图像分割技术的研究背景及意义

合集下载

基于多尺度和多模态特征的医学图像分割方法

基于多尺度和多模态特征的医学图像分割方法

基于多尺度和多模态特征的医学图像分割方法摘要:医学图像分割是医学影像处理中的重要任务,旨在将医学图像中的不同组织或病变区域准确地分离出来。

近年来,随着图像处理技术的快速发展,基于多尺度和多模态特征的医学图像分割方法受到了广泛关注。

本文将介绍该方法的基本原理、关键技术及其在医学影像领域中的应用。

第一章引言1.1 研究背景及意义医学图像是迅速发展的医学影像学领域的重要产物。

在临床诊断、疾病分析、手术导航等方面都起着重要作用。

然而,医学图像中的组织和病变区域往往具有复杂多样性,这给医学图像分割带来了巨大挑战。

1.2 研究目的和方法本研究旨在提出一种基于多尺度和多模态特征的医学图像分割方法,通过综合不同尺度和不同模态的特征信息,实现对医学图像中组织和病变区域的准确分割。

具体方法包括特征提取、特征融合和分割算法设计等。

第二章相关技术2.1 医学图像分割方法综述本章对当前常用的医学图像分割方法进行综述,包括基于阈值、基于边缘检测、基于区域生长等方法。

同时,分析这些方法的优缺点,并指出其在复杂医学图像分割中存在的不足。

2.2 特征提取技术特征提取是医学图像分割的关键步骤,能否提取到鲁棒且具有区分度的特征对最终的分割结果有重要影响。

本节将介绍常用的特征提取方法,如灰度共生矩阵、速度不变特征等,以及其在医学图像分割中的应用。

第三章多尺度特征融合方法3.1 多尺度特征的意义和特点多尺度特征是指不同尺度下的图像局部特征,具有从宏观到微观的逐渐细化的特性。

本节将探讨多尺度特征对医学图像分割的重要性,并分析多尺度特征的特点。

3.2 多尺度融合方法针对医学图像分割中存在的尺度不一致问题,本节介绍了常见的多尺度融合方法,包括金字塔结构、多尺度滤波器组合等方法,并详细讨论其在医学图像分割中的应用效果。

第四章多模态特征融合方法4.1 多模态特征的意义和特点多模态特征是指不同影像模态(如CT、MRI等)所提取的特征信息,具有互补性和增强性。

图像分割 实验报告

图像分割 实验报告

图像分割实验报告《图像分割实验报告》摘要:图像分割是计算机视觉领域的重要研究方向,它在许多领域都有着重要的应用价值。

本实验旨在探究图像分割算法在不同场景下的表现,并对比不同算法的优缺点,为图像分割技术的进一步发展提供参考。

一、实验背景图像分割是指将图像划分成若干个具有独立语义的区域的过程。

图像分割技术在医学影像分析、自动驾驶、图像识别等领域都有着广泛的应用。

因此,对图像分割算法的研究和优化具有重要意义。

二、实验目的本实验旨在通过对比不同图像分割算法在不同场景下的表现,探究其优劣,并为图像分割技术的进一步发展提供参考。

三、实验内容1. 数据准备:收集不同场景下的图像数据,包括自然景观、医学影像、交通场景等。

2. 算法选择:选择常用的图像分割算法,如基于阈值的分割、边缘检测、区域生长等。

3. 实验设计:将不同算法应用于不同场景的图像数据上,对比它们的分割效果和计算速度。

4. 结果分析:对比不同算法的优缺点,并分析其适用场景和改进空间。

四、实验结果通过实验我们发现,在自然景观图像中,基于阈值的分割算法表现较好,能够有效地将图像分割成不同的颜色区域;而在医学影像中,边缘检测算法表现更为出色,能够准确地识别出器官的边缘;在交通场景中,区域生长算法表现较好,能够有效地区分不同的交通标志和车辆。

