2018年八年级下册数学期末试卷及答案(新人教版)
2018年度八学年下册数学期末试卷及答案解析(人教出版)副本

2017-2018级八年级期末测试一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.x 的取值范围为( ).A 、x ≥2B 、x ≠3C 、x ≥2或x ≠3D 、x ≥2且x ≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C(C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如下左图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )(第7题)7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如上右图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54 B .52C .53D .6510203040506070809012345678某班学生1~8月课外阅读数量折线统计图3670585842287583本数月份(第9题)12345678M PFECBA(第10题)BCADO二、填空题(本题共10小题,满分共30分)11.48-1-⎝⎭+)13(3--30 -23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
2018年八年级下册数学期末试卷及答案(新人教版) - 副本

2017—2018级八年级期末测试一、选择题(本题共10小题,满分共30分) 1.二次根式21、错误!、错误!、错误!、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2。
若式子23x x --有意义,则x 的取值范围为( )。
A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如下左图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7。
如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )(-1,1)1y (2,2)2yxyO(第7题)BCADOA 。
n 是样本的容量B 。
n x 是样本个体C. x 是样本平均数 D 。
S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47 (B)众数是42(C)中位数是58(D)每月阅读数量超过40的有4个月10、如上右图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54 B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48—133-⎛⎫⎪ ⎪⎝⎭+)13(3--30 —23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13。
2018八年级下期末数学参考答案(1)

八年级数学试卷参考答案及评分标准(2018.7)三、解答题(本大题有7题, 其中17题10分,18题6分,19题6分,20题6分,21题6分,22题9分,23题9分,共52分) 17.(10分)(1)解:2763x −=27(9)x − ………………………1分7(3)(3)x x =+− ………………………3分(2)方程两边同乘以(x -2)约去分母,得4)2(24−=−−x x …………………………4分 化简整理,得 2x =―8解得 4−=x …………………………5分 检验:把4−=x 代入x -2≠0所以4−=x 是原方程的解 …………………… 6分(3) ⎩⎨⎧<−≤−②142①32x x由①得1x ≥−………………………7分 由②得 2.5x <………………………8分∴不等式租的解集为 1 2.5x −≤<………………………9分 不等式组的解集在数轴上表示为:………………………10分18.(6分)233(1)11x x xx x x −−−+÷++ABDED'D'EDA=3(1)111(1)x x x x x x −+⎡⎤−+⨯⎢⎥+−⎣⎦………………………2分 =13(1)1(1)(1)1(1)x x x x x x x x x +−+−⨯+⨯−+−………………………3分 =13x x x +−=2x x−………………………4分 当x 的值为-1、0、1时分式无意义, 当x =2时原式=0222=−……………………6分 (也可取x =-2代入,值为2) 19.(6分)每个图3分20. (6分)证明:由已知,AF =FC ,∠AFE =∠CFE , …………………1分 在□ABCD 中,AE //FC ,∴∠AEF =∠CFE …………………2分 ∴∠AFE =∠CFE∴∠AFE =∠AEF∴AF =AE …………………4分 ∴AE =FC ∴四边形AFCE 为平行四边形.……………6分 21.(6分)(1)解:由442222-a b a c b c =−得 2222222)()()a b a b a b c −+=−(222222222222)()-()=0)()0a b a b a b c a b a b c −+−−+−=((…………………2分则022=−b a 或2220a b c +−= 若2220a b c +−=,则222=a b c +∴ △ABC 是直角三角形…………………3分 若022=−b a ,则=a b∴△ABC 是等腰三角形…………………4分T SDM EA综上所述,△ABC 是直角三角形或等腰三角形。
