数字图像处理技术 图像分割
数字图像处理技术及其在医学图像中的应用

数字图像处理技术及其在医学图像中的应用数字图像处理技术是对数字图像进行处理和分析的方法,可以通过对图像的像素进行处理来改善图像的质量。
在医学领域,数字图像处理技术可以用于对医学图像进行分析和处理,从而帮助医生更准确地诊断疾病。
数字图像处理技术的基础是数学和计算机科学。
在数字图像处理中,每一张图像都被看作由像素组成的数字矩阵。
通过对这个矩阵进行运算、滤波、去噪等操作,可以改善图像的质量,更好地表达图像中的信息。
在医学图像处理中,常用的数字图像处理技术包括图像增强、图像分割、图像注册、图像配准、智能分析等。
下面将介绍其中几种常用的数字图像处理技术。
1. 图像增强图像增强旨在通过改善图像的亮度、对比度和清晰度等方面来提高图像质量。
对于医学图像,图像增强可以使影像更加清晰,更容易识别图像中的特征。
常用的图像增强方法包括直方图均衡化、对比度拉伸、滤波和锐化等。
2. 图像分割图像分割是将医学图像中的区域分开,以便更好地分析和处理。
在医学诊断中,图像分割的应用非常广泛。
例如,在 CT 或 MRI 中,医生需要分离出瘤体等异常区域以进行病情分析。
常用的图像分割方法包括阈值分割、区域生长、边缘检测和形态学操作等。
3. 图像配准图像配准是将不同时间、不同部位、不同成像方式获得的医学图像进行比较和匹配的过程。
图像配准可以用于不同时间取得的 CT 或 MRI 图像进行比较,以便更好地分析病情的发展。
同时,图像配准还可以将不同成像方式的图像进行拼接,以便更好地观察病情。
常用的图像配准方法包括基于特征点的配准和基于强度的配准等。
4. 智能分析智能分析是将数字图像处理技术与人工智能技术相结合,对医学图像进行分析、识别和分类。
例如,在乳腺癌筛查中,可以使用智能分析技术自动识别乳腺钙化或肿块等异常情况。
智能分析技术可以提高诊断的准确性,减少误诊率。
常用的智能分析技术包括卷积神经网络 (CNN)、支持向量机 (SVM)、决策树和深度学习等。
数字图像处理图像分割课件

基于Mumford-Shah模 …
该方法可以获得更准确、更平 滑的分割结果,并且可以更好 地处理噪声和细节。此外,它 还可以更好地处理形状约束和 边界条件。
基于Mumford-Shah模 …
该方法需要更多的计算资源和 时间来处理每个时间点的水平 集,并且可能难以处理大规模 的形状变化和复杂的形状约束 。
响。
图像分割还可以帮助缩小处理和 分析的规模,提高处理效率,并 为后续的图像分析提供可靠的预
处理结果。
图像分割的分类
01
02
03
04
按照处理方式
图像分割可以分为阈值法、区 域生长法、边缘检测法、图切
割法等。
按照应用领域
图像分割可以分为医学图像分 割、遥感图像分割、人脸识别
等。
按照分割对象
图像分割可以分为二维图像分 割和三维图像分割。
该方法具有能够处理复杂的图像内容和噪声等优点,但也可能需要更多的计算资源和时间。
07
实例展示与结果分析
基于阈值的图像分割实例
总结词
简单、快速、有效的图像分割方法
详细描述
基于阈值的图像分割是一种基本的图像分割方法,通过设置不同的阈值将图像分 割成不同的区域。其优点是简单、快速、有效,适用于简单背景和对比明显的图 像。但是,对于复杂背景和低对比度图像,分割效果较差。
些方法可以自动适应不同图像的特点,且能够根据图像内容的变化自适
应调整阈值。
03
自适应阈值
根据图像的局部特征自适应地设置阈值,例如基于区域生长的方法、基
于边缘检测的方法等。这些方法能够更好地适应图像的局部特征,提高
分割的精度和鲁棒性。
阈值法的优缺点
优点
阈值法简单易行,适用于简单背景和 对比度较高的图像;对于实时性要求 较高的应用场景,阈值法具有较快的 处理速度。
数字图像处理-第六章图像分割与分析