五、结论不同的图像分割算法在不同场景下有着不同的表现,没有一种算法能够适用于所有场景。

因此,我们需要根据具体的应用场景选择合适的图像分割算法,或者结合多种算法进行优化,以达到更好的分割效果。

六、展望未来,我们将继续探究图像分割算法的优化和改进,以适应不同场景下的需求。

同时,我们还将研究图像分割算法在深度学习和人工智能领域的应用,为图像分割技术的发展贡献力量。

通过本次实验,我们对图像分割算法有了更深入的了解,也为其在实际应用中的选择提供了一定的指导。

希望我们的研究能够为图像分割技术的发展做出一定的贡献。

医学图像处理中的分割技术研究与应用

医学图像处理中的分割技术研究与应用

医学图像处理中的分割技术研究与应用一、概述医学图像处理是医学影像学领域的重要组成部分,它的基本任务是对从医学影像中获取的图像信息进行分析、处理和识别。

其中医学图像分割技术是医学影像分析中的重要分支,它可以将医学图像中的不同结构或组织分离出来,并形成具有特定标记的区域,从而为医学诊断和治疗提供有力支持。

本文将围绕医学图像处理中的分割技术展开讨论,探讨其研究现状、技术原理、算法优劣以及在实际应用中的案例。

二、研究现状目前,医学图像分割技术主要用于医学影像诊断、手术规划、肿瘤治疗等领域。

其中,肿瘤分割是应用较为广泛的领域之一,通过对医学影像中的肿瘤组织进行划分,可以实现肿瘤的量化分析和精确定位,为医生的治疗方案提供依据。

近年来,随着深度学习技术的发展,深度卷积神经网络(CNN)等模型在医学图像分割中得到越来越广泛的应用。

以CNN为代表的深度学习模型可以通过学习医学图像中显著特征,提高图像分割的精确性和效率。

此外,基于超像素的分割算法、区域生长算法、阈值分割算法等传统的分割方法仍然是研究的热点和难点之一。

三、技术原理医学图像的分割是指将医学图像中不同区域或组织进行分离的过程。

其技术核心是对数据的自动或半自动化分割,基于图像强度、空间信息等特性进行分析,将图像划分为各个独立的、有意义的区域。

医学图像的分割技术核心包括以下方面:1.特征提取:医学影像中蕴含的结构、材质以及其它一些信息可以通过特征提取的方式转化为数值或向量形式,这些特征在分割过程中被用作数据的表征。

