.(2019·山东济宁模拟)如图所示,人造卫星P (可视为质点)绕地球做匀速圆周运动.在卫星运动轨道平面内,过卫星P 作地球的两条切线,两条切线的夹角为θ,设卫星P 绕地球运动的周期为T ,线速度为v ,引力常量为G .下列说法正确的是( )A .θ越大,T 越大B .θ越小,v 越大C .若测得T 和θ,则地球的平均密度为ρ=3πGT 2(tan θ2)3 D .若测得T 和θ,则地球的平均密度为ρ=3πGT 2(sin θ2)3 解析:由G Mm r 2=m v 2r =m 4π2T2r ,得v =GMr,T =4π2r 3GM ,由几何关系得R r =sin θ2,因地球半径不变,夹角θ越大,卫星的轨道半径越小,则T 就越小,A 错误;夹角θ越小,卫星的轨道半径越大,v 就越小,B 错误;若测得T 和θ,由万有引力充当向心力,有G Mm r 2=m 4π2T 2r ,求得地球的质量M =4π2r 3GT 2,地球的体积V =43πR 3,由几何关系得R r =sin θ2,联立解得ρ=3πGT 2(sin θ2)3,C 错误,D 正确.答案:D。

第四章 第6节 天体运动与人造卫星

第四章  第6节  天体运动与人造卫星

第6节 天体运动与人造卫星1.三种宇宙速度2.地球同步卫星的特点[注3](1)轨道平面一定:轨道平面和赤道平面重合。

(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s 。

(3)角速度一定:与地球自转的角速度相同。

(4)高度一定:据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2≈4.24×104km ,卫星离地面高度h =r -R ≈3.6×104 km(为恒量)。

(5)速率一定:运行速度v =2πrT ≈3.08 km/s(为恒量)。

(6)绕行方向一定:与地球自转的方向一致。

3.极地卫星和近地卫星[注4](1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。

(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s 。

[注解释疑][注1] 第一宇宙速度是人造地球卫星的最大环绕速度。

[注2] 第二宇宙速度与第一宇宙速度的关系:v 2=2v 1。

[注3] 地球同步卫星的运行参数都相同,但卫星的质量不一定相同。

[注4] 极地卫星和近地卫星的轨道平面一定通过地球的球心。

[深化理解]1.人造卫星绕地球做匀速圆周运动时,卫星在其轨道上所受的重力等于万有引力,提供向心力。

2.卫星轨道半径越大,卫星的向心加速度、角速度、线速度越小,周期越大。

3.天体运动和人造卫星问题的实质就是万有引力定律与匀速圆周运动的综合。

[基础自测]一、判断题(1)同步卫星可以定点在北京市的正上方。

(×)(2)不同的同步卫星的质量不同,但离地面的高度是相同的。

(√)(3)第一宇宙速度是卫星绕地球做匀速圆周运动的最小速度。

(×)(4)第一宇宙速度的大小与地球质量有关。

(√)(5)月球的第一宇宙速度也是7.9 km/s。

(×)(6)同步卫星的运行速度一定小于地球第一宇宙速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天体运动与人造卫星运动的两个基本模型
随着我国探月卫星的成功发射以及天宫一号与神舟八号的成功对接,显示了我国在空间探索方面的强大实力,极大地增强了中国人的民族自豪感。

天体及卫星的运动问题也是高考的热点问题,从近几年全国各地的高考试题来看,透彻理解两个基本模型是关键。

一、环绕模型
环绕模型的基本思路是:①把天体、卫星的环绕运动近似看做是匀速圆周运动;②万有
引力提供天体、卫星做圆周运动的向心力:G Mm r 2=m v 2r =m ω2r =m ⎝ ⎛⎭
⎪⎫2πT 2r =m(2πf)2r= ma 其中r 指圆周运动的轨道半径;③在地球表面,若不考虑地球自转,万有引力等于重力:由
G Mm R 2=mg 可得天体质量M =R 2g G
,这往往是题目中重要的隐含条件。

