2018年八年级下册数学期末试卷及答案-副本

合集下载

2018八年级下学期数学期末考试题(含答案)

2018八年级下学期数学期末考试题(含答案)

八年级下期末试题2018一、选择题(本大题共15小题,每小题3分,共45分)1.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a 一2<b 一2C .a 2>b2 D .-2a >-2b2.下面式子从左边到右边豹变形是因式分解的是( )A .x 2-x -2=x (x 一1)-2B .x 2—4x +4=(x 一2)2C .(x +1)(x —1)=x 2 - 1D .x -1=x (1-1x )3下列所培图形中·既是中心对称图形又是轴对称图形的是()A B C D 4.多项式x 2-1与多项式x 2一2x +1的公因式是( )A .x 一1B .x +1C .x 2一1D .(x -1)2 5己知一个多边形的内角和是360°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形 6. 下列多项式能用完全平方公式分解因式的有 ( )A .m 2-mn +n 2B .x 2+4x – 4 C. x 2-4x +4 D. 4x 2-4x +4 7.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( ) A .60° B .90° C .120°D .150°30°B'C 'CBA8.运用分式的性质,下列计算正确的是( )A .x 6x 2 =x 3 B .-x +y x -y =-1 C .a +x b +x =a b D .x +y x +y =09.如图,若平行四边形ABCD 的周长为40cm ,BC =23AB ,则BC =( )A .16crnB .14cmC .12cmD .8cmOCABD10.若分式方程x -3x -1=mx -1有增根,则m 等于( )A .-3B .-2C .3D .211.如图,△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为24,则BC 的长为( )A .18B .14C .12D .6EDBCA12.如图,己知直线y 1=x +m 与y 2=kx —1相交于点P (一1,2),则关于x 的不等式x +m <kx —1的解集在数轴上表示正确的是( )xy2-1POA .B .C .D .13.如图,在菱形ABCD 中,对角线AC 、BD 相较于点O ,BD =8,BC =5,AE ⊥BC 于点E ,则AE 的长为( ) A .5B .125C .245D .185A DOBCE14.定义一种新运算:当a >b 时,a ○+b =ab +b ;当a <b 时,a ○+b =ab -b .若3○+(x +2)>0,则x 的取值范围是( )A .-1<x <1或x <-2B .x <-2或1<x <2C .-2<x <1或x >1D .x <-2或x >215.在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB =90°,直角边AO 在x 轴上,且AO =1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O =2AO ,再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O =2A 1O ……,依此规律,得到等腰直角三角形A 2017OB 2017.则点B 2017的坐标( ) A .(22017,-22017) B .(22016,-22016) C .(22017,22017) D .(22016,22016)x y B 2A 2B 1A 1ABO二、填空题(本大题共5小题,每小题4分,共20分)16.若分式1x -1有意义,则x 的取值范围是_______________.17.若m =2,则m 2-4m +4的值是_________________.18.如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP //OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_____________.C D AOBP19.不等式组⎩⎨⎧x >4x >m(m ≠4)的解集是x>4,那么m的取值范围是_______________.20.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为________________.21.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG //CF ;④S △EFC =125.其中正确结论的是____________(只填序号).22.(本小题满分7分) (1)分解因式:ax 2-ay 2;(2)解不等式组⎩⎨⎧x -1<2 ①2x +3≥x -1 ②,并把不等式组的解集在数轴上表出来.23(本小题满分7分)(1)如图,在 ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .(2)先化简,再求值:(1a +2-1a -2)÷1a -2,其中a =624.(本小题满分8分)在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1; (2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2; (3)直接写出点B 2、C 2的坐标.25.(本小题满分8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同. (1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?26.(本小题满分9分)探索发现:11×2=1-12;12×3=12-13;13×4=13-14……根据你发现的规律,回答下列问题: (1)14×5=___________,1n ×(n +1)=___________;(2)利用你发现的规律计算:11×2+12×3+13×4+……+1n ×(n +1)(3)灵活利用规律解方程: 1x (x +2)+1(x +2)(x +4)+……+1(x +98)(x +100)=1x +100.27.(本小最满分9分)如图1,已知四边形ABCD 是正方形,对角线AC 、BD 相交于点E ,以点E 为顶点作正方形EFGH .(1)如图1,点A 、D 分别在EH 和EF 上,连接BH 、AF ,直接写出BH 和AF 的数量关系:(2)将正方形EFGH 绕点E 顺时针方向旋转①如图2,判断BH 和 AF 的数量关系,并说明理由;②如果四边形ABDH 是平行四边形,请在备用图中不劝图形;如果四方形ABCD 的边长为\R (,2),求正方形EFGH 的边长.28.(本小题满分9分)如图,矩形ABCO 中,点C 在x 轴上,点A 在y 轴上,点B 的坐标是(一6,8).矩形ABCO 沿直线BD 折叠,使得点A 落在对角线OB 上的点E 处,折痕与OA 、x 轴分别交于点D 、F .(1)直接写出线段BO 的长: (2)求点D 的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标:若不存在,请说明理由.专业资料word格式可复制编辑。

河北省石家庄市桥西区2018-2019学年八年级(下)期末数学试卷(含解析)

河北省石家庄市桥西区2018-2019学年八年级(下)期末数学试卷(含解析)