设平面上有若干点,过每点的直线族分别对应于极坐标上的 一条正弦曲线。若这些正弦曲线有共同的交点(ρ′,θ′),如图 (e),则这些点共线,且对应的直线方程为 ρ′=xcosθ′+ysinθ′
这就是Hough变换检测直线的原理。
y
A 60
B
F E
C
G 60
D 120
x
x-y空间的边缘点
D
120
C
w1 w 2 w3
可以指定模板为:
w
4
w5
w
6
w 7 w 8 w 9
9
模板响应记为: R | w i z i | i1
输出响应R>T时对应孤立点。
888 8 128 8 888
图像
-1 -1 -1 -1 8 -1 -1 -1 -1
模板
R = (-1 * 8 * 8 + 128 * 8) / 9 = (120 * 8) / 9 = 960 / 9 = 106
3、阈值分割法(相似性分割)
根据图像像素灰度值的相似性
通过选择阈值,找到灰度值相似的区域 区域的外轮廓就是对象的边
阈值分割法(thresholding)的基本思想: 确定一个合适的阈值T(阈值选定的好坏是此方法成败 的关键)。 将大于等于阈值的像素作为物体或背景,生成一个二值 图像。
f(x0,y0) T
2h
r2 2 4
exp
r2 2 2
是一个轴对称函数:
2h
-σ
σ
0
由图可见,这个函数 在r=±σ处有过零点,在 r │r│<σ时为正,在│r│>σ 时为负。
由于图像的形状,马尔算子有时被称为墨西哥草帽函数。 用▽2h对图像做卷积,等价于先对图像做高斯平滑,然后再用▽2对 图像做卷积。 因为▽2h的平滑性质能减少噪声的影响,所以当边缘模糊或噪声较 大时,利用▽2h检测过零点能提供较可靠的边缘位置。
第8章 图象分割(08) 数字图像处理课件

第8章 图像分割
Log算子边缘检测
第8章 图像分割
8.2.3 算法的特点 • Roberts算子采用对角线方向相邻像素之差近似 检测边缘,定位精度高,在水平和垂直方向效果较 好,但对噪声敏感。 • Sobel算子利用像素的上、下、左、右邻域的灰 度加权算法进行边缘检测。该方法提供较为精确的 边缘方向信息,而且对噪声具有平滑作用,能产生 较好的检测效果。但是增加了计算量,而且也会检 测伪边缘。
所以分割算法可据此分为2大类: 利用区域间灰度不连续性的基于边界的算法; 利用区域内灰度相似性的基于区域的算法。
第8章 图像分割
图像分割方法的分类: 现今,对一些经典方法和新出现的方法进行总
结,可将图像分割方法分为四类: 边缘检测方法 阈值分割方法 区域提取方法 结合特定理论工具的分割方法。
第8章 图像分割
(1)基于边缘的分割方法: 图像最基本的特征是边缘,它是图像局部特性不
连续(或突变)的结果。例如,灰度值的突变、颜色的 突变、纹理的突变等。
边缘检测方法是利用图像一阶导数的极值或二 阶导数的过零点信息来提供判断边缘点的基本依据, 经典的边缘检测方法是构造对图像灰度阶跃变化敏感 的差分算子来进行图像分割,如Robert算子、Sobel算 子、Prewitt算子、Laplacian算子等。
另外,还没有制定出选择适用分割算法的标准。
第8章 图像分割
8.2 边 缘 检 测 的 分 割 方 法
8.2.1 原理及算法
目的:检测出局部特性的不连续性,再将它们连成 边界,这些边界把图像分成不同的区域。
图像边缘对图像识别和计算机分析十分有用,边缘 能勾画出目标物体,使观察者一目了然;边缘蕴含了 丰富的内在信息(如方向、阶跃性质、形状等),是 图像识别中重要的图像特征之一。
数字图像处理在医学影像中的应用:技术、原理与应用研究

数字图像处理在医学影像中的应用:技术、原理与应用研究引言数字图像处理在医学影像中的应用已经成为医学领域中不可或缺的一部分。
随着技术的发展和进步,数字图像处理在医学影像中的应用越来越广泛,为医生提供了更多的信息和工具来辅助诊断、治疗和研究。
本文将介绍数字图像处理在医学影像中的技术、原理和应用研究。