1、围绕一个中心天体运转
例一:用m 表示同步卫星的质量,h 表示它离地面的高度,表示地球半径,表示地球表面处的重力加速度,
表示地球的自转的角速度,则通讯卫星受到地球对它的万有引力
大小为 A. B. C. D. 分析:依万有引力定律公式,其中,所以,选项A 错误,选项B 正确。

因为万有引力提供向心力,所以
,故选项D 正确。

同步
卫星距地心为,则有,其中,解得
,又,代入整理得
,选项C 正确。

点评:解答此类问题应牢记两条线索:一是围绕星球旋转的物体,根据万有引力等于向心力列方程;二是静止在星球表面上的物体,根据万有引力等于重力列方程。

2、围绕两个中心天体运转
例二:已知地球同步卫星离地面的高度约为地球半径的6倍。

若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为
A .6小时
B .12小时
C .24小时
D .36小时
分析:设地球或行星的半径为r ,根据万有引力提供向心力,对地球或行星的同步卫星
有G Mm r +h 2=m ⎝ ⎛⎭
⎪⎫2πT 2(r +h),M =ρ43πr 3,得T = 3πr +h 3G ρr 3,有T 1T 2= r 1+h 13r 3
2ρ2r 2+h 23r 31ρ1
,其中T 1=24 h ,h 1=6r 1,h 2=2.5r 2,ρ1=2ρ2,代入上式得T 2=12 h 点评:两个天体的同步卫星运动遵循相同的规律,解决这类问题的关键是写出待求量的通式,然后根据比例关系求解。

3、围绕一个公共点运转
例三:天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G)
分析:设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别是ω1、ω2.
根据题意有ω1=ω2=2πT
,r 1+r 2=r. 根据万有引力定律和牛顿第二定律有:
G m 1m 2r 2=m 1ω21r 1, G m 1m 2r 2=m 2ω22r 2. 联立以上各式解得m 1+m 2=4π2T 2G
r 3. 点评:对此类问题要把握双星运动的特点:(1)彼此间的万有引力是双星各自做圆周运动的向心力; (2)双星始终与它们共同的圆心在同一条直线上;(3) 双星具有共同的角速度。

二、变轨模型
若卫星所受万有引力等于做匀速圆周运动的向心力,将保持匀速圆周运动;当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力就不再等于向心力,卫星将做变轨运行。

①当v 增大时,所需向心力增大,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v =r GM 知其运行速度要减小,但重力势能、机械能均增加。

②当卫星的速度突然减小时,所需向心力减小,即万有引力大于卫星所需的向心力,因此卫星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由v =r GM 知运行速度将增大,但重力势能、机械能均减少。

例四:2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图4-4-2所示.关于航天飞机的运动,下列说法中正确的有
A .在轨道Ⅱ上经过A 的速度小于经过
B 的速度
B .在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能
C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期
D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度
分析:在椭圆轨道上,近地点的速度最大,远地点的速度最小,A选项正确。

由万有引力定律可知飞机在A点受到的引力是个定值,由此结合牛顿第二定律可知飞机在A点的加速度是个定值,故D项错误。

飞机从A点进入轨道Ⅱ相对于轨道Ⅰ可看成向心运动,则可知飞机在轨道Ⅱ上A点速度小于轨道Ⅰ上A点速度,再结合动能定义式可知B选项正确。

由开普勒定律R3/T2= K可知,在轨道Ⅱ上的周期小于轨道Ⅰ上的周期,选项C正确。

点评:对于变轨问题的分析,把握住万有引力与所需要的向心力之间的“供”“求”关系进行分析是关键。

练习:2007年10月24日,“嫦娥一号”卫星星箭分离,卫星进入绕地球轨道。

在绕地运行时,要经过三次近地变轨:12小时椭圆轨道①→24小时椭圆轨道②→48小时椭圆轨道③→地月转移轨道④。

11月5日11时,当卫星经过距月球表面高度为h的A点时,再一次实施变轨,进入12小时椭圆轨道⑤,后又经过两次变轨,最后进入周期为T的月球极月圆轨道⑦。

如图所示,已知月球半径为R。

(1)请回答:“嫦娥一号”在完成第三次近地变轨时需要加速还是减速?
(2)写出月球表面重力加速度的表达式。

相关文档
最新文档