2018-2019学年河北省石家庄市桥西区八年级(下)期末数学试卷一、精心选择(本大题共16个小题,每小题2分,共32分,在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内)1.(2分)下列函数中,是正比例函数的是()A.B.y=2x2C.y=x+2D.y=﹣2x2.(2分)一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)3.(2分)如图,小手盖住的点的坐标可能是()A.(4,﹣1)B.(﹣1,﹣4)C.(2,3)D.(﹣2,2)4.(2分)已知▱ABCD的周长为24,△ABD的周长为19,则对角线BD的长是()A.4B.5C.6D.75.(2分)下列调查中,你认为最适宜用普查的是()A.调查一批显像管的使用寿命B.调查全班学生的视力情况C.调查某罐头厂生产的一批罐头的质量D.调查全市中学生每天体育锻炼的时间6.(2分)一个多边形的每一个外角都是45°,则这个多边形的边数为()A.6B.7C.8D.97.(2分)已知点A与点B关于x轴对称,若点A的坐标为(﹣1,3),点B的坐标为(﹣1,b),则b的值等于()A.﹣3B.﹣1C.1D.38.(2分)在函数y=中,自变量x的取值范围是()A.x>0B.x≥0C.x>3D.x≥39.(2分)某校有500名学生参加体育测试,其成绩在25﹣30分之间的有300人,则在25﹣30分之间的频率是()A.0.6B.0.5C.0.3D.0.110.(2分)已知正比例函数y=kx(k≠0)的函数值随x的增大而增大,则一次函数y=x+2k 的图象大致是()A.B.C.D.11.(2分)关于▱ABCD的叙述,正确的是()A.若AC=BD,则▱ABCD是菱形B.若AB=AD,则▱ABCD是矩形C.若AB⊥BC,则▱ABCD是正方形D.若AC⊥BD,则▱ABCD是菱形12.(2分)对于函数y=﹣x+3,下列结论正确的是()A.当x>4时,y<0B.它的图象经过第一、二、三象限C.它的图象必经过点(﹣1,3)D.y的值随x值的增大而增大13.(2分)如图所示,在矩形ABCD中,点E是对角线AC,BD的交点,点F是边AD的中点且AB=8,BC=6,则△DEF的周长是()A.10B.12C.14D.2414.(2分)如图6×6的正方形网格放置在平面直角坐标系中,每个小正方形的顶点称为格点.每个小正方向的边长都是1,正方形ABCD的顶点都在格点上,若直线y=kx(k ≠0)与正方形ABCD有公共点,则k不可能是()A.1B.C.3D.215.(2分)如图,把矩形ABCD沿EF翻折,使点B恰好落在AD边的B'处,若矩形的面积为9,AE=B'D.∠EFB=60°,则线段BE的长是()A.B.3C.D.616.(2分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形EFGD,动点P从点A出发,沿A→E→F→G→C→B的路线,绕多边形的边匀速运动到点B时停止,则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.二、准确填空(本大题共3个小题,17、18每小题3分,19题每空2分,共10分,)17.(3分)点P(2,4)到y轴的距离是18.(3分)已知直线y=ax+b与y=x交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.19.(4分)如图,将矩形ABCD在直线上按顺时针方向无滑动翻滚,可依次得到矩形A1B1C1D1,矩形A2B2C1D1矩形A3B2C2D2,…,若AB=2,BC=4,那么AA3的长为,AA15的长为.三、挑战技能(本大题共4个小题,20、21题每题6分,22、23题每题8分,共28分)20.(6分)如图表示的是热带风暴从发生到结束的全过程.请结合图象回答下列问题:(1)热带风暴从开始发生到结束共经历了个小时;(2)从图象上看,风速在(小时)时间段内增大的最快,最大风速是千米/小时;(3)风速从开始减小到最终停止,平均每小时减小多少千米?21.(6分)如图,已知网格线是由边长为1的小正方形组成,△A′B′C′是由△ABC平移得到的,建立适当的平面直角坐标系后,C点坐标为(1,2)(1)请在图中画出这个平面直角坐标系;(2)根据(1)中建立的平面直角坐标系,点A′,B′,C′的坐标分别是A′B′C′;(3)若△ABC内点P的坐标为(a,b),写出平移后点P的对应点P′的坐标.22.(8分)某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)求m的值并补全条形统计图;(3)在扇形统计图,“围棋”所在扇形的圆心角度数为;(4)设该校共有学生1000名,请你估计该校有多少名学生喜欢足球.23.(8分)学校计划购买一批标有单价为3000元的某型号电脑,需要数量在10至20台之间,以下是甲、乙两个商家的优惠政策,学校购买哪家的电脑更合算呢?优惠政策:甲店:每台八折.乙店:先赠一台,其余每台九折.四、能力展示(本大题共2个小题,24题9分、25题10分,共19分)24.(9分)如图1,△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F(1)求证:△AEF≌△BED;(2)小明在完成(1)的证明后继续探索,连接AD,BF,如图2所示,并提出猜想,你觉得小明的猜想正确吗?请说明理由.小明:如果AD平分∠BAC,那么四边形AFBD是矩形.25.(10分)甲、乙两车间同时开始加工一批零件,从开始加工到加工完这批零件,甲车间工作了10个小时,乙车间在中停工一段时间维修设备,然后按停工前的作效率维续加工,直到与甲车间同时完成这批零件的加任务为止.设甲、乙两车间各自加工零件的数量为y(个),甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工零件的个数为个;这批零件的总个数为个;(2)求乙车间维护设备后,乙车间加工零件的数量y与x之间的函数关系式;(3)在加工这批零件的过程中,当甲、乙两车间共同加工完930个零件时,求甲车间的时间.五、挑战自我(本大题11分)26.(11分)如图1所示,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,的直角顶点和正方形的顶点C重合,点E,F分别在正方形的边CB,CD上,连接AB、AF.(1)求证:AE=AF;(2)取求的中点M,EF的中点为N,连接MD,MN.则MD,MN的数量关系是,MD、MN的位置关系是(3)将图2中的直角三角板ECF,绕点C旋转180°,图3所示,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.2018-2019学年河北省石家庄市桥西区八年级(下)期末数学试卷参考答案与试题解析一、精心选择(本大题共16个小题,每小题2分,共32分,在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内)1.(2分)下列函数中,是正比例函数的是()A.B.y=2x2C.y=x+2D.y=﹣2x【分析】一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.【解答】解:A、分母中含有自变量x,不是正比例函数,故A错误;B、y=2x2是二次函数,故B错误;C、y=x+2是一次函数,故C错误;D、y=﹣2x是正比例函数,故D正确.故选:D.【点评】本题主要考查的是一次函数的定义,熟练掌握一次函数的定义是解题的关键.2.(2分)一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)【分析】根据一次函数图象与x轴交点的纵坐标等于零解答.【解答】解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.【点评】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).3.(2分)如图,小手盖住的点的坐标可能是()A.(4,﹣1)B.(﹣1,﹣4)C.(2,3)D.(﹣2,2)【分析】先判断出小手盖住的点在第二象限,再根据各象限内点的坐标特征解答.【解答】解:由图可知,小手盖住的点在第二象限,(4,﹣1),(﹣1,﹣4),(2,3),(﹣2,2)中只有(﹣2,2)在第二象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(2分)已知▱ABCD的周长为24,△ABD的周长为19,则对角线BD的长是()A.4B.5C.6D.7【分析】利用平行四边形的性质可知AD=BC,AB=CD,可求得AB+AD,再结合△ABD 的周长可求得BD.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,∴2(AB+AD)=24,∴AB+AD=12,又∵△ABD的周长为19,∴AB+AD+BD=19,∴12+BD=19,∴BD=7,故选:D.【点评】本题主要考查平行四边形的性质,掌握平行四边形的对边相等是解题的关键.5.(2分)下列调查中,你认为最适宜用普查的是()A.调查一批显像管的使用寿命B.调查全班学生的视力情况C.调查某罐头厂生产的一批罐头的质量D.调查全市中学生每天体育锻炼的时间【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查一批显像管的使用寿命具有破坏性,适合抽样调查,故A不符合题意;B、调查全班学生的视力情况,适合普查,故B符合题意;C、调查某罐头厂生产的一批罐头的质量,适合抽样调查,故C不符合题意;D、调查全市中学生每天体育锻炼的时间调查范围广,适合抽样调查,故D不符合题意;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.(2分)一个多边形的每一个外角都是45°,则这个多边形的边数为()A.6B.7C.8D.9【分析】任意多边形的外角和为360°,用360°除以45°即为多边形的边数.【解答】解:360°÷45°=8.故选:C.【点评】本题主要考查的是多边形的外角和的应用,明确正多边形的每个外角的数×边数=360°是解题的关键.7.(2分)已知点A与点B关于x轴对称,若点A的坐标为(﹣1,3),点B的坐标为(﹣1,b),则b的值等于()A.﹣3B.﹣1C.1D.3【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,先求出b的值即可.【解答】解:∵点A(﹣1,3)关于x轴对称的点B的坐标为(﹣1,b),∴b=﹣3,故选:A.【点评】本题考查了关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.8.(2分)在函数y=中,自变量x的取值范围是()A.x>0B.x≥0C.x>3D.x≥3【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣3≥0,解得x≥3.故选:D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(2分)某校有500名学生参加体育测试,其成绩在25﹣30分之间的有300人,则在25﹣30分之间的频率是()A.0.6B.0.5C.0.3D.0.1【分析】根据频率=频数÷总数,进行计算即可.【解答】解:根据题意,得:在25﹣30分之间的频率是300÷500=0.6.故选:A.【点评】此题考查了频数与频率,掌握频率的正确计算方法:频率=频数÷总数是解题的关键.10.(2分)已知正比例函数y=kx(k≠0)的函数值随x的增大而增大,则一次函数y=x+2k 的图象大致是()A.B.C.D.【分析】先根据正比例函数y=kx(k是常数,k≠0)的函数值y随x的增大而增大判断出k的符号,再根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵正比例函数y=kx(k是常数,k≠0)的函数值y随x的增大而增大,∴k>0,∵一次函数y=x+2k,∴k′=1>0,b=2k>0,∴此函数的图象经过一、二、三象限.故选:A.【点评】本题主要考查一次函数的图象与系数的关系,掌握y=kx+b(k≠0)的图象与系数的关系是解题的关键.当k>0,b>0时,图象过一、二、三象限,当k>0,b<0时,图象过一、三、四象限,当k<0,b>0时,图象过一、二、四象限,当k<0,b<0时,图象过二、三、四象限.11.(2分)关于▱ABCD的叙述,正确的是()A.若AC=BD,则▱ABCD是菱形B.若AB=AD,则▱ABCD是矩形C.若AB⊥BC,则▱ABCD是正方形D.若AC⊥BD,则▱ABCD是菱形【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A、B、D错误,C正确;即可得出结论.【解答】解:∵▱ABCD中,AC=BD,∴四边形ABCD是矩形,选项A不符合题意;∵▱ABCD中,AB=AD,∴四边形ABCD是菱形,不一定是正方形,选项B不符合题意;∵▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是正方形,选项C不符合题意;∵▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,选项D符合题意;故选:D.【点评】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.12.(2分)对于函数y=﹣x+3,下列结论正确的是()A.当x>4时,y<0B.它的图象经过第一、二、三象限C.它的图象必经过点(﹣1,3)D.y的值随x值的增大而增大【分析】根据一次函数的性质和一次函数图象上点的坐标特征可以判断各个选项是否正确,从而可以解答本题.【解答】解:A.当x>4时,y<0,符合题意;B.它的图象经过第一、二、四象限,不符合题意;C.它的图象必经过点(﹣1,4),不符合题意;D.y的值随x值的增大而减小,不符合题意;故选:A.【点评】本题考查一次函数的性质和一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.13.