一、数字图像处理的基础知识1.1 数字图像处理的定义和概念数字图像处理是将图像的采集、处理、存储和传输等过程转化为数字形式,并利用计算机进行处理和分析的技术。
它包括图像增强、图像恢复、图像压缩、图像分割、图像配准等多个方面。
1.2 数字图像处理的基本原理数字图像处理的基本原理是通过对图像的像素点进行操作,利用数学方法和算法对图像进行处理和分析。
常见的数字图像处理方法包括灰度变换、滤波、傅里叶变换等。
二、数字图像处理在医学影像中的技术与方法2.1 图像增强技术图像增强技术是指通过对图像进行处理,提高图像的质量、清晰度和对比度,使医生能够更好地观察和分析图像。
常用的图像增强技术包括直方图均衡化、线性滤波、非线性滤波等。
2.2 图像分割技术图像分割技术是指将图像划分为不同的区域或物体,用于定位和识别不同的组织结构和病变。
常用的图像分割技术包括阈值分割、边缘检测、区域生长等。
2.3 图像配准技术图像配准技术是指将不同位置、不同时间或不同模态的图像进行对齐和匹配,以实现图像的比较和融合。
常用的图像配准技术包括基于特征的配准、基于相似度度量的配准等。
2.4 图像压缩技术图像压缩技术是指通过减少图像数据的冗余性和冗长性,以减小图像文件的尺寸,使得图像的存储和传输更加高效。
常用的图像压缩技术包括无损压缩和有损压缩。
三、数字图像处理在医学影像中的应用研究3.1 诊断辅助数字图像处理在医学影像中的应用最主要的是辅助医生进行疾病的诊断。
通过对医学影像进行处理和分析,可以提取更多的信息和特征,帮助医生更准确地判断病变的位置、形状和大小,从而提高诊断的准确性和可靠性。
数字图像处理中的变分模型与分割技术

数字图像处理中的变分模型与分割技术数字图像处理是一种广泛应用于计算机视觉、图像处理、图像分析等领域的技术。
其中的变分模型与分割技术是数字图像处理的重要组成部分,广泛应用于各种图像处理领域,如医学影像处理、物体识别、目标检测等。
变分模型是指对一个系统的能量函数进行最小化或最大化的过程,其中的能量函数是由图像像素的灰度值、空间距离和各种边缘等特征组成的。
常见的变分模型有全变分模型和TV(Total Variation)模型。
全变分模型是一种常见的图像处理方法,它可以将一个图像分解成多个层次,形成一个自适应的图像分割系统。
它可以有效地对图像进行边缘检测和分割。
TV模型则是一种基于局部均匀性假设的变分模型,它可以有效地管理图像分割中的噪声,并通过对图像的总变化量进行最小化来实现对图像分割的优化。
在分割技术中,边缘检测是关键环节之一。
边缘检测是指通过检测出图像中明显的边缘,进而将图像分割成若干区域的处理方法。
边缘检测技术包括Prewitt算子、Sobel算子、Canny算子等方法。
其中,Canny算法是一种基于高斯滤波、梯度计算、非极大值抑制和双阈值化等多项技术的综合算法,它可以有效地检测图像中的边缘,并将图像分割成多个区域。
除了边缘检测之外,聚类分析也是数字图像处理中广泛使用的分割技术之一。
聚类分析是指将具有相同特征的图像像素归为一类的过程。
它可以有效地将图像分割成多个相似的区域,常见的聚类算法有k-means算法、谱聚类算法等。
此外,分水岭算法也是一种常见的数字图像分割算法。
它是基于图像水平线的思想设计而成的一种聚类算法,可以将图像分割成多个区域,并在每个区域周围形成边缘。
分水岭算法广泛应用于医学影像处理中的肺部分割、乳腺分割等领域。
总之,数字图像处理中的变分模型与分割技术是数字图像处理的重要组成部分,可以有效地对图像进行边缘检测、目标分割、肿瘤检测等领域。
未来,随着计算机视觉和人工智能技术的不断发展,数字图像处理技术将在更多领域得到应用。
浅谈数字图像处理中的图像分割技术
() 性 阈值 2适应
在 不 同 的区 域有 不 同 的阈值 ,即 自适 性 阙
值。
22 区域法 实现 图像 分 割 .