2018年八年级下册数学期末试卷及答案(新人教版) - 副本

2017-2018级八年级期末测试一、选择题(本题共 小题,满分共 分).二次根式21、 、 、 、240x 、22y x +中,最简二次根式有( )个。
、 个 、 个 、 个 、 个的取值范围为( )、 、 、 或 、 且.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ). , ,.1113,4,5222 . , , .114,7,822 、在四边形 中, 是对角线的交点,能判定这个四边形是正方形的是( )( ) , ∥ , ( ) ∥ ,∠ ∠( ) , ⊥ ( ) , ,、如下左图,在平行四边形 中, = , 平分 交 于点 ,交 于点 ,则 =( )1FEDCBA. . ..、表示一次函数 = 与正比例函数 = 、 是常数且 图象是( )(第如图所示,函数x y =1和34312+=x y 的图象相交于(- , ),( , )两点.当21y y >时, 的取值范围是( ). <- .— < < . > . <- 或 >、 在方差公式()()()[]2222121x x x x x x nS n -++-+-= 中,下列说法不正确的是( )是样本的容量 n x 是样本个体 x 是样本平均数 是样本方差、多多班长统计去年 ~ 月 书香校园 活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) ( )极差是 ( )众数是 ( )中位数是 ( )每月阅读数量超过 的有 个月、如上右图,在 中, , , , 为边 上一动点, ⊥ 于 , ⊥ 于 , 为 中点,则 的最小值为【 】.54 .52.53.65二、填空题(本题共 小题,满分共 分)10203040506070809012345678某班学生 ~ 月课外阅读数量折线统计图 3670585842287583本数月份(第12345678M PFECBA(第 题)BCADO.4813-⎛⎫⎪ ⎪⎝⎭)13(3- 23-.边长为 的大正方形中有两个小正方形,若两个小正方形的面积分别为 , ,则 的值为( )平行四边形 的周长为 ,对角线 、 相交于点 ,若△ 的周长比△ 的周长大 ,则 = 。
2018八年级下册期末考试数学试卷及答案(精品范文).doc

【最新整理,下载后即可编辑】2017-2018学年度第二学期期末教学统一检测初二数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 下列函数中,正比例函数是A .y =x 2B. y =x2 C. y =2x D.y =21 x2. 下列四组线段中,不能作为直角三角形三条边的是 A. 3cm ,4cm ,5cm B. 2cm ,2cm ,cm C. 2cm ,5cm ,6cm D. 5cm ,12cm ,13cm3. 下图中,不是函数图象的是ABC D4. 平行四边形所具有的性质是A. 对角线相等B.邻边互相垂直C. 每条对角线平分一组对角D. 两组对边分别相等5.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择A .甲B .乙C .丙D .丁 6. 若x=﹣2是关于x 的一元二次方程22302x ax a +-=的一个根,则a 的值为A .1或﹣4B .﹣1或﹣4C .﹣1或4D .1或47. 将正比例函数2y x =的图象向下平移2个单位长度,所得图象对应的函数解析式是A .21y x =-B .22y x =+C .22y x =-D . 21y x =+8. 在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图. 师生捐款金额的平均数和众数分别是 A . 20, 20 B . 32.4,30 C . 32.4,20 D . 20, 30xS612OxS612OxS124O9. 若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 A .k ≤5 B .k ≤5,且k ≠1 C .k <5,且k ≠1 D .k <510.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映S 与x 之间的函数关系式的是A BC D二、填空题(本题共24分,每小题3分)11. 请写出一个过点(0,1),且y 随着x 的增大而减小的一次函数解析式 .12. 在湖的两侧有A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并量取了AC 中点D 和BC 中点E 之间的距离为16米,则A ,B 之间的距离应为 米.xS66O13. 如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____________.14. 在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短. 横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为 .16. 