(2分)如图所示,在矩形ABCD中,点E是对角线AC,BD的交点,点F是边AD的中点且AB=8,BC=6,则△DEF的周长是()A.10B.12C.14D.24【分析】根据勾股定理得出DB的长,再利用三角形中位线定理和三角形周长解答即可.【解答】解:∵矩形ABCD,AB=8,BC=6,∴DB=10,∵点E是对角线AC,BD的交点,点F是边AD的中点,∴EF==4,∴△DEF的周长=4+5+3=12,故选:B.【点评】此题考查了矩形的性质、三角形的中位线定理.关键是根据勾股定理得出DB 的长.14.(2分)如图6×6的正方形网格放置在平面直角坐标系中,每个小正方形的顶点称为格点.每个小正方向的边长都是1,正方形ABCD的顶点都在格点上,若直线y=kx(k ≠0)与正方形ABCD有公共点,则k不可能是()A.1B.C.3D.2【分析】结合图形找出点A、C的坐标,分别将其代入正比例函数解析式中求出k值,进而可找出k的取值范围,对照四个选项即可得出结论.【解答】解:观察图形可知,点A(1,2),点C(2,1),当直线y=kx过点A时,有2=k;当直线y=kx过点C时,有1=2k,解得:k=.∴若直线y=kx(k≠0)与正方形ABCD有公共点,≤k≤2.故选:C.【点评】本题考查了两条直线相交或平行问题以及一次函数图象上点的坐标特征,由点A、C的坐标找出k的取值范围是解题的关键.15.(2分)如图,把矩形ABCD沿EF翻折,使点B恰好落在AD边的B'处,若矩形的面积为9,AE=B'D.∠EFB=60°,则线段BE的长是()A.B.3C.D.6【分析】由矩形的性质得出AD∥BC,由平行线的性质得出∠DEF=∠EFB=60°,由翻折的性质得出∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E,AB=A′B′,由三角形内角和定理得出∠EB′F=60°,在Rt△A′EB′中,∠A′B′E=∠A′B′F﹣∠EB′F=30°,则B′E=2A′E,推出AD=4A′E,AB=A′B′===A′E,由AD•AB=4A′E×A′E=9,求出A′E=,得出AE=,AB=,由勾股定理得出BE==3,即可得出结果.【解答】解:连接BE,如图所示:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E,AB=A′B′,∴∠EB′F=180°﹣∠DEF﹣∠EFB′=180°﹣60°﹣60°=60°,Rt△A′EB′中,∠A′B′E=∠A′B′F﹣∠EB′F=90°﹣60°=30°,∴B′E=2A′E,∵AE=B'D=A′E,∴AD=4A′E,AB=A′B′===A′E,∵矩形ABCD的面积为9,∴AD•AB=4A′E×A′E=9,解得:A′E=,∴AE=,AB=,BE===3,故选:B.【点评】本题考查了翻折的性质、矩形的性质、勾股定理、含30°角直角三角形的性质、三角形面积与矩形面积的计算等知识,熟练掌握翻折的性质是解题的关键.16.(2分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形EFGD,动点P从点A出发,沿A→E→F→G→C→B的路线,绕多边形的边匀速运动到点B时停止,则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【分析】用面积公式计算出点P在线段运动的函数表达式,即可求解.【解答】解:①当点P在AE上运动时,S=×AB×AP=2×t=t;②当点P在EF上运动时,S=×1×2=1;③当点P在FG上运动时,S=×(t﹣1)=t﹣1;④当点P在GC上运动时,同理S=2;⑤当点P在BC上运动时,同理可得:函数的表达式为一次函数,图象为线段;故选:B.【点评】本题是运动型综合题,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二、准确填空(本大题共3个小题,17、18每小题3分,19题每空2分,共10分,)17.(3分)点P(2,4)到y轴的距离是2【分析】根据点到y轴的距离等于横坐标的绝对值解答.【解答】解:点P(2,4)到y轴的距离为2.故答案为:2.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.18.(3分)已知直线y=ax+b与y=x交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【解答】解:∵直线y=ax+b和直线y=x交点P的坐标为(﹣4,﹣2),∴关于x,y的二元一次方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.19.(4分)如图,将矩形ABCD在直线上按顺时针方向无滑动翻滚,可依次得到矩形A1B1C1D1,矩形A2B2C1D1矩形A3B2C2D2,…,若AB=2,BC=4,那么AA3的长为12,AA15的长为60.【分析】根据图形和AB=2,BC=4,可以求得AA3的长,再根据题意,可以求得AA15的长,本题得以解决.【解答】解:∵AB=2,BC=4,∴AA3的长为:4+2+4+2=12,AA15的长为:(15÷3)×12=5×12=60,故答案为:12,60.【点评】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.三、挑战技能(本大题共4个小题,20、21题每题6分,22、23题每题8分,共28分)20.(6分)如图表示的是热带风暴从发生到结束的全过程.请结合图象回答下列问题:(1)热带风暴从开始发生到结束共经历了16个小时;(2)从图象上看,风速在2~5(小时)时间段内增大的最快,最大风速是54千米/小时;(3)风速从开始减小到最终停止,平均每小时减小多少千米?【分析】(1)根据函数图象中的数据可以直接写出热带风暴从开始发生到结束共经历了多长时间;(2)根据函数图象可以得到风速在哪个时间段内增大的最快,最大风速是多少千米/小时;(3)根据函数图象中的数据可以计算出风速从开始减小到最终停止,平均每小时减小多少千米.【解答】解:(1)由图象可得,热带风暴从开始发生到结束共经历了16个小时,故答案为:16;(2)从图象上看,风速在2~5(小时)时间段内增大的最快,最大风速是54千米/小时,故答案为:2~5,54;(3)风速从开始减小到最终停止,平均每小时减小:54÷(16﹣10)=54÷6=9(千米/小时),即风速从开始减小到最终停止,平均每小时减小9千米/小时.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.21.(6分)如图,已知网格线是由边长为1的小正方形组成,△A′B′C′是由△ABC平移得到的,建立适当的平面直角坐标系后,C点坐标为(1,2)(1)请在图中画出这个平面直角坐标系;(2)根据(1)中建立的平面直角坐标系,点A′,B′,C′的坐标分别是A′(﹣1,0)B′(2,4)C′(﹣1,3);(3)若△ABC内点P的坐标为(a,b),写出平移后点P的对应点P′的坐标.【分析】(1)首先根据C点坐标确定原点位置,再画出坐标系即可;(2)利用坐标系可直接得到点A′,B′,C′的坐标;(3)根据△A′B′C′位置可得△ABC的平移方法,进而可得点P的对应点P′坐标.【解答】解:(1)如图所示;(2)A′(﹣1,0),B′(2,4),C′(﹣1,3),故答案为:(﹣1,0),(2,4),(﹣1,3);(3)△ABC向上平移1个单位,向左平移2个单位到△A′B′C′的位置,故点P的对应点P′的坐标为(a﹣2,b+1).【点评】此题主要作图﹣﹣平移变换,关键是掌握图形的平移方向、平移距离.22.(8分)某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了100名学生;(2)求m的值并补全条形统计图;(3)在扇形统计图,“围棋”所在扇形的圆心角度数为36°;(4)设该校共有学生1000名,请你估计该校有多少名学生喜欢足球.【分析】(1)用“围棋”的人数除以其所占百分比可得;(2)用总人数乘以“书法”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“围棋”人数所占百分比即可得;(4)用总人数乘以样本中“舞蹈”人数所占百分比可得.【解答】解:(1)学校本次调查的学生人数为10÷10%=100名,故答案为:100;(2)m=100﹣25﹣25﹣20﹣10=20,∴“书法”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“书法”所在扇形的圆心角度数为360°×10%=36°,故答案为:36°;(4)估计该校喜欢舞蹈的学生人数为1000×25%=250人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.23.(8分)学校计划购买一批标有单价为3000元的某型号电脑,需要数量在10至20台之间,以下是甲、乙两个商家的优惠政策,学校购买哪家的电脑更合算呢?优惠政策:甲店:每台八折.乙店:先赠一台,其余每台九折.【分析】首先设买电脑x台,根据题意表示出在两个公司的花费情况,在甲店花费是:3000x×80%=2400x(元),在乙店花费是:3000(x﹣1)×90%=2700x﹣2700(元),再根据合算则花费少可得不等式,解不等式即可.【解答】解:设买电脑x台,则在甲店花费:3000x×80%=2400x(元),在乙店花费:3000(x﹣1)×90%=2700x﹣2700(元)如果在甲店买合算,则2400x<2700x﹣2700,解得:x>9;如果在乙店买合算,则2400x>2700x﹣2700,解得:x<9;如果花费一样:2400x=2700x﹣2700,解得:x=9.答:这个学校买电脑9台时,两个店花费一样,多于9台时,在甲店买合算.【点评】本题考查了一元一次不等式的应用,关键是根据题意表示出在两个店内的花费情况.四、能力展示(本大题共2个小题,24题9分、25题10分,共19分)24.(9分)如图1,△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F(1)求证:△AEF≌△BED;(2)小明在完成(1)的证明后继续探索,连接AD,BF,如图2所示,并提出猜想,你觉得小明的猜想正确吗?请说明理由.小明:如果AD平分∠BAC,那么四边形AFBD是矩形.【分析】(1)根据AAS或ASA证全等即可;(2)根据对角线互相平分的证明四边形AFBD是平行四边形,再根据等腰三角形三线合一证明∠ADB=90°,进而根据有一个角是直角的平行四边形是矩形得证.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠EDB,∵E为AB的中点,∴EA=EB,在△AEF和△BED中,,∴△AEF≌△BED(ASA);(2)∵△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形AFBD是平行四边形,∵AB=AC,AD平分∠BAC,∴AD⊥BD,∴四边形AFBD是矩形.【点评】本题考查了矩形的判定,三角形全等的判定及性质,能够了解矩形的判定定理是解答本题的关键,难度不大.25.(10分)甲、乙两车间同时开始加工一批零件,从开始加工到加工完这批零件,甲车间工作了10个小时,乙车间在中停工一段时间维修设备,然后按停工前的作效率维续加工,直到与甲车间同时完成这批零件的加任务为止.设甲、乙两车间各自加工零件的数量为y(个),甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工零件的个数为75个;这批零件的总个数为1110个;(2)求乙车间维护设备后,乙车间加工零件的数量y与x之间的函数关系式;(3)在加工这批零件的过程中,当甲、乙两车间共同加工完930个零件时,求甲车间的时间.【分析】(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工零件件数,再根据乙车间停工前后的作效率不变求出乙加工的件数即可解答;(2)根据待定系数法,即可求出乙车间维修设备后,乙车间加工零件数量y与x之间的函数关系式;(3)根据加工的零件总件数=工作效率×工作时间,求出甲车间加工零件数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于930,求出x值,此题得解.【解答】解:(1)甲车间每小时加工零件件数为750÷10=75(件),这批零件的总件数为750+90÷2×(10﹣4+2)=1110(件).故答案为:75;1110.(2)设乙车间维护设备后,乙车间加工零件的数量y与x之间的函数关系式y=kx+b,由图象经过(4,90)与(10,360)两点可得,,解得,所以y=45x﹣90;(3)甲车间加工零件数量y与x之间的函数关系式为y=75x,当75x+45x﹣90=930时,x=8.5.答:甲、乙两车间共同加工完930件零件时甲车间所用的时间为8.5小时.【点评】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.五、挑战自我(本大题11分)26.(11分)如图1所示,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,的直角顶点和正方形的顶点C重合,点E,F分别在正方形的边CB,CD上,连接AB、AF.(1)求证:AE=AF;(2)取求的中点M,EF的中点为N,连接MD,MN.则MD,MN的数量关系是MD =MN,MD、MN的位置关系是MD⊥MN(3)将图2中的直角三角板ECF,绕点C旋转180°,图3所示,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【分析】(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,位置关系式垂直,理由三角形的中位线定理,直角三角形斜边中线的性质即可解决问题.(3)连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,再有。