区域法实现分割是以某种规则为约束 ( 如子 区域全部像素灰度相同、 子区域不重合且相连接
等) ,直接找 取区域 的方 式实现分割 。
摘 要 数字图像处理科学迅速发展并得到广泛应用.图 像分割是其中重要的中间 技术.它依托图
像数字处理底层技术 ,为模 式识别等 高层应用服务 .本文 简要介 绍了图像分割 的概念范畴和常见的分割 技术的方法描 述.掌握图像分割技术有助 于系统理解数字 图像处理技 术的层次.
关键词 数 字图像处理 图像分剖 阚值
阈值 1整体
就是对整幅图像选定一固定灰度值 , 以此去 1 图像分割的范畴
图像 分割 处 理 技 术属 于数 字 图像 处理 技术 中的 图像 分析 范畴 , 图像 分析 的中 间层处理技 是 术。 图像分 割 的 目的是把经过 底层 处 理的数字 图 像 空 间分 成 若干有 意义 的区域 , 后期 的一些高层 应 用 如模 式 识 别等 将 在这 些 分 割 的 区域基 础上 进 行 。 割 的依据建 立在这 些 由像 素组 成 的区域 分 做 图像 分类找 出图像 的物体 。 在物体与 背景 单纯
边 界 的损 害 。 () 3 拉式 边 界 检测法
参考文献。
【】 l章霄, 董艳雪, 赵文 娟等 . 数字图像 处理技 术. 北京: 冶金
工业 出版社 . 0 2 5 0
利 用拉 式 卷 积做 二阶导数搜 寻 边界 的方 法 。
2 . 4边缘法实现图像分割
利用一 阶导数的大小检测边缘所在并用一
图像分割技术的研究与应用
图像分割技术的研究与应用随着数字图像处理技术的不断发展,图像分割技术得到了广泛的应用。
图像分割是指将一幅图像中的相似区域或者不同区域分离出来,以便进行后续的处理和分析。
在医学图像、工业检测、机器人视觉、虚拟现实等领域都有着广泛应用。
一、图像分割技术的分类图像分割技术可以分为基于阈值的分割、基于边缘的分割、基于区域的分割等多种方法。
其中基于阈值的分割是最简单的一种方法,它是通过设置一个阈值来将图像中的像素点分成两个类别的方法。
而基于边缘的分割是利用图像中像素点梯度的变化来进行分割的方法。
基于区域的分割则是将图像中相邻像素点认为是一个区域,以此为基础进行分割的方法。
二、基于阈值的分割基于阈值的分割是最为常见的一种图像分割方法。
它的原理是将图像中的像素点根据其像素值的大小分为两类,即黑色像素和白色像素。
这种方法适用于像素值呈现两个峰值分布的图像,例如二值图像。
三、基于边缘的分割边缘是图像中最具有区分性的特征之一。
边缘可以用来分割出图像中不同的部分,这种方法称为基于边缘的分割。
基于边缘的分割将图像中每个像素点看作是一个点,每个点与相邻的点共同组成了边缘。
利用这些边缘来进行图像分割。
例如,Canny 边缘检测算法通过寻找像素点梯度变化最大的地方,将边缘检测出来,进而进行分割。
四、基于区域的分割基于区域的分割是根据图像中相似的像素点将其分成不同的区域,并将区域内的像素点视为同一类。
这种方法通常需要先确定图像中的每个像素点的相邻像素点,来确定每个区域的范围。
聚类算法是一种常见的基于区域的分割方法,将图像中的像素点按照其相似程度来进行分组。
五、图像分割技术的应用图像分割技术在许多领域都有着广泛的应用。
在医学图像处理中,利用图像分割技术可以将不同的组织分开,从而进行病变的分析和诊断。
在机器人视觉领域,图像分割技术可以帮助机器人识别和定位目标对象。