方程28150-+=的两个根分别是一个直角三角形的两x x条边长,则直角三角形的第三条边长是 .17. 已知直线22y x =+与x 轴、y 轴分别交于点A ,B . 若将直线12y x =向上平移n 个单位长度与线段AB 有公共点,则n 的取值范围是 .18. 在一节数学课上,老师布置了一个任务:已知,如图1,在Rt ABC △中,∠B =90°,用尺规作图作矩形ABCD .图1 图2同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:① 分别以点A ,C 为圆心,大于12AC 长为半径画弧,两弧分别交于点E ,F ,连接EF 交AC 于点O ; ② 作射线BO ,在BO 上取点D ,使OD OB =; ③ 连接AD ,CD .则四边形ABCD 就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分)19.用配方法解方程:261-=x x20. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点BE EC=,求线段EC, D落在BC边上的点E处,折痕为GH.若:2:1CH的长.,其中 21. 已知关于x的一元二次方程()()2--++=1120m x m xm≠ .1(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值22. 2017年5月5日,国产大飞机C919首飞圆满成功. C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑. 目前, C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.赁有限公司赁公司美国通用租赁公司GECAS20 兴业金融租赁公司20泰国都市航空10 德国普仁航空公司7根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13, AF=BD=5,求四边形AFBD的面积.订单(架)7 10 15 20 30 50 客户(家)1 12 2 224.有这样一个问题:探究函数11y=+的图象与性质.x小明根据学习一次函数的经验,对函数11=+的图象与性质yx进行了探究.下面是小明的探究过程,请补充完整:(1)函数11y=+的自变量x的取值范围是;x(2)下表是y与x的几组对应值.求出m 的值;(3)如图,在平面直角坐标系xOy 中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质 .25.已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE =OB ,联结DE . (1)求证:DE ⊥BE ;(2)设CD 与OE 交于点F ,若222OF FD OE +=,3CE = , 4DE =,求线段CF 长.26. 如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,-1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形. 请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)BDB27. 如图,在△ABD中,AB=AD, 将△ABD沿BD翻折,使点A 翻折到点C. E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.备用图28.在平面直角坐标系xOy中,已知点(),M a b及两个图形1W和2W,若对于图形1W上任意一点(),P x y,在图形2W上总存在点(),P x y''',使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形2W是图形1W关于点M的关联图形,此时三个点的坐标满足2x ax+'=,2y by+'=.(1)点()P'-是点P关于原点O的关联点,则点P的坐标2,2是;(2)已知,点()C--,()D--以及点()3,0M4,14,1A-,()2,12,1B-,()①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y x=-分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.2018学年度第二学期期末统一检测初二数学参考答案及评分标准一、选择题(本题共30分,每小题3分) 题号 12345678910答案C C BD B A C BB B二、填空题(本题共24分,每小题3分)11. y = -x +1等,答案不唯一. 12. 32 13. X <3 14. 3 15. ()()22242x x x =-+- 16. 434122n ≤≤18. 到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分) 19. 解:()2310x -=, ………………2分解得1310x =,2310x = (4)分20.解:∵9BC =,:2:1BE EC =, ∴3EC =. (1)分设CH x =,则9DH x =- . ………………2分 由折叠可知9EH DH x ==-. 在Rt △ECH △中,=90C ∠︒, ∴ 222EC CH EH +=. 即()22239x x +=-. ………………3分解得4x =.