2018八年级下期末数学参考答案(1)

2018八年级下期末数学参考答案(1)

八年级数学试卷参考答案及评分标准(2018.7)三、解答题(本大题有7题, 其中17题10分,18题6分,19题6分,20题6分,21题6分,22题9分,23题9分,共52分) 17.(10分)(1)解:2763x −=27(9)x − ………………………1分7(3)(3)x x =+− ………………………3分(2)方程两边同乘以(x -2)约去分母,得4)2(24−=−−x x …………………………4分 化简整理,得 2x =―8解得 4−=x …………………………5分 检验:把4−=x 代入x -2≠0所以4−=x 是原方程的解 …………………… 6分(3) ⎩⎨⎧<−≤−②142①32x x由①得1x ≥−………………………7分 由②得 2.5x <………………………8分∴不等式租的解集为 1 2.5x −≤<………………………9分 不等式组的解集在数轴上表示为:………………………10分18.(6分)233(1)11x x xx x x −−−+÷++ABDED'D'EDA=3(1)111(1)x x x x x x −+⎡⎤−+⨯⎢⎥+−⎣⎦………………………2分 =13(1)1(1)(1)1(1)x x x x x x x x x +−+−⨯+⨯−+−………………………3分 =13x x x +−=2x x−………………………4分 当x 的值为-1、0、1时分式无意义, 当x =2时原式=0222=−……………………6分 (也可取x =-2代入,值为2) 19.(6分)每个图3分20. (6分)证明:由已知,AF =FC ,∠AFE =∠CFE , …………………1分 在□ABCD 中,AE //FC ,∴∠AEF =∠CFE …………………2分 ∴∠AFE =∠CFE∴∠AFE =∠AEF∴AF =AE …………………4分 ∴AE =FC ∴四边形AFCE 为平行四边形.……………6分 21.(6分)(1)解:由442222-a b a c b c =−得 2222222)()()a b a b a b c −+=−(222222222222)()-()=0)()0a b a b a b c a b a b c −+−−+−=((…………………2分则022=−b a 或2220a b c +−= 若2220a b c +−=,则222=a b c +∴ △ABC 是直角三角形…………………3分 若022=−b a ,则=a b∴△ABC 是等腰三角形…………………4分T SDM EA综上所述,△ABC 是直角三角形或等腰三角形。

吉林省长春市2018-2019学年八年级(下)期末数学试卷(解析版)

吉林省长春市2018-2019学年八年级(下)期末数学试卷(解析版)