在虚拟现实技术中,图像分割技术可以将不同的对象分离出来,从而实现更加真实的虚拟场景。
数字图像处理---图像分割
数字图像处理---图像分割图像分割概述图像分析概念:对图像中感兴趣的⽬标进⾏检测和测量,以获得它们的客观信息,从⽽建⽴对图像的描述步骤:1. 图像分割2. 特征识别3. 对象分类4. 建⽴联系概述图像分割概念:将图像划分为互不重叠的区域并提取感兴趣⽬标的技术基本策略:基于灰度值的两个基本特性:不连续性和相似性通过检测不连续性先找边,后确定区域通过检测相似性,在⼀定阈值下找到灰度值相似区域,区域外轮廓即为对象边界⽅法基于边缘的分割⽅法:先提取区域边界,再确定边界限定区域区域分割:确定每个像素归属区域,从⽽形成区域图区域⽣长:将属性接近的连通像素聚集成区域分裂-合并分割:即存在图像划分,也存在图像合并边缘检测算⼦---边缘分割法边缘定义:图像中像素灰度有阶跃变化或屋顶变化的像素的集合分类:阶跃状屋顶状特点:属于⾼频信号区域往往为闭合连线边缘检测流程滤波⇒增强⇒检测⇒定位边缘检测算⼦基本思想:计算局部微分算⼦⼀阶微分:⽤梯度算⼦进⾏运算特点:对于阶跃状变化会出现极⼤值(两侧都是正值,中间最⼤)对于屋顶状变化会过零点(两侧符号相反)不变部分为0⽤途:检测图像中边的存在注意事项:由于结果图中存在负值,因此需要处理后使⽤处理⽅法:取绝对值加最⼩值阈值法⼆阶微分:通过拉普拉斯算⼦计算特点:对于阶跃状变化会过零点(两侧符号相反)对于屋顶状变化会出现负极⼤值(两侧都是正值,中间最⼩)不变部分为0⽤途:检测图像中边的存在常⽤边缘检测算⼦Roberts 算⼦Prewitt 算⼦Sobel 算⼦Kirsch 算⼦Laplacian 算⼦Marr 算⼦交叉⽅向⼀阶锐化问题:锐化处理结果对具有矩形特征的物体的边缘提取较为有效,但是对于不规则形状的边缘提取,则存在信息上的缺损解决思想:利⽤⽆⽅向的锐化算法交叉微分算⼦交叉Roberts 算⼦公式:f ′x =|f (x +1,y +1)−f (x ,y )|f ′y =|f (x +1,y )−f (x ,y +1)|模板:f ′x =−1001,f ′y =01−1特点:算法简单,对噪声敏感,效果较梯度算⼦较好交叉Prewitt 算⼦模板:d ′x =011−101−1−10,d ′y =−1−10−101011特点:与Sobel 相⽐有⼀定抗⼲扰性,图像效果较⼲净交叉Sobel 算⼦模板:d ′x =012−101−2−10,d ′y =−2−10−101012特点:锐化的边缘信息较强kirsch 算⼦(⽅向算⼦)模板:特点在计算边缘强度的同时可以得到边缘⽅向各⽅向间的夹⾓为45°分析取其中最⼤的值作为边缘强度,与之对应的⽅向作为边缘⽅向若取最⼤值绝对值,则仅需要前四个模板即可Nevitia 算⼦[][][][][][]特点:各⽅向间的夹⾓为30°Laplacian算⼦同图像增强中的Laplacian算⼦优点:各向同性、线性和位移不变对细线和孤⽴点检测效果较好缺点对噪声敏感,有双倍加强作⽤不能检测出边缘⽅向常产⽣双像素边缘使⽤之前需要对图像进⾏平滑Marr算⼦在Laplacian算⼦基础上发展⽽来平滑函数采⽤⾼斯正态分布函数h(x,y)=e−x2+y2 2σ2σ为⽅差⽤h(x,y)对图像f(x,y)平滑克表⽰为g(x,y)=h(x,y)∗f(x,y) *代表卷积令r表⽰从原点出发的径向距离,即r2=x2+y2利⽤⾼斯-拉普拉斯滤波器(LOG滤波器)▽2h=(r2−2σ2σ4)e−r22σ2即可利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置在该算⼦中σ越⼩边缘位置精度越⾼,边缘细节变化越多;σ越⼤平滑作⽤越⼤,但是细节损失越⼤,边缘点定位精度越低过程1. 