∴4CH =. ………………4分21. (1)证明:由题意1m ≠ .()()21421m m ∆=-+-⨯-⎡⎤⎣⎦ (1)分()22693m m m =-+=-∵()23m -≥0恒成立,∴方程()()21120m x m x --++=总有实根;………………2分 (2)解:解方程()()21120m x m x --++=, 得11x =,221x m =-. ∵方程()()21120m x m x --++=的两根均为正整数,且m 是整数, ∴11m -=,或12m -=. ∴2m =,或3m =.………………4分22. 解:………………3分中位数是20,众数是20. (5)分23.(1)证明:∵点E 是AD 的中点,∴AE =DE . ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE . ∴△EAF ≌△EDC .………………1分∴AF =DC . ∵AF =BD ,∴BD =DC ,即D 是BC 的中点.………………2分(2)解:∵AF ∥BD ,AF =BD , ∴四边形AFBD 是平行四边形. ………………3分订单(架) 7 10 15 20 30 45 50客户(家)1 12 10 2 2 2∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC.………………4分在Rt△ABD中,由勾股定理可求得AD=12,∴矩形AFBD的面积为60⋅=. (5)BD AD分24. 解:(1)x≠0;………………1分(2)令113+=,m∴1m=;………………2分2(3)如图………………3分(4)答案不唯一,可参考以下的角度:………………4分①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性25.(1)证明:∵平行四边形,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE. ………………1分∵OB=OE,∴∠1=∠2.∵∠1+∠2+∠ODE+∠OED=180°,∴∠2+∠OED=90°.∴DE⊥BE;………………2分(2)解:∵OE=OD,222+=,OF FD OE∴222+=.OF FD OD∴△OFD为直角三角形,且∠OFD=90°.………………3分在Rt△CED中,∠CED=90°,CE=3,4DE=,∴222=+ .CD CE DE∴5CD=. ………………4分又∵1122CD EF CE DE ⋅=⋅,∴125EF =.在Rt △CEF 中,∠CFE=90°,CE=3,125EF =,根据勾股定理可求得95CF =. ………………5分26. 解:(1)∵B (0,3),C (0,﹣1).∴BC =4. ………………1分 (2)设直线AC 的解析式为y=kx+b , 把A (﹣,0)和C (0,﹣1)代入y=kx+b , ∴. 解得:,∴直线AC 的解析式为:y=﹣x ﹣1. ………………2分∵DB=DC ,∴点D 在线段BC 的垂直平分线上. ∴D 的纵坐标为1. 把y=1代入y=﹣x ﹣1,解得x=﹣2,∴D 的坐标为(﹣2,1). ………………3分F D B E (3)………………4分当A 、B 、P 三点为顶点的三角形是等腰三角形时,点P 的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+),写出其中任意一个即可. ………………5分27.解:(1)………………1分(2)判断:∠DFC =∠BAE . ………………2分 证明:∵将△ABD 沿BD 翻折,使点A 翻折到点C .∴BC=BA=DA=CD .∴四边形ABCD 为菱形. ∴∠ABD =∠CBD ,AD ∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE. (3)分(3)连CG, AC.由()P-轴对称可知,EA+EG=EC+EG,4,4CG长就是EA+EG的最小值. ………………4分∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.可求得3.∴EA+EG3.………………5分28. 解:(1)∵P(-4,4).………………1分(2)①连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.-----------------------------3分②不妨设N(0,n).∵关联正方形被直线y=-x分成面积相等的两部分,∴中心Q落在直线y=-x上.-------------------------------------4分∵正方形ABC D的中心为E(-3,0),。
2018新人教版八年级下册数学期末试卷和答案

了艰苦的训练,他们在相同条件下各 10 次划艇成绩的平均数相同,方差分别为 0.23,0.20 ,
则成绩较为稳定的是
(选填“甲”或“乙)
3/9
2018 新人教版八年级下册数学期末试卷和答案
三.解答题: 21. ( 7 分)在△ ABC中,∠ C=30°, AC=4cm,AB=3cm,求 BC的长 .
( 满分为 10 分 ) :
方案 1:所有评委所给分的平均数,
方案 2:在所有评委所给分中,去掉一个最高分和一个最低分.然后再计算其余给分的
l 平均数.
方案 3:所有评委所给分的中位效.
方案 4:所有评委所给分的众数。
为了探究上述方案的合理性.先对
某个同学的演讲成绩进行了统计实验.