2018-2019学年吉林省长春市农安四中八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下面与为同类二次根式的是()A.B.C.D.2.(3分)如果是二次根式,a的范围在数轴上表示正确的是()A.B.C.D.3.(3分)有下面的等式:①②③④,其中成立的有()A.①②③④B.②③④C.②③ D.①③4.(3分)根据下面的条件,能得出三角形ABC中,∠C为直角的一个是()A.AB=,BC=2,AC=4 B.AB=2,BC=2,AC=C.AB=2,AC=3,BC=5 D.AB=3,BC=4,AC=55.(3分)如图,延长四边形ABCD的BC边到E,∠DCE=120°,∠A=90°,∠D=2∠B.那么∠B的度数是()A.55°B.60° C.70° D.80°6.(3分)如图,矩形ABCD的AB=4cm,BC=7cm,在AD、BC上分别取点E、F,四边形EBFD 是菱形.那么,F到直线BE的距离是()A.3cm B.4cm C.5cm D.cm7.(3分)下面的四个点中,有一个不在一次函数y=﹣2x+1的图象上,这个点是()A.(2,﹣3)B.(﹣2,3)C.(,0)D.(0,1)8.(3分)如图,直角梯形ABCD中AD∥BC,∠D=90°.∠A的平分线交DC于E,EF⊥AB 于F.已知AD=3.5cm,DC=4cm,BC=6.5cm.那么四边形BCEF的周长是()A.10cm B.11cm C.11.5cm D.12cm9.(3分)一种游戏如图,在一个定点位置用球拍扫动滑块,滑块落在圆环形靶图的相应位置,可以得到相应的分数.江小颖做6次的成绩如左图,对于这组数据,说法中不正确的是()A.平均数3 B.中位数3 C.方差是2.5 D.众数是310.(3分)如图,半圆的直径CB=4,动点P从圆心A出发到B,再沿半圆周从B到C,然后从C回到A,按1单位/秒的速度运动.设运动时间为t(秒),PA的长为y(单位),y 关于t的函数图象大致是()A.B.C.D.二、填空题(每小题3分,共24分)11.(3分)化简=.12.(3分)如图,正方形ABCD的边长是3cm,在AD的延长线上有一点E,当BE=cm 时,DE的长是cm.13.(3分)如图,直角梯形ABCD中,AD∥BC,∠D=Rt∠,E、F分别是BC、AB的中点.AD =3cm,DC=4cm,则EF的长是.14.(3分)种子公司批发种子,10kg以内按9元/kg,超过10kg,超过的部分按6元/kg.育秧公司批发x千克,超过了10kg,需要付款y(元)关于x的函数关系式是.15.(3分)不等式组的整数解是.16.(3分)有两个一次函数:y1=k1x+5,y2=k2x﹣1.它们的图象交于点(5,﹣3),如图.那么,不等式(k1﹣k2)x<﹣6的解集是.17.(3分)如图,用两张相同的正方形纸片ABCD,剪出不同的两个正三角形,使三角形的顶点在正方形的边上(含顶点),把剪的线条画出来.18.(3分)如图,一次函数与x、y轴分别交于A、B,作菱形OCBD,且D在一次函数图象上.那么D、C的坐标是.三、解答题(共7小题,满分66分)19.(8分)计算:(1)(2).20.(8分)解方程或方程组:(1)(2).21.(9分)如图,在▱ABCD中,对角线AC,BD交于点O,且E,F分别是BO和DO的中点.求证:AE=CF.22.(9分)如图,曲柄连杆装置是很多机械上不可缺少的,曲柄OA绕O点圆周运动,连杆AP拉动活塞作往复运动.当曲柄的A旋转到最右边时,如图(1),OP长为8cm;当曲柄的A旋转到最左边时,如图(2)OP长为18cm.(1)求曲柄OA和连杆AP分别有多长;(2)求:OA⊥OP时,如图(3),OP的长是多少.23.(10分)如图,直角坐标系中有矩形OABC,其中A(,0),C(0,2).(1)那么,B点的坐标是;(2)在x轴上的点P,让△PBC是等腰三角形,这样的P点一共有多少个?画出所有这样的三角形;(3)图象经过C、P的一次函数中,是否有y随x增加而增加的函数?试求出它的解析式.24.(10分)某互联网公司对用户实行两种收费方式:方式1.每月收5元管理费,每使用1小时收费1元;方式2.每月收15元管理费,每使用1小时收费0.5元.(1)分别求出两种收费方式下,总的缴费金额y1、y2(元)关于使用时间t(小时)的函数关系式;(2)在如图的坐标中画出两个函数的图象;(3)如果你们家准备成为这家网络公司的用户,求应该如何选择这两种缴费方式中的其中一种?25.(12分)如图,四边形ABCD中,AD∥BC,AD=5cm,AB=cm,BC=13cm,DC=cm.在BC上有动点P、Q,P从B到C,以2cm/s的速度运动,Q从C到B,以1cm/s的速度同时开始运动,当P到达终点时,Q也立刻停止,设运动的时间为t(s).(1)t的取值范围是;(2)如果PQ的长为y(cm),求y关于t的函数解析式;(3)求当t为多少时,以A、D、P、Q为顶点的凸四边形是平行四边形;(4)以A、D、P、Q为顶点的凸四边形是否为菱形?如果是,求出相应的t,如果不是,说出理由.2016-2017学年吉林省长春市农安四中八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、=2,与不是同类二次根式;B、=2,与不是同类二次根式;C、与不是同类二次根式;D、=4,与是同类二次根式.故选:D.2.【解答】解:由题意得:3a+1≥0,解得:a≥﹣.故选:A.3.【解答】解:∵+=3,∴选项①不符合题意;∵,∴选项②符合题意;∵,∴选项③符合题意;∵,∴选项④符合题意,∴成立的有3个:②③④.故选:B.4.【解答】解:A、22+42=(2)2,即BC2+AC2=AB2,符合勾股定理的逆定理,是直角三角形,且∠C为直角,故此选项正确;B、22+22=(2)2,符合勾股定理的逆定理,是直角三角形,但∠B是直角,故此选项错误;C、22+32≠52,不符合勾股定理的逆定理,不是直角三角形,故此选项错误;D、32+42=52,符合勾股定理的逆定理,是直角三角形,但∠B是直角,故此选项错误;故选:A.5.【解答】解:∵∠DCE=120°,∴∠DCB=180°﹣120°=60°,∵∠A=90°,∴∠D+∠B=210°,∵∠D=2∠B,∴3∠B=210°,解得∠B=70°.故选:C.6.【解答】解:∵四边形EBFD是菱形,∴BE=DE=BF=DF,设BE边上的高为h.∵S菱形BEDF=BF•CD=BE•h,∴h=DC=4cm,故选:B.7.【解答】解:A、当x=2时,y=﹣2x+1=﹣3,∴点(2,﹣3)在一次函数y=﹣2x+1的图象上;B、当x=﹣2时,y=﹣2x+1=5,∴点(﹣2,3)不在一次函数y=﹣2x+1的图象上;C、当x=时,y=﹣2x+1=0,∴点(,0)在一次函数y=﹣2x+1的图象上;D、当x=0时,y=﹣2x+1=1,∴当(0,1)在一次函数y=﹣2x+1的图象上.故选:B.8.【解答】解:∵AE平分∠DAB,∠D=90°,EF⊥AB,∴AF=AD=3.5cm,EF=,DE=,∴EF=DE,∴DC=CE+DE=CE+EF=4cm,过A作AM⊥BC于M,则三角形AMCD是矩形,所以AM=DC=4cm,AD=CM=3.5cm,∵BC=6.5cm,∴BM=6.5cm﹣3.5cm=3cm,在Rt△AMB中,由勾股定理得:AB==5(cm),∴BF=AB﹣AF=5cm﹣3.5cm=1.5cm,∴四边形BCEF的周长是BC+BF+CE+EF=6.5cm+1.5cm+CD=8cm+4cm=12cm,故选:D.9.【解答】解:平均数为=×(1+3+2+4+5+3)=3,中位数为(3+3)×=3,众数为3;方差为S2=×[(1﹣3)2+(3﹣3)2+(2﹣3)2+(4﹣3)2+(5﹣3)2+(3﹣3)2]=;故选:C.10.【解答】解:①点P在A→B的运动过程中,PA的长度不断增加,故B选项错误;②点P在B→C的运动过程中,PA的长度不变,故A、B、D选项错误;③C→A的运动过程中,PA的长度不断减小.综上所述,只有选项C符合题意.故选:C.二、填空题(每小题3分,共24分)11.【解答】解:原式=|1﹣|+=﹣1+=2﹣1故答案为:2﹣112.【解答】解:∵四边形ABCD是正方形,∴∠A=90°,在Rt△ABE中,∵AB=3cm,BE=cm,∴AE===2cm,∴DE=AE﹣AD=(2﹣3)cm,故答案为(2﹣3).13.【解答】解:连接AC,∵∠D=Rt∠,AD=3cm,DC=4cm,∴AC=cm,∵E、F分别是BC、AB的中点,∴EF=cm,故答案为:2.5cm14.【解答】解:x>10时,y=9+(x﹣10)×6=6x﹣51,故答案为:y=6x﹣5115.【解答】解:解不等式x﹣>0,得:x>,解不等式3﹣x>0,得:x<3,则不等式组的解集为<x<3,∴其整数解为2、3、4、5、6,故答案为:2、3、4、5、6.16.【解答】解:当x>5时,y1<y2,即k1x+5<k2x﹣1,所以不等式(k1﹣k2)x<﹣6的解集为x>5.故答案为x>5.17.【解答】解:如图所示,取AD的中点E,以点E为圆心,BC长为半径画弧,交AB于F,交CD于G,连接EF,FG,GE,则△EFG即为所求;如图所示,取正方形各边中点E,F,G,H,连接EF,GH,以点B为圆心,AB长为半径画弧,交EF于M,交GH于N,则∠BMF=30°=∠ABM;∠GNB=30°=∠CBN;作∠ABM的平分线BP,交AD于P,作∠CBN的平分线BQ,交CD于Q,则∠ABP=15°,∠CBQ=15°,∠PBQ=60°;由△ABP≌△CBQ,可得BP=BQ;连接PQ,则△BPQ即为所求;18.【解答】解:∵一次函数与x、y轴分别交于A、B,∴A(﹣4,0),B(0,2),∵四边形OCBD是菱形,∴BD=OD,∴∠1=∠2,∵∠1+∠BAO=∠2+∠AOD,∴∠DAO=∠AOD,∴AD=OD,∴AD=BD,∴D是AB的中点,∴D(﹣2,1),∵四边形OCBD是菱形,∴C与D关于OB对称,∴C(2,1).故答案为:(﹣2,1),(2,1).三、解答题(共7小题,满分66分)19.【解答】解:(1)==;(2)==11.20.【解答】解:(1)x=3+x=2+(2)两式相加可得:3x=6x=将x=代入x﹣y=7中,∴y=﹣∴该方程组的解为:21.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是BO和DO的中点,∴OE=OF,在△AOE和△COF中,,∴△AOE≌△COF(SAS),∴AE=CF.22.【解答】解:(1)设AP=a,OA=b,由题意,解得,∴AP=13cm,OA=5cm.(2)当OA⊥OP时,在Rt△PAO中,OP===12,∴OP=12cm.23.【解答】解:(1)由题意得:B(2,2);故答案为:(2,2);(2)分三种情况:①以C为圆心,以BC为半径画圆,与x轴交于两个点,分别为P和P3;②作BC的中垂线,交x轴于P2;③以B为圆心,以BC为半径画圆,交x轴于P1和P4,综上所述,一共有5个点P;(3)∵y随x增加而增加,∴点P在x轴的负半轴上,只有P符合条件,∵CP=CB=2,OC=2,∴OP==2,∴P(﹣2,0),设直线CP的解析式为:y=kx+b,把点P(﹣2,0)和C(0,2)代入得:,解得:,∴直线CP的解析式为:y=x+2.24.【解答】解:(1)根据题意得:y1=t+5;y2=0.5t+15.(2)当t=0时,y1=5,y2=15;当t=5时,y1=10;当y=10时,y2=20.描点、连线,画出函数图象,如图所示.(3)当y1=y2时,有t+5=0.5t+15,解得:t=20;当y1<y2时,有t+5<0.5t+15,解得:t<20;当y1>y2时,有t+5>0.5t+15,解得:t>20.综上所述:当每月上网时间小于20小时时,选择缴费方式一划算;当每月上网时间等于20小时时,选择两种缴费费用一样;当每月上网时间大于20小时时,选择缴费方式二划算.25.【解答】解:(1)∵BC=13,点P的速度时2cm/s,∴t最大=13÷2=,∴0≤t≤,故答案为0≤t≤;(2)当点P和Q相遇时,BP+CQ=13,由运动知,BP=2t,CQ=t,∴2t+t=13,∴t=,当0≤t≤时,BP+PQ+CQ=13,∴2t+y+t=13,∴y=﹣3t+13,当<t≤时,PQ=BP+CQ﹣BC,∴y=2t+t﹣13=3t﹣13;(3)当0≤t≤时,如图1,∵四边形ADQP是平行四边形,∴PQ=AD,∴﹣3t+13=5,∴t=,当<t≤时,如图2,∵四边形ADPQ是平行四边形,∴PQ=AD,∴3t﹣13=5,∴t=6;即:t=或6时,以A、D、P、Q为顶点的凸四边形是平行四边形;(4)如图3,过点A作AE⊥BC,过点D作DF⊥BC于F,∴四边形AEFD是矩形,∴EF=AD=5,AE=DF,∴BE+CF=8,在Rt△ABE中,AE2=AB2﹣BE2,在Rt△CDF中,AE2=CD2﹣DF2,∴46﹣BE2=30﹣(8﹣BE)2,∴BE=5,∴CF=3,∴AE=DF=当0≤t≤时,如图5,假设以A、D、P、Q为顶点的凸四边形能为菱形,∴t=,且AP=AD=5,∴BP=2t=,∴PE=BP﹣BE=,在Rt△APE中,AP==≠5,此种情况四边形ADQP不能是菱形;当<t≤时,如图4,假设以A、D、P、Q为顶点的凸四边形能为菱形,∴t=6,且AP=AQ=5,∴BQ=BC﹣CQ=13﹣6=7,∴EQ=BQ﹣BE=2,在Rt△AQE中,AQ===5,∴四边形ADPQ是菱形;即:t=6时,以A、D、P、Q为顶点的凸四边形是菱形.。