2.分割算法:分割算法可以根据特定的规则,将提取到的特征进行分类和分割,不同算法的优劣决定了分割的精确度和操作效率。

3.评价指标:用于评估分割结果的准确性,如划分出的区域是否正确、与实际结果之间的误差、操作所需时间和计算复杂度等。

四、常见算法1.基于阈值的分割算法:其原理是设定一个阈值,将图像中灰度值大于该阈值的像素视为目标像素,否则视为背景像素。

细胞图像分割与分析技术在生物医学中的应用

细胞图像分割与分析技术在生物医学中的应用

细胞图像分割与分析技术在生物医学中的应用细胞图像分割与分析技术是利用计算机视觉和图像处理技术对生物医学图像中的细胞进行自动或半自动的分割和定量分析的一种方法。

这一技术在生物医学领域具有广阔的应用前景,可以为疾病的诊断、药物研发以及基础生物学研究提供精准、高效的非侵入性方法。

一、细胞图像分割技术的意义和方法细胞图像分割是指将生物医学图像中的细胞区域从图像背景中准确地分离出来。

传统的细胞图像分割方法主要基于基于阈值和边缘检测等简单的图像处理技术,但在复杂的细胞图像情况下的分割效果往往不佳。

随着深度学习的快速发展,基于卷积神经网络 (Convolutional Neural Networks, CNN) 的细胞图像分割方法取得了重大突破。

通过训练具有大量标记的细胞图像数据,CNN可以自动学习到细胞的特征,并实现准确的细胞分割。

二、细胞图像分割在疾病诊断中的应用细胞图像分割与分析技术在疾病诊断中具有重要的应用价值。

举例来说,癌症的早期诊断对于提高治愈率至关重要。

利用细胞图像分割技术,医生可以准确地检测和分析患者体内的肿瘤细胞情况,判断其是否属于恶性肿瘤,并确定病变的发展程度和大小。

此外,细胞图像分割与分析技术还可以应用于血液病的诊断,通过对血液中细胞的形态学特征进行分析,可以帮助医生判断是否存在异常细胞,并提前发现潜在的疾病风险。

三、细胞图像分割在药物研发中的应用细胞图像分割与分析技术对于药物研发过程也具有重要的帮助作用。

在药物筛选和毒理学评价中,通过对细胞的图像分割和定量分析,可以快速、准确地评估药物的毒性和药效。

这种非侵入性的方法不仅能够节省时间和资源,还能够提供更为客观的结果,为药物研发过程提供科学依据。

此外,细胞图像分割与分析技术还可以帮助研究人员观察药物对细胞表达、增殖和凋亡等生理过程的影响,为药物的研发提供重要参考。

四、细胞图像分析在基础生物学研究中的应用细胞图像分割与分析技术的发展也为基础生物学研究提供了新的坚实基础。

医学影像中的图像分割技术研究

医学影像中的图像分割技术研究

医学影像中的图像分割技术研究一、背景介绍随着医学成像技术不断的发展,医学影像在临床医疗领域已经成为了不可或缺的一部分。

然而,海量的医学影像数据对临床医生和医学研究工作者的影像学分析提出了新的挑战。

一项重要的任务是医学影像中的图像分割,即将一张医学影像图像分为若干不同的区域以帮助临床医生和研究人员更好地理解该区域的构造和特性。

基于这一任务,许多图像分割技术得到了广泛的研究和应用。

二、医学影像中的图像分割技术1. 基于阈值的图像分割技术基于阈值的图像分割技术是一种快速、简单的图像分割方法,广泛应用于医学影像中。

基本原理是将像素值高于或低于预先定义的阈值的像素分为两个部分,从而实现图像的分割。

但此方法在面对医学影像中复杂结构的图像时,分割效果很可能出现错误。

2. 基于边缘检测的图像分割技术基于边缘检测的图像分割技术是利用边缘信息对图像进行分割的方法,主要分两步进行。

首先,对图像进行边缘检测,提取边缘信息。

然后,利用这些边缘信息将图像分割为不同的部分。

但这种方法对图像中噪声的敏感度很高,同时对于一些形状较为复杂的结构分割效果也较差。

3. 基于区域生长的图像分割技术基于区域生长的图像分割技术是一种运用种子点的方法将图像分为不同的区域。

基本原理是从种子点开始,对相邻像素点的灰度值进行比较,将符合条件的像素点归为同一区域,直到所有符合条件的像素点都被归为同一区域。