右面是这个同学的得分统计图:
4/9
2018 新人教版八年级下册数学期末试卷和答案
24. ( 9 分) 小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终
点会合. 已知小亮行走到缆车终点的路程是缆车到山顶的线路长的
2 倍,小颖在小亮出发后
50 min 才乘上缆车, 缆车的平均速度为 180 m/min.设小亮出发 x min 后行走的路程为 y m.图
三、解答题(本题共 8 小题,满分共 60 分)
21.解:由题意得Biblioteka 9x0x,
9
,∴
6
x
9
x6 0 x 6
∵ x 为偶数,∴ x 8 .
x2 2x 1
( x 1)2
原式= (1 x)
x2 1
(1 x) (x 1)( x 1)
(1 x) x 1 (1 x) x 1
x1
x1
(1 x)( x 1)
2018新人教版八年级下册数学期末试卷及答案-八年级下数学期末试卷

最新 年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共 小题,满分共 分).二次根式21、 、 、⌧ 、240x 、22y x +中,最简二次根式有( )个。
✌、 个 、 个 、 个 、 个⌧的取值范围为( )✌、⌧♏ 、⌧♊ 、⌧♏或⌧♊ 、⌧♏且⌧♊.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )✌. , , .1113,4,5222 . , , .114,7,822 、在四边形✌中, 是对角线的交点,能判定这个四边形是正方形的是( )(✌)✌,✌∥ ,✌ ( )✌∥ ,∠✌∠( )✌,✌⊥ ( )✌, ,✌、如图,在平行四边形✌中, = ,✌☜平分 ✌交 于点☜,☞ ✌☜交✌☜于点☞,则 =( )1FEDCBA✌. . . . 、表示一次函数⍓=❍⌧ ⏹与正比例函数⍓=❍⏹⌧☎❍、⏹是常数且❍⏹♊✆图象是( )如图所示,函数x y =1和34312+=x y 的图象相交于(- , ),( , )两点.当21y y >时,⌧的取值范围是( )✌.⌧<- .— <⌧< .⌧> . ⌧<- 或⌧> 、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )✌ ⏹是样本的容量 n x 是样本个体 x 是样本平均数 是样本方差 、多多班长统计去年 ~ 月❽书香校园❾活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )(✌)极差是 ( )众数是 ( )中位数是 ( )每月阅读数量超过 的有 个月(- , )1y ( , )2y⌧⍓、如图,在 ✌中,✌ ,✌ , , 为边 上一动点, ☜⊥✌于☜, ☞⊥✌于☞, 为☜☞中点,则✌的最小值为【】✌.54 .52.53 .65二、填空题(本题共 小题,满分共 分).48 13-⎛⎫ ⎪ ⎪⎝⎭)13(3-23-.边长为 的大正方形中有两个小正方形,若两个小正方形的面积分别为 , ,则 的值为( ) 平行四边形✌的周长为 ♍❍,对角线✌、 相交于点 ,若△ 10203040506070809012345678某班学生 ~ 月课外阅读数量折线统计图3670585842287583本数月份(第 题)12345678M PFE BA的周长比△✌的周长大 ♍❍,则 = ♍❍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018级八年级期末测试一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子23x x --有意义,则x 的取值范围为( ).A 、x ≥2B 、x ≠3C 、x ≥2或x ≠3D 、x ≥2且x ≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如下左图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2(-1,1)1y (2,2)2yxyO(第7题)8、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如上右图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54 B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48-133-⎛⎫⎪ ⎪⎝⎭+)13(3--30 -23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
14.在直角三角形ABC 中,∠C=90°,CD 是AB 边上的中线,∠A=30°,AC=5 3,则△ADC 的周长为 _。
15、如图,平行四边形ABCD 的两条对角线AC 、BD 相交于点O ,AB= 5 ,AC=6,DB=810203040506070809012345678某班学生1~8月课外阅读数量折线统计图3670585842287583本数月份(第9题)12345678M PFECBA(第12题)(第10题)BCADO则四边形ABCD 是的周长为 。