山西太原市2018-2019学年八年级下学期期末数学试题(解析版)

山西太原市2018-2019学年八年级下学期期末数学试题(解析版)
山西省太原市2018-2019学年八年级下学期期末数学试题
一.选择题
1.若a>b,则下列不等式成立的是( )
A. B.a+5<b+5C.-5a>-5bD.a-2<b-2
【答案】A
【解析】
【分析】
根据不等式的性质逐项分析即可.
【详解】不等式的两边同时除以一个正数,不等号的方向不变,故A正确.
不等式的两边同时加上或减去一个数,不等号的方向不变,故B、D错误;
A.5.5元/千克B.5.4元/千克C.6.2元/千克D.6元/千克
【答案】D
【解析】
【分析】
设这种水果每千克的售价为x元,购进这批水果m千克,根据这种水果的利润不低于35%列不等式求解即可.
【详解】设这种水果每千克的售价为x元,购进这批水果m千克,根据题意,得
(1-10%)mx-4m≥4m×35%,
8.在平面直角坐标系中,点A的坐标是(3,-4),点B的坐标是(1,2),将线段AB平移后得到线段A'B'.若点A对应点A'的坐标是(5,2),则点B'的坐标是( )
A. (3,6)B. (3,7)C. (3,8)D. (6,4)
【答案】C
【解析】
【分析】
先由点A的平移结果判断出平移的方式,再根据平移的方式求出点B′的坐标即可.
A.x≠2B.x≠-2C.x≠ D.x≠-
【答案】B
【解析】
【分析】
根据分母不 零列式求解即可.
【详解】分式中分母不能为0,
所以,3 x+6≠0,解得:x≠-2,
故选B.
【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.

2018-2019学年北京市海淀区八年级(下)期末数学试卷(解析版)

2018-2019学年北京市海淀区八年级(下)期末数学试卷(解析版)