通过⼆维⾼斯函数对图像进⾏卷积降噪2. ⽤⼆阶导数差分算⼦计算图像强度的⼆阶导数3. 利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置优点:能快速得到⼀个闭合的轮廓缺点:对噪声敏感Canny边缘检测算⼦最优边缘检测算⼦应有的指标低误判率⾼定位精度抑制虚假边缘过程:1. 计算图像梯度2. 梯度⾮极⼤值抑制3. 双阈值提取边缘点计算图像梯度⾼斯函数的⼀阶导数模板:−11−11,−1−111⾮极⼤值抑制 NMS思想:梯度幅值图像M(x,y),仅保留梯度⽅向上的极⼤值点过程初始化N(x,y)=M(x,y)对每⼀点在梯度⽅向和反梯度⽅向各找n 个点,若M(x,y)⾮最⼤值,则置零,否则保持不变对NMS 结果⼆值化(双阈值提取边缘点)使⽤两个阈值T 1,T 2:T 2>>T 1由T 1得到E 1(x ,y ),低阈值边缘图:更⼤的误检率由T 2得到E 2(x ,y ),⾼阈值边缘图:更可靠边缘连接初始化E (x ,y )=E 2(x ,y )对E (x ,y )中的每个点在E 1(x ,y )中寻找延长部分进⾏连接输出E (x ,y )Canny 边缘检测算⼦步骤1. ⾼斯滤波器平滑2. ⼀阶偏导计算梯度幅值与⽅向3. 对梯度幅值进⾏⾮极⼤值抑制4. 双阈值算法检测连接边缘Canny 边缘检测算⼦优点参数较⼩计算效率⾼得到边缘连续完整双阈值选择T Low =T HIGH ∗0.4曲⾯拟合法出发点:基于差分检测图像边缘的算⼦往往对噪声敏感四点拟合灰度表⾯法⽤⼀平⾯p (x ,y )=ax +by +c 来拟合四邻域像素灰度值定义均⽅差为ε=∑[p (x ,y )−f (x ,y )]2模板a =12−1−111,b =12−11−11特点:先平均后求差分,对噪声由抑制作⽤边缘跟踪出发点:噪声边检测需要归整边缘像素概念:将检测的边缘点连接成线过程:边缘提取连接成线⽅法光栅扫描跟踪法全向跟踪法光栅扫描跟踪法概念:采⽤电视光栅⾏扫描顺序,结合门限检测,对遇到的像素进⾏分析并确定其是否是边缘的跟踪⽅法具体步骤:[][][][]确定检测阈值d(较⾼)超过d的点作为对象点确定跟踪阈值t(较低)确定跟踪邻域扫描下⼀⾏,跟踪邻域内灰度差⼩于t的,接受为对象点若没有对象点,则该曲线跟踪结束重新从下⼀⾏开始利⽤d寻找对象点并进⾏跟踪扫描结束后跟踪结束特征可以不是灰度级跟踪准则根据具体问题灵活运⽤最好再进⾏⼀次其他⽅向的跟踪全向跟踪Hough变化检测法问题:如何连接边界点集基本思想利⽤xoy直⾓坐标系直线y=ax+b,待求极坐标系内点(ρ,θ),已知求点到线的变化ρ=xcosθ+ysinθ原理:过每个点的直线系分别对应极坐标系上的⼀条正弦曲线,如正弦曲线存在共同交点(ρ′,θ′),则必定在平⾯上共线实现:使⽤交点累积器或直⽅图,寻找相交线段最多的参数空间的点,再寻找对应的直线线段特点:对ρ、θ量化过粗会导致直线参数不精确,过细会导致计算量增加获得直线抗噪能⼒强可以⽤来检测直线阈值分割法基本思想:通过阈值T⽣