该方法能够有效处理复杂的图像结构,并且对噪声的抗干扰能力较强。

4. 基于图论的图像分割技术基于图论的图像分割技术将像素看作图中的节点,在节点之间建立连接关系。

在分割过程中,将节点之间的连线权值看作像素之间的相似性,将图像分为不同的区域。

该方法可以很好的解决医学影像中复杂结构分割问题,但其计算复杂度较大,分割速度比较慢。

三、总结医学影像中的图像分割技术在临床医学中具有重要的应用价值。

但由于医学影像的复杂性,不同的图像分割方法都存在自己的优缺点。

因此,在实际应用过程中,需要结合具体的医学影像特点选择合适的图像分割方法,并进行不断地优化和改进,以达到更好的分割效果。

医学图像分割的意义、概念、分类和研究现状

医学图像分割的意义、概念、分类和研究现状

第1章绪论1.1 引言当今社会,是知识经济的社会,高新科技飞速发展。

入们在迅速发展新科技的同时,也越来越关注自身的生活环境与医疗条件。

健康,越来越成为每一个入倾心关注和孜孜追求的意境。

然焉,群学技术是一把双刃剑,它带给人们得到的同时也在破坏着我们赖以生存的环境,从而严重威害人类的健康。

堪愧的环境,沉重的压力以及激烈的竞争,都侵入们的健康走入低餐,从而健康成为全人类共同关注的目标。

因此医学的发展面临严重的挑战,作为医生诊断和治疗重要手段的医学影像学也得到了相应的发展。

现今,医学图像在医疗诊断中起着不可低估的重要作用。

计算机断层扫描、核磁共振(Magnetic Resonance,MR)、超声(Ultras叫nd)以及其它成像技术等,都是无侵害性的器宫体外成像的有力手段。

但是,医学图像还有一个显著的特点,由于受成像设备的影响、局部体效应(同一个体素中包含多种组织)、患者的体位运动和检查床的匀速直线运动,使得医学图像不可避免地盘现噪声和伪影,边缘模糊和信号强度不均匀现缓,例如信号强度在同一种组织中会出现大幅度的变化或在同一个物体中也不均匀。

此外,在图像形成和传输的过程中,图像的像质也会受到一定的影响,这些都给医生下达准确的诊断造成了一定的障碍。

为了提高医学图像的可读性,使得医生可以对人体的解割结构以及病变部位进行更有效的观察和诊断,提离诊断的准确率,医学图像处理从而成为了一门应用性很强的学科而且得到了长足的发展。

1.2 医学图像分割的意义、分类及其研究现状1.2.1 医学图像分割的意义医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛的应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。

如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。

彩色遥感图像分割算法研究的开题报告

彩色遥感图像分割算法研究的开题报告

彩色遥感图像分割算法研究的开题报告一、研究背景与意义随着遥感技术的发展,遥感图像已经成为重要的地理信息来源之一。

而遥感图像分割则是遥感图像处理领域中的一个重要问题。

彩色遥感图像分割可以将图像分成不同的区域,并对这些区域进行分类。

这种技术已经被广泛应用于农业、城市规划、地质勘探等领域。

因此,研究彩色遥感图像分割算法具有重要的理论和实际意义。

二、研究内容通过对彩色遥感图像分割算法的研究,将针对算法的理论和方法进行深入探讨,并对算法的有效性和实用性进行实验验证。

具体研究内容包括以下几个方面:(1)彩色遥感图像分割的概念、流程及分类介绍彩色遥感图像分割的基本概念,分割的流程以及分类方法,以便系统了解分割算法的内部机制和实现过程。

(2)基于经典方法的彩色遥感图像分割算法研究研究经典的彩色遥感图像分割算法,如K-Means算法、FCM算法、Mean Shift 算法、随机森林算法等的原理、优劣势以及改进方法,并进行实验验证。

(3)基于深度学习的彩色遥感图像分割算法研究研究基于深度学习的彩色遥感图像分割算法,如U-Net、SegNet、FCN等算法的实现原理、评价标准以及实现过程,并进行实验验证。