2018-2019学年北京市海淀区八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.42.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.103.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和56.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17 7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.29.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.1410.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=°.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形()∵∠ABC=90°,∴▱ABCD为矩形()20.(4分)方程x 2+2x +k ﹣4=0有实数根 (1)求k 的取值范围;(2)若k 是该方程的一个根,求2k 2+6k ﹣5的值.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD (如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB =AD =5m ,∠A =60°,BC =12m ,∠ABC =150°小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级平均数中位数众数方差七年级84.27774138.56八年级84b89129.7根据以上信息,回答下列问题(1)a=b=;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.2018-2019学年北京市海淀区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.4【分析】先把方程化为x2=4,方程两边开平方得到x=±=±2,即可得到方程的两根.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a (x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;2.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.10【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB===10,故选:D.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.3.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【分析】根据平行四边形的判定定理逐个判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:A.【点评】本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【解答】解:显然A、B、D选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;C选项对于x取值时,y都有2个值与之相对应,则y不是x的函数;故选:C.【点评】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和5【分析】根据平均数和众数的概念求解.【解答】解:这组数据的平均数是:(2+6+4+5+4+3)=4;∵4出现了2次,出现的次数最多,∴这组数据的众数是4;故选:B.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.6.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=1,x2﹣8x+16=17,(x﹣4)2=17.故选:D.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小【分析】先根据直线y=x+2判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=x+2,k=>0,∴y随x的增大而增大,又∵﹣3<1,∴y1<y2.故选:A.【点评】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y 随x的增大而增大;当k<0,y随x的增大而减小.8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.2【分析】利用正方形的性质得到OB=OC=BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE的长.【解答】解:∵正方形ABCD的边长为,∴OB=OC=BC=×=1,OB⊥OC,∵CE=OC,∴OE=2,在Rt△OBE中,BE==.故选:C.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.9.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.14【分析】经过观察5组自变量和相应的函数值得(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,(2,12)不符合,即可判定.【解答】解:∵(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,当x=2时,y=11≠12∴这个计算有误的函数值是12,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.10.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②【分析】根据条形统计图中的信息对4个结论矩形判断即可.【解答】解:①2012年到2018年,我国博物馆参观人数持续增,正确;②10.08×(1+)=10.45,故2019年末我国博物馆参观人数估计将达到10.45亿人次;故错误;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;正确;④设平均年增长率为x,则8.50(1+x)2=10.08,解得:x=0.0889,故2016年到2018年,我国博物馆参观人数平均年增长率是8.89%,故错误;故选:A.【点评】此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=110°.【分析】直接利用平行四边形的对角相等即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D=110°.故答案为:110.【点评】此题主要考查了平行四边形的性质,正确得出对角相等是解题关键.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是甲.【分析】根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【解答】解:甲==8,乙==8,=[(8﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2]=0.4,=[(9﹣8)2+(8﹣8)2+(7﹣8)2+(9﹣8)2+(7﹣8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点评】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=9.【分析】利用判别式的意义得到△=62﹣4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【解答】解:△=62﹣4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=﹣6,所以m=9满足条件.故答案为9.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是南偏东30°.【分析】由题意得:P与O重合,得出OA2+OB2=AB2,由勾股定理的逆定理得出△PAB 是直角三角形,∠AOB=90°,求出∠COP=30°,即可得出答案.【解答】解:由题意得:P与O重合,如图所示:OA=12nmile,OB=16nmile,AB=20nmile,∵122+162=202,∴OA2+OB2=AB2,∴△PAB是直角三角形,∴∠AOB=90°,∵∠DOA=60°,∴∠COP=180°﹣90°﹣60°=30°,∴“长峰”号航行的方向是南偏东30°,故答案为:南偏东30°.【点评】此题主要考查了直角三角形的判定、勾股定理的逆定理及方向角的理解及运用.利用勾股定理的逆定理得出△PAB为直角三角形是解题的关键.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为(38﹣x)2=38x.【分析】设AD为xm,根据“矩形的长边的平方等于短边与其周长一半的积”列出列出方程即可.【解答】解:设AD的长为x米,则AB的长为(38﹣x)m,根据题意得:(38﹣x)2=38x,故答案为:(38﹣x)2=38x.【点评】考查了由实际问题抽象出一元二次方程的知识,解题的关键是表示出另一边的长,难度不大.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为±.【分析】根据菱形的性质知AB=5,由一次函数图象的性质和两点间的距离公式解答.【解答】解:令y=0,则x=﹣,即A(﹣,0).令x=0,则y=3,即B(0,3).∵将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,∴AB=5,则AB2=25.∴(﹣)2+32=25.解得k=±.故答案是:±.【点评】考查了菱形的性质和一次函数图象与几何变换,解题的关键是根据菱形的性质得到AB=5.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)【分析】(1)根据配方法的步骤,可得答案;(2)根据公式法,可得答案.【解答】解:(1)移项,得x2+2x=3配方,得x2+2x+1=3+1即(x+1)2=3开方得x+1=±2,x1=1,x2=﹣3;(2)a=2,b=5,c=﹣1,△=b2﹣4ac=25﹣4×2×(﹣1)=33>0,x==,x1=,x2=.【点评】本题考查了解一元二次方程,配方得出完全平方公式是解题关键.18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.【分析】(1)根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.(2)先求出与x轴及y轴的交点坐标,然后根据三角形面积公式求解即可.【解答】解:(1)∵函数y=kx+b的图象与直线y=2x平行,∴k=2,又∵函数y=2x+b的图象经过点A(1,6),∴6=2+b,解得b=4,∴一次函数的解析式为y=2x+4;(2)在y=2x+4中,令x=0,则y=4;令y=0,则x=﹣2;∴一次函数y=kx+b的图象与坐标轴交于(0,4)和(﹣2,0),∴一次函数y=kx+b的图象与坐标轴围成的三角形的面积为×2×4=4.【点评】本题考查待定系数法求函数解析式及三角形的面积的知识,关键是正确得出函数解析式及坐标与线段长度的转化.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形)【分析】(1)根据要求画出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可证明.【解答】解:(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形【点评】本题考查作图﹣复杂作图,矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(4分)方程x2+2x+k﹣4=0有实数根(1)求k的取值范围;(2)若k是该方程的一个根,求2k2+6k﹣5的值.【分析】(1)根据判别式的意义得到△=22﹣4(k﹣4)≥0,然后解不等式即可;(2)利用方程解的定义得到k2+3k=4,再变形得到2k2+6k﹣5=2(k2+3k)﹣5,然后利用整体代入的方法计算.【解答】解:(1)△=22﹣4(k﹣4)≥0,解得k≤5;(2)把x=k代入方程得k2+2k+k﹣4=0,即k2+3k=4,所以2k2+6k﹣5=2(k2+3k)﹣5=2×4﹣5=3.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意小明的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵BC=12m,BD=5m,∴DC ==13(m ),答:CD 的长度为13m .【点评】此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD 是等边三角形是解题关键.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级 平均数 中位数 众数 方差 七年级 84.2 77 74 138.56 八年级84b89129.7根据以上信息,回答下列问题 (1)a =8 b = 88.5 ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有180,280人.【分析】(1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,(2)从中位数、众数、方差进行分析,调查结论,(3)用各个年级的总人数乘以样本中优秀人数所占的比即可.【解答】解:(1)a=20﹣1﹣10﹣1=8,b=(88+89)÷2=88.5故答案为:8,88.5.(2)八年级成绩较好,八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高,方差八年级较小,说明八年级的成绩比较稳定.(3)七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,故答案为:180,280.【点评】考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.【分析】(1)根据平行四边形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC,利用勾股定理计算AC的长,可得结论.【解答】(1)证明:∵在▱ABCD中,∴AD∥BC且AD=BC,∴∠ADF=∠BCE,在△ADF和△BCE中,∵∴△ADF≌△BCE(SAS),∴AF=BE,∠AFD=∠BEC=90°,∴AF∥BE,∴四边形ABEF是矩形;(2)解:由(1)知:四边形ABEF是矩形,∴EF=AB=6,∵DE=2,∴DF=CE=4,∴CF=4+4+2=10,Rt△ADF中,∠ADF=45°,∴AF=DF=4,由勾股定理得:AC===2,∵四边形ABCD是平行四边形,∴OA=OC,∴OF=AC=.【点评】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.【分析】(1)把A点坐标代入y=x﹣2中,求得m的值,再把求得的A点坐标代入y =kx+7中,求得k的值;(2)根据题意,用n的代数式表示出M、N点的坐标,再求得PM、PN的值,根据PN ≤2PM,列出n的不等式,再求得结果.【解答】解:(1)把A(3,m)代入y=x﹣2中,得m=3﹣2=1,∴A(3,1),把A(3,1)代入y=kx+7中,得1=3k+7,解得,k=﹣2;(2)由(1)知,直线y=kx+7为y=﹣2x+7,根据题意,作出草图如下:∵点P(n,n),∴M(n+2,n),N(n,﹣2n+7),∴PM=2,PN=|3n﹣7|,∵PN≤2PM,∴|3n﹣7|≤2×2,∴1≤n≤,∵P与N不重合,∴n≠﹣2n+7,∴n≠,综上,1≤n≤,且n≠【点评】本题是一次函数图象的相交与平行的问题,主要考查了待定系数法求一次函数的解析式,第(2)小题关键是用n的代数式表示PM与PN的长度.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.【分析】(1)①根据要求画出图形即可解决问题.②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.【解答】解:(1)①补全图形如图所示:②结论:DE=BC.理由:如图一中,连接OD交BC于F,连接AF.∵OC∥BD,∴∠FCO=∠FBD,∵∠CFO=∠BFD,OC=BD,∴△FCO≌△FBD(AAS),∴BF=CF,∵OA=AE,∵DE=2AF,∵∠BAC=90°,BF=CF,∴BC=2AF,∴DE=BC.(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,∵AB=AC,∴AF垂直平分线段BC,∴MB=MC,∵∠OCB=30°,∠OBC=15°,∴∠MBC=∠MCB=30°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,∵∠BAM=∠BOM=45°,BM=BM,∴△BMA≌△BMO(AAS),∴AM=OM,∠BMO=∠BMA=120°,∴∠AMO=120°,∴∠MAO=∠MOA=30°,∴∠AED=∠MAO=30°.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,∴∠MAO=∠MBO=30°﹣15°=15°,∵DE∥AM,∴∠AED=∠MAO=15°,综上所述,满足条件的∠AED的值为15°或30°.【点评】本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2018年深圳市八年级下学期数学期末试卷含解析

2018年深圳市八年级下学期数学期末试卷含解析

2018年深圳市八年级下学期数学期末试卷含解析2018年广东省深圳市八年级下学期数学试卷一、选择题(共12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)如果分式$\frac{5}{x+3}$有意义,则x的取值范围是()。

A。

$x=-3$ B。

$x>-3$ C。

$x\neq-3$ D。

$x<-3$2.(3分)如图,图形中,既是轴对称图形又是中心对称图形的是()。

图片省略]。

XXX$3.(3分)已知实数a,b,若a>b,则下列结论错误的是()。

A。

$a+6>b+6$ B。

$a-2>b-2$ C。

$-2a>-2b$ D。

$a^2>b^2$4.(3分)将点A(1,-1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()。

A。

(-2,1) B。

(-2,-1) C。

(2,1) D。

(2,-1)5.(3分)若一个多边形的内角和是1080度,则这个多边形的边数为()。

A。

6 B。

7 C。

8 D。

106.(3分)下列多项式中,可以提取公因式的是()。

A。

$ab+cd$ B。

$mn+m^2$ C。

$x^2-y^2$ D。

$x^2+2xy+y^2$7.(3分)DE平分∠ADC,AD=8,BE=3,如图,在▱ABCD中,则▱ABCD的周长是()。

图片省略]。

A。

16 B。

14 C。

26 D。

248.(3分)下列命题中,错误的是()。

A。

过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形。

B。

三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点。

C。

三角形的中线将三角形分成面积相等的两部分。

D。

一组对边平行另一组对边相等的四边形是平行四边形9.(3分)如图,在△ABC中,∠ACB=90°,分别以点A 和点B为圆心以相同的长(大于AB)为半径作弧,两弧相交于点M和N点,作直线MN交AB于点D,交BC于点E,若AC=3,BC=4,则BE等于()。

广东省深圳市坪山区2018-2019学年八年级下学期期末考试数学试题(WORD版,含答案)

广东省深圳市坪山区2018-2019学年八年级下学期期末考试数学试题(WORD版,含答案)