成⼆值图,在四邻域中有背景的像素就是边界像素特点:适⽤于物体与背景有强对⽐的情况下,且物体或背景的灰度较单⼀可以先求背景再求物体可以得到封闭且连通区域的边界通过交互获得阈值通过直⽅图得到阈值基本思想:边界上的点灰度值出现次数较少⽅法:选取直⽅图⾕底的最⼩灰度值作为阈值缺点:会受到噪声⼲扰改进:取两个峰值之间的某个固定位置降噪简单图像的阈值分割判断分析法最佳熵⾃动阈值法复杂图像的阈值分割步骤⾃动平滑直⽅图确定区域类数⾃动搜索多个阈值特征空间聚类k均值聚类步骤任意选取K个初始聚类中⼼值使⽤最⼩距离判别,将新读⼊的像素分⾄K类重新计算中⼼值,等于⼀类元素的平均值重新聚类直⾄新旧差异不⼤区域增长通过像素集合的区域增长实现:根据应⽤选取种⼦选择描述符种⼦根据描述符扩张直⾄没有新的节点加⼊集合简单区域扩张法以未划分点与起点灰度差⼩于阈值T作为描述符优缺点:1. 不好确定阈值2. ⽆法分割缓慢变化边界质⼼区域增长法以未划分点与区域平均灰度值差⼩于阈值T作为描述符分裂合并法实现:1. 对于灰度级不同的区域划分为四个⼦区域2. 若相邻⼦区域所有像素灰度级相同,则合并3. 反复进⾏直⾄不再进⾏新的分裂合并操作Processing math: 100%。
数字图像处理中的图像分割技术及其应用
数字图像处理中的图像分割技术及其应用摘要:在现代技术支持下,数字图像处理技术被应用到各行业领域,其中以图像分割技术为代表性技术,可通过数字处理底层技术,能够准确识别不同模式。
此次研究主要是探讨分析数字图像处理中的图像分割技术及其应用,希望能够对相关人员起到参考性价值。
关键词:数字图像处理;图像分割技术;技术应用数据图像处理中包含大量新兴技术,其中最具有代表性的就是图像分割技术。
图像分割的方法比较多,该种分割主要是应用不同区域之间的像素灰度呈现出不连续特点对区域间边缘进行检测,这样就能够进行图像分割。
按照边缘检测的不同方式可以将其分为并行边缘检测和串行边缘检测方式等。
在边缘检测中,包含并行边缘检测法和串行边缘检测法。
其中前者可以判断像素点是否为边缘点,与此同时能够在每个像素点上进行检测,这样可以在较大程度上提升检测效率。
并行检测方法主要Kirsh算子边缘检测,Wills算子以及Roberts梯度算子。
,在图像当中图像边缘呈现出不连续灰度,因此提升了检测难度,然而该种检测方式在图像检测当中意义重大,因此需要工程人员加大对该种检测方式的研究与分析。
后者主要是对边缘起始点进行检测,之后按照相似性原则对寻找张前一点相似的边缘点,该种确定方式被称为跟踪法。
按照不同的跟踪方法能够将该种检测方式分为全向跟踪,光栅跟踪以及轮廓跟踪等。
本文主要是阐述图像分割技术方法与分类应用,全面发挥出图像处理的价值和作用。
1、图像分割数与分类1.1图像分割技术概述图像背景主要为图像感兴趣部分所对应的区域,为了对图像背景进行准确识别,将从图像中分离目标,这就属于图像分割技术的相关研究。
图像分割技术能够将数字图像划分为不重叠区域,且不同区域之间不存在交叉现象。
当前,图像分割技术的实践应用广泛。
1.2图像分割技术分类针对图像分割技术来说,缺乏统一的标准限定,也没有详细划分分割成功标准。
当前所常用的分割方法及描述方法如下:第一,灰度阈值法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验七图像分割