(4)彩色遥感图像分割算法的应用在农业、城市规划、地质勘探等领域中,采用所研究的彩色遥感图像算法进行分割,并对其结果进行评价。

三、研究方法本研究将采用理论研究与实验研究相结合的方法进行。

通过对彩色遥感图像分割算法的理论分析和实验验证,比较分析算法的优缺点,选出更适用于彩色遥感图像分割的算法。

四、预期成果与意义通过本研究,预计可以得到以下成果和意义:(1)对彩色遥感图像分割算法的现有方法进行总结和比较,找出最优的分割方法。

(2)建立适用于不同领域的彩色遥感图像分割算法,推广其应用。

(3)为农业、城市规划、地质勘探等各个领域的遥感图像分析提供更有效、高质量的数据支持,对社会发展具有重要意义。

(4)本研究对提高我国遥感图像处理领域的技术水平有着积极的推动作用,为科技创新和国家经济建设做出贡献。

图像分割技术研究综述

图像分割技术研究综述

图像分割技术研究综述随着科技的快速发展,图像分割技术作为计算机视觉领域的重要分支,已经在众多应用领域中发挥着越来越重要的作用。

本文将对图像分割技术的研究进行综述,包括其发展历程、应用领域、研究成果以及未来研究方向。

图像分割技术是指将图像按照像素或区域进行划分,从而提取出感兴趣的目标或背景的过程。

图像分割技术在信号处理、计算机视觉、机器学习等领域具有重要的应用价值。

例如,在智能交通中,图像分割技术可以用于车辆检测和跟踪;在医学图像分析中,图像分割技术可以用于病灶区域提取和诊断。

根据图像分割技术所采用的方法,可以将其大致分为以下几类:基于阈值的分割、基于区域的分割、基于边缘的分割、基于模型的分割以及基于深度学习的分割。

1、基于阈值的分割是一种简单而又常用的图像分割方法,其基本原理是通过设定一个阈值,将图像的像素值进行分类,从而将图像分割为不同的区域。

基于阈值的分割方法实现简单、运算效率高,但在处理复杂图像时,往往难以选择合适的阈值,导致分割效果不理想。

2、基于区域的分割方法是根据图像像素的灰度或颜色特征,将图像分割为不同的区域。

这类方法通常适用于均匀背景和简单目标的图像,但对于复杂背景和遮挡情况的处理效果较差。

3、基于边缘的分割方法是通过检测图像中的边缘信息,将不同区域之间的边界提取出来,从而实现图像分割。

这类方法对噪声和光照变化较为敏感,需要结合其他方法进行优化。

4、基于模型的分割方法通常是利用数学模型对图像进行拟合,从而将图像中的目标或背景分离出来。

常用的模型包括参数化模型和非参数化模型两类。

这类方法能够处理复杂的图像特征,但对模型的选择和参数调整要求较高。

5、基于深度学习的分割方法是通过训练深度神经网络,实现对图像的自动分割。

这类方法具有强大的特征学习和自适应能力,能够处理各种复杂的图像特征,但在计算复杂度和训练成本方面较高。

近年来,随着人工智能和机器学习技术的快速发展,基于深度学习的图像分割技术在学术研究和实际应用中取得了显著的成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像分割技术的研究背景及意义
1概述
2图像分割技术的研究背景及意义
2.1阈值分割方法
2.2基于边缘的分割方法
2.3基于区域的分割方法
2.4 结合特定理论工具的分割方法
1概述
图像的研究和应用中,人们往往对图像中的某些部分感兴趣,这些感兴趣的部分一般对应图像中特定的、具有特殊性质的区域(可以对应单一区域,也可以对应多个区域),称之为目标或前景;而其他部分称为图像的背景。

为了辨识和分析目标,需要把目标从一幅图像中孤立出来,这就是图像分割要研究的问题。

2图像分割技术的研究背景及意义
图像分割是图像处理中的一项关键技术,也是一经典难题,发展至今仍没有找到一个通用的方法,也没有制定出判断分割算法好坏的标准,对近几年来出现的图像分割方法作了较为全面的综述,探讨了图像分割技术的发展方向,对从事图像处理研究的科研人员具有一定的启发作用。

图像分割是图像分析的第一步,图像分割接下来的任务,如特征提取、目标识别等的好坏,都取决于图像分割的质量如何。

由于该课题的难度和深度,进展比较缓慢。

图像分割技术自20世纪70年代起一直受到人们的高度重视,虽然研究人员针对各种问题提出了许多方法,但迄今为止仍然不存在一个普遍适用的理论和方法。

另外,还没有制定出选择适用分割算法的标准,这给图像分割技术的应用带来许多实际问题。

最近几年又出现了许多新思路、新方法或改进算法,对一些经典方法和新出现的方法作了概述,并将图像分割方法分为阈值分割方法、边缘检测方法、区域提取方法和结合特定理论工具的分割方法4类。

2.1阈值分割方法
阈值分割方法的历史可追溯到近40前,现已提出了大量算法。

阈值分割法就是简单的用一个或几个阈值将图像的直方图分成几类,图象中灰度值在同一个灰度类内的像素属于同一个类。

它是一种PR法。

其过程是决定一个灰度值,用以区分不同的类,这个灰度值就叫阈值。

它可以分为全局阈值分割和局部阈值分割。

所谓全局阈值分割是利用整幅图像的信息来得到分割用的阈值,并根据该阈值对整幅图像进行分割;而局部阈值分割是根据图像中的不同区域获得对应的不同区域的阈值,利用这些阈值对各个区域进行分割,即一个阈值对应一个相应的子区域,这种方法也叫称为适应阈值分割。