深圳市坪山区2018-2019学年八年级下学期期末考试数学试卷说明:1、试题卷共6页,答题卡2页,考试时间90分钟,满分100分。

2、请在答题卡上填涂学校、班级、姓名、考生号,不得在其它地方作任何标记。

3、答案必须写在答题卡指定位置上,否则不给分。

第I 卷 选择题一、选择题:(每小题3分,共36分,每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卡相应的位置上.)1.下列图形中,可以看作是中心对称图形的是( )答案:A 2.使分式1xx -有意义的x 的取值范围是( ) A .x ≥1 B .x ≤1C .x ≠1D .x >1答案:C3.如果a >b ,下列各式中正确的是( ) A .ac >bc B .a ﹣3>b ﹣3C .﹣2a >﹣2bD .22a b < 答案:B 4.不等式组1048x x ->⎧⎨≤⎩的解集在数轴上表示为( )答案:C5.如图,△ABC 中,AB =AC =10,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则DE 的长为( ) A .5B .6C .8D .10答案:A6.如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=()A.33°B.80°C.57°D.67°答案:A7.一个多边形的每一个内角都等于135°,则它的边数是()A.6 B.8 C.10 D.12答案:B8.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=115°,则∠BCE=()A.25°B.30°C.35°D.55°答案:A9.一次环保知识竞赛共有25道题,每一题答对得4分,答错或不答都扣1分,在这次竟赛中,小明被评为优秀(85分或85分以上),小明至少要答对多少道题?如果设小明答对了x道题,根据题意列式得()A.4x﹣1×(25﹣x)>85 B.4x+1×(25﹣x)≤85C.4x﹣1×(25﹣x)≥85 D.4x+1×(25﹣x)>85答案:C10.如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=65°,则∠ACD 的度数为()A.65°B.60°C.55°D.45°答案:C11.如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k﹣m)x+b<0的解集为()A.x<1 B.x>1 C.x<3 D.x>3答案:B12.如图,平行四边形ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE,下列结论:①∠CAD=30°;②S ABCD=AB•AC;③OB=AB:④OE=14BC.其中成立的有()A.①②③B.①②④C.①③④D.②③④答案:B;二、填空题:(每小题3分,共12分,请把答案写在答题卡相应的位置上,)13.分解因式:3y2﹣12=.答案:3(y+2)(y﹣2)14.分式||55xx-+的值为0.则x的值为.答案:515.如图,∠AOP=∠BOP,PC∥OA,PD⊥OA,若∠AOB=45°,PC=6,则PD的长为.答案:3216.如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB =6,AC =3,则BE = . 答案:1.5三、解答题:(本大题共7题,其中第17题6分,第18题6分,第19题6分,第20小题8分,第21小题8分,第22小题9分,第23小题9分,共52分,)17.解不等式52x -+1>x ﹣3. 解:去分母,得:5226x x -+>- 移项,得:2652x x ->-+-解得:x <318.先化简,再求值:2239(1)x x x x ---÷,其中x =2. 解:原式=239x x x x--÷=31(3)(3)3x x x x x x -⨯=+-+, 当x =2时,原式=1519.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上,请解答下列问题(1)画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1,并写出点C 1的坐标; (2)画出将△ABC 关于原点O 对称的图形△A 2B 2C 2,并写出点C 2的坐标.解:(1)如下图, C 1((-1,2),(2)如下图,C2((-3,-2),20.(8分)已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.解:(1)作DE⊥AB于E,因为AD为角平分线,所以,DC=DE,在直角三角形BDE中,∠B=30°,所以,BD=2DE,所以,BD =2CD(2)CD =2,则BD =4, 所以,BC =6,设AC =x ,则AB =2x , AB 2=AC 2+BC 2, 4x 2=x 2+36,解得:x =23,所以,AC =23 △ABD 的面积S =12×BC ×AC =6321.(8分)某工厂准备购买A 、B 两种零件,已知A 种零件的单价比B 种零件的单价多20元,而用800元购买A 种零件的数量和用600元购买B 种零件的数量相等 (1)求A 、B 两种零件的单价;(2)根据需要,工厂准备购买A 、B 两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A 种零件多少件?解:(1)设B 种零件的单价为x 元,则A 零件的单价为(x +20)元,则80060020x x=+ 解得:x =60经检验:x =60 是原分式方程的解, x+20=80.答:A 种零件的单价为80元,B 种零件的单价为60元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018级八年级期末测试一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30、x+2 、240x 、22y x +中,最简二次根式有( )个。

A 、1 个B 、2 个C 、3 个D 、4个 2.若式子2x -有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如下左图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )(-1,1)1y (2,2)2yxyO(第7题)A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=Λ中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如上右图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30 -23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。

10203040506070809012345678某班学生1~8月课外阅读数量折线统计图3670585842287583本数月份(第9题)12345678M PFECBA(第12题)(第10题)ADO14.在直角三角形ABC 中,∠C=90°,CD 是AB 边上的中线,∠A=30°,AC=5 3,则△ADC 的周长为 _。

15、如图,平行四边形ABCD 的两条对角线AC 、BD 相交于点O ,AB= 5 ,AC=6,DB=8 则四边形ABCD 是的周长为 。

16.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= .17. 某一次函数的图象经过点(1-,3),且函数y 随x 的增大而减小,请你写出一个符合条件的函数解析式______________________.18.)某市2007年5月份某一周的日最高气温(单位:℃)分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值是_______19.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为,,则成绩较为稳定的是 (选填“甲”或“乙)20.如图,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠FAC=60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n 个菱形的边长是 .三.解答题: 21. (7分)已知6969--=--x xx x ,且x 为偶数, 求112)1(22-+-+x x x x 的值(第20题)22.(7分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.ACB23. (9分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.(1)求证:四边形DEGF是平行四边形;(2)当点G是BC的中点时,求证:四边形DEGF是菱形.24. (9分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min.⑵①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少30501950300080x/miy/mO(第22题)25、(10分)如图,直线6y kx =+与x 轴分别交于E 、F .点E 坐标为(-8,0),点A 的坐标为(-6,0).(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,当点P 运动过程中,试写出三角形OPA 的面积s 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当P 运动到什么位置时,三角形OPA 的面积为278,并说明理由.26. (8分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1:所有评委所给分的平均数,方案2:在所有评委所给分中,去掉一个最高分和一个最低分.然后再计算其余给分的l 平均数.方案3:所有评委所给分的中位效. 方案4:所有评委所给分的众数。

为了探究上述方案的合理性.先对 某个同学的演讲成绩进行了统计实验. 右面是这个同学的得分统计图: (1)分别按上述4个方案计算这个 同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适台作为这个同学演讲的最后得分,并给出该同学的最后得分.yF27. (10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形并说明理由.参考答案一、选择题二、填空题11. 33 , 12. 17, 13. 4 , 14. 3510+, 15. 20 , 16. 5, 17. 答案不唯一18. 29,19. 乙, 20. .)3(1-n三、解答题(本题共8小题,满分共60分)21.解:由题意得⎩⎨⎧>-≥-0609x x ,⎩⎨⎧>≤69x x ,∴96≤<x∵x 为偶数,∴8=x .)1)(1(11)1(11)1()1)(1()1()1(112)1(222-+=+-+=+-+=-+-+=-+-+x x x x x x x x x x x x x x x x 原式=∴当8=x 时,原式=7379=⨯ =325+23. 证明:(1)∵AG∥DC,AD∥BC, ∴四边形AGCD 是平行四边形, ∴AG=DC, ∵E、F 分别为AG 、DC 的中点,∴GE=AG ,DF=DC ,即GE=DF ,GE∥DF, ∴四边形DEGF 是平行四边形;(2)连接DG ,∵四边形AGCD 是平行四边形,∴AD=CG, ∵G 为BC 中点,∴BG=CG=AD,∵AD∥BG,∴四边形ABGD 是平行四边形,∴AB∥DG, ∵∠B=90°,∴∠DGC=∠B=90°, ∵F 为CD 中点,∴GF=DF=CF, 即GF=DF ,∵四边形DEGF 是平行四边形,∴四边形DEGF 是菱形.24. 解:⑴3600,20.⑵①当5080x ≤≤时,设y 与x 的函数关系式为y kx b =+. 根据题意,当50x =时,1950y =;当80x =,3600y =.所以,y 与x 的函数关系式为55800y x =-.②缆车到山顶的路线长为3600÷2=1800(m ), 缆车到达终点所需时间为1800÷180=10(min ).小颖到达缆车终点时,小亮行走的时间为10+50=60(min ). 把60x =代入55800y x =-,得y=55×60—800=2500.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m ) 25.(1)34k =;(2)9184s x =+(-8<x <0);(3)P (139,28-) 26.27.解答: (1)证明:∵MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F , ∴∠2=∠5,4=∠6,∵MN∥BC,∴∠1=∠5,3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO ,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°, ∵CE=12,CF=5,∴EF==13,∴OC=EF=;(3)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.。

相关文档
最新文档