课程名称:数字图像处理技术实验日期:2016-12-01 成绩:
班级:数媒1401 姓名:许文彬学号:1030514126
一、实验目的
1.了解图像分割的基本操作;
2. 实现图像的阈值分割、区域生长。
3.掌握图像膨胀、腐蚀、开运算、闭运算等形态学操作函数的使用方法;
4. 实现二值图像的形态学应用。
二、实验内容
1. 在GUI中,实现图像的阈值分割(交互式、迭代法),区域生长。
2. 在GUI中,实现二值图像的膨胀、腐蚀,比较'结构元素类型为:square,line,diamond,
disk等的区别。
3. 在GUI中,实现二值图像的开运算、闭运算。
4. 在GUI中,实现二值图像的形态学应用:
边界抽取(boundary extraction)
区域填充(region filling)
细化(thinning)
粗化(thickening)
骨架(skeletons)
修剪(pruning)
三、实验代码
1.阈值分割(交互法)
function ST=ST_interaction( I,T ) I=rgb2gray(I);
[width,height]=size(I);
for i=1:width
for j=1:height
if(I(i,j)<T)
ST(i,j)=0;
else
ST(i,j)=1;
end
end
end
ST=im2bw(ST);
2.阈值分割(迭代法)function ST = ST_iteration( I ) f=double(rgb2gray(I));
T=(min(f(:))+max(f(:)))/2;
done=false;
i=0;
while ~done
r1=find(f<=T);
r2=find(f>T);
Tnew=(mean(f(r1))+mean(f(r2)))/2 ;
done=abs(Tnew-T)<1;
T=Tnew;
i=i+1;
end
f(r1)=0;
f(r2)=1;
ST=im2bw(f);
End
3.区域生长
function RG = RG( I ) I=rgb2gray(I);
if isinteger(I)
I=im2double(I); end
[M,N]=size(I);
[y,x]=getpts;
x1=round(x);
y1=round(y);
seed=I(x1,y1);
RG=zeros(M,N);
RG(x1,y1)=1;
sum=seed;
suit=1;
count=1;
threshold=0.15;
while count>0
s=0;
count=0;
for i=1:M
for j=1:N
if RG(i,j)==1
if (i-1)>0 &&
(i+1)<(M+1) && (j-1)>0 &&
(j+1)<(N+1)
for u=-1:1
for v=-1:1
if
RG(i+u,j+v)==0 &&
abs(I(i+u,j+v)-seed)<=threshold &&
1/(1+1/15*abs(I(i+u,j+v)-seed))> 0.8
RG(i+u,j+v)=1;
count=count+1;
s=s+I(i+u,j+v);
End end end end end end end
suit=suit+count;
sum=sum+s;
seed=sum/suit;
end
RG=im2bw(RG);
end
四、实验结果截图
五、实验体会(略)。