可以看出,确定一个最优阈值是分割的关键。

现有的大部分算法都是集中在阈值确定的研究上。

阈值分割方法根据分割算法所有的特征或准则,还可以分为直方图与直方图变换法、最大类空间方差法、最小误差法与均匀化误差法、共生矩阵法、最大熵法、简单统计法与局部特性法、概率松驰法、模糊集法、特征空间聚类法、基于过渡区的阈值选取法等。

目前提出了许多新方法,如严学强等人提出了基于量化直方图的最大熵阈值处理算法,将直方图量化后采用最大熵阈值处理算法,使计算量大大减小。

薛景浩、章毓晋等人提出基于最大类间后验交叉熵的阈值化分割算法,从目标和背景的类间差异性出发,利用贝叶斯公式估计象素属于目标和背景两类区域的后验概率,再搜索这两类区域后验概率之间的最大交叉熵。

这种方法结合了基于最小交叉熵以及基于传统香农熵的阈值化算法的特点和分割性能,取得很好的通用性和有效性,该算法也容易实现二维推广,即采用二维统计量(如散射图或共生矩阵)取代直方图,以提高分割的准确性。

俞勇等人提出的基于最小能量的图像分割方法,运用了能量直方图来选取分割阈值。

任明武等人提出的一种基于边缘模式的直方图构造新方法,使分割阈值受噪声和边缘的影响减少到最小。

程杰提出的一种基于直方图的分割方法,该方法对Ostu准则的内在缺陷进行了改进,并运用对直方图的预处理及轮廓追踪,找出了最佳分割阈值。

此方法对红外图像有很强的针对性,付忠良提出的基于图像差距度量的阈值选取方法,多次导出Ostu方法,得到了几种与Ostu类似的简单计算公式,使该方法特别适合需自动产生阈值的实时图像分析系统。

陈向东、常文森等人提出了基于小波变换的图像分数维计算方法,利用小波变换计算图像的分数维准确性高的特性。

结果表明计算出的图像分数维准确,而且通过应用快速小波变换可以满足实时计算的要求,为实时场景分析提供有效的方法。

建立在积分几何和随机集论基础之上的数学形态学以其一整套变换、概念和算法为数学工具,提供了并行的、具有鲁棒性的图像分割技述。

它不仅能得到图像中各种几何参数的间接测量,反映图像的体视特性,而
且还能描述图像的随机性质。

所有的这些算法不管采取什么方法,结合什么工具,基本思想是一致的,就是为了寻求最佳阈值。

阈值法是一种简单但是非常有效的方法,特别是不同物体或结构之间有很大的强度对比时,能够得到很好的效果。

它一般可以作为一系列图像处理过程的第一步。

它一般要求在直方图上能得到明显的峰或谷,并在谷底选择阈值。

它的主要局限是,最简单形式的阈值法只能产生二值图像来区分两个不同的类。

另外,它只考虑像素本身的值,一般都不考虑图像的空间特性,这样就对噪声很敏感,它也没有考虑图像的纹理信息等有用信息,是分割结果有时不能尽如人意。

2.2基于边缘的分割方法
边缘检测法是基于图像不连续性的分割技术。

由于一副图像的大部分信息存在于不同区域的边缘上,而且人的视觉系统在很大程度上根据边缘差异对图像进行认识分析。

所以可以通过检测图像的边缘信息来实现对图像的分割。

它按照处理技术可以分为串行边缘检测技术和并行边缘检测技术。

并行边缘检测方法是利用图像一阶导数的极值或二阶导数的过零点信息来提供判断边缘点的基本依据,经典的边缘检测方法[4]是构造对图像灰度阶跃变化敏感的差分算子来进行图像分割,如Robort算子、Sobel算子、Laplacian算子、Prewitt算子等。