16.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= .17. 某一次函数的图象经过点(1-,3),且函数y 随x 的增大而减小,请你写出一个符合条件的函数解析式______________________.18.)某市2007年5月份某一周的日最高气温(单位:℃)分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值是_______19.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是 (选填“甲”或“乙)20.如图,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠FAC=60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n 个菱形的边长是 .三.解答题: 21. (7分)已知6969--=--x xx x ,且x 为偶数, 求112)1(22-+-+x x x x 的值22. (7分)在△ABC 中,∠C=30°,AC=4cm,AB=3cm ,求BC 的长.23. (9分) 如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG . (1)求证:四边形DEGF 是平行四边形;(2)当点G 是BC 的中点时,求证:四边形DEGF 是菱形.ACB (第20题)24. (9分) 小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m/min .设小亮出发x min 后行走的路程为y m .图中的折线表示小亮在整个行走过程中y 与x 的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min . ⑵①当50≤x ≤80时,求y 与x 的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?25、(10分)如图,直线6y kx =+与x 轴分别交于E 、F .点E 坐标为(-8,0),点A 的坐标为(-6,0).(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,当点P 运动过程中,试写出三角形OPA 的面积s 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当P 运动到什么位置时,三角形OPA 的面积为278,并说明理由.26. (8分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方30 50 19503000 80 x/miny/m O(第22题)yF案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数,方案2:在所有评委所给分中,去掉一个最高分和一个最低分.然后再计算其余给分的l平均数.方案3:所有评委所给分的中位效.方案4:所有评委所给分的众数。
为了探究上述方案的合理性.先对某个同学的演讲成绩进行了统计实验.右面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适台作为这个同学演讲的最后得分,并给出该同学的最后得分.27. (10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.参考答案一、选择题1.C2.D3.B4.C5.B6.A7.D8.D9.C 10.D 二、填空题11. 33 , 12. 17, 13. 4 , 14. 3510+, 15. 20 , 16. 5, 17. 答案不唯一18. 29,19. 乙, 20. .)3(1-n三、解答题(本题共8小题,满分共60分)21.解:由题意得⎩⎨⎧>-≥-0609x x ,⎩⎨⎧>≤69x x ,∴96≤<x∵x 为偶数,∴8=x .)1)(1(11)1(11)1()1)(1()1()1(112)1(222-+=+-+=+-+=-+-+=-+-+x x x x x x x x x x x x x x x x 原式=∴当8=x 时,原式=7379=⨯ 22.BC=325+23. 证明:(1)∵AG ∥DC ,AD ∥BC ,∴四边形AGCD 是平行四边形, ∴AG=DC , ∵E 、F 分别为AG 、DC 的中点,∴GE=AG ,DF=DC ,即GE=DF ,GE ∥DF , ∴四边形DEGF 是平行四边形;(2)连接DG ,∵四边形AGCD 是平行四边形,∴AD=CG , ∵G 为BC 中点,∴BG=CG=AD ,∵AD ∥BG ,∴四边形ABGD 是平行四边形,∴AB ∥DG , ∵∠B=90°,∴∠DGC=∠B=90°, ∵F 为CD 中点,∴GF=DF=CF , 即GF=DF ,∵四边形DEGF 是平行四边形,∴四边形DEGF 是菱形. 24. 解:⑴3600,20.⑵①当5080x ≤≤时,设y 与x 的函数关系式为y kx b =+. 根据题意,当50x =时,1950y =;当80x =,3600y =.所以,y 与x 的函数关系式为55800y x =-.②缆车到山顶的路线长为3600÷2=1800(m ), 缆车到达终点所需时间为1800÷180=10(min ).小颖到达缆车终点时,小亮行走的时间为10+50=60(min ). 把60x =代入55800y x =-,得y=55×60—800=2500.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m ) 25.(1)34k =;(2)9184s x =+(-8<x <0);(3)P (139,28-) 26.27.解答: (1)证明:∵MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠2=∠5,4=∠6,∵MN ∥BC ,∴∠1=∠5,3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO ,FO=CO ,∴OE=OF ;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.。