在有噪声时,用各种算子得到的边缘像素常是孤立的或分小段连续的,为了得到完整的边缘信息,还需进行边界闭合处理。

边界闭合可以根据梯度实现,即如果某些像素的梯度的幅度和梯度方向满足规定的条件就可以把这些像素连接起来,如果对所有边缘像素都做这样的判断和连接就可能得到闭合的边界。

除此之外,还可以利用数学形态学的一些操作进行边界的连接和闭合。

根据检测边缘采用方式的不同,边缘检测方法大致包括以下几类:基于局部图像函数的方法、多尺度方法、图像滤波法、基于反应—扩散方程的方法、多分辨分法、基于边界曲线拟合方法、状态空间搜索法、动态规划法、边界跟踪法、哈夫变换法等。

如宋焕生等人提出了多尺度脊边缘方法,该方法利用Mallat算法,对图像进行二进度小波分解,然后计算出在二进尺度空间的多尺度脊边缘及强度,最后通过脊边缘跟踪、滤波和小波反变换,得到分割结果。

张静等人提出了行扫描空间带通滤波法,是在总结前人理论和实验结果的基础上提出的一种边缘提取新方法,对电视图像的自动跟踪识别有很好的效果。

杨恒等人提出了基于图像信息测度.(EIM)的多尺度边缘检测方法,该方法利用EIM能自适应地调整多尺度边缘检测中的滤波度参数,克服了传统图像信息定义的缺陷,使该方法具有较好的抗噪声和检测结果。

2.3基于区域的分割方法
区域分割的实质就是把具有某种相似性质的像素连通起来,从而构成最终的分割区域。

它利用了图像的局部空间信息,可有效的克服其它方法存在的图像分割空间不连续的缺点,但它通常会造成图像的过度分割。

在此类方法中,如果从全图出发,按区域属性特征一致的准则,决定每个像元的区域归属,形成区域图,这常称之为区域生长的分割方法;如果从像元出发,按区域属性特征一致的准则,将属性接近的连通像元聚集为区域是区域增长的分割方法;若综合利用上述两种方法,就是分裂—合并的方法。

区域生长法的基本思想是将具有相似性质的象素合起来构成区域,具体做法是选给定图像中要分割的目标物体内的一个小块或者说种子区域,再在种子区域的基础上不断将其周围的象素点以一定的规则加入其中,达到最终将代表该物体的所有象素点结合成一个区域的目的,该方法的关键是要选择合适的生长或相似准则。

生长准则一般可分为 3 种:基于区域灰度差准则、基于区域内灰度分布统计性质准则和基于区域形状准则。

分裂合并法是先将图像分割成很多的一致性较强的小区域,再按一定的规则将小区域融合成大区域,达到分割图像的目的。

最近出现了很多新方法,如王广君等人提出的基于四叉树结构的图像分割方法,将区域增长和人工智能结合起来,使分割速度大大提高,算法同时能得到图像目标大小、目标灰度、目标个数、目标边界等,该方法对多目标图像分割有更好的适应性。

刘宁宁等提出的基于代理机模型的交互式图像分割方法,代理机是完成特定功能的模块,通过控制界面和汇报界面实现与操作者的交互,该方法特别适合医学图像分割。

钱晓峰等人提出的一种逆时针追踪轮廓线的彩色图像区域分割算法,其基本思想是按逆时针顺序追踪轮廓线,在追踪过程中避免了象素点的行政管理判断,采用回溯搜索解决奇点问题,从而保证追踪过程的连续性和正确性。

屈彬、王景熙提出了基于区域生长规则的快速边缘跟踪算法,克服传统的区域生长算法比较大的时间复杂度和空间复杂度,把传统区域生长算法中对整个目标区域像素的处理转化为对目标边缘像素的处理,在获得和区域生长算法相同的结果的前提下,大大降低了算法的时间复杂度和空间复杂度。

王楠等人提出的一种改进的彩色图像区域分割方法,充分利用彩色图像的颜色信息,采用灰图像和彩色信息分别处理的方法,根据图像具体的彩色信息进行了自适应分割。

2.4 结合特定理论工具的分割方法
图像分割至今为止尚无通用的自身理论。

近年来,随着各学科许多新理论和。

相关文档
最新文档