图像分割技术研究

合集下载

医学图像配准与分割方法研究与实践

医学图像配准与分割方法研究与实践

医学图像配准与分割方法研究与实践医学图像配准与分割是医学影像处理中的两个重要任务,可以帮助医生更准确地诊断和治疗疾病。

图像配准旨在将多个医学图像对齐,使得它们在空间上或时间上完全或部分重叠。

而图像分割则是将医学图像中的组织、器官或异常区域进行分离和区分。

本文将介绍医学图像配准和分割的一些常见方法,并探讨其在实际应用中的研究与实践。

一、医学图像配准方法研究与实践医学图像配准是通过将多个医学图像进行准确对齐,实现多图像之间的一致性。

在医学影像处理中,常见的配准方法包括基于特征的方法和基于相似度度量的方法。

1. 基于特征的方法基于特征的配准方法通过提取图像中的特征点或特征区域来进行图像匹配。

其中,最常见的特征包括角点、边缘、纹理等。

常用的算法包括SIFT(尺度不变特征变换)、SURF(加速稳健特征)和ORB(旋转不变特征)等。

这些方法通过对特征点的检测、描述和匹配来实现图像配准。

在实践中,基于特征的方法往往具有较好的配准效果和鲁棒性。

2. 基于相似度度量的方法基于相似度度量的配准方法通过计算图像间的相似度来进行匹配。

常用的相似度度量指标包括互信息、相关系数和互相关等。

这些方法通过优化相似度度量指标来寻找最优的变换参数,从而实现图像的配准。

在实践应用中,基于相似度度量的方法通常能够得到较好的配准结果,并且具有较高的计算效率。

二、医学图像分割方法研究与实践医学图像分割是将医学图像中的组织、器官或异常区域进行分离和区分的过程。

常见的医学图像分割方法包括基于阈值的方法、基于边缘的方法和基于区域的方法。

1. 基于阈值的方法基于阈值的分割方法是最简单也是最直观的方法之一。

它通过选取适当的阈值来将图像进行二值化,将感兴趣的组织或区域与背景进行区分。

常见的阈值分割方法有全局阈值法、自适应阈值法和区域生长法等。

尽管基于阈值的方法简单易用,但对于复杂图像和噪声较多的情况下,效果不佳。

2. 基于边缘的方法基于边缘的分割方法通过检测图像中的边缘信息进行分割。

医学图像分割的意义、概念、分类和研究现状

医学图像分割的意义、概念、分类和研究现状

第1章绪论1.1 引言当今社会,是知识经济的社会,高新科技飞速发展。

入们在迅速发展新科技的同时,也越来越关注自身的生活环境与医疗条件。

健康,越来越成为每一个入倾心关注和孜孜追求的意境。

然焉,群学技术是一把双刃剑,它带给人们得到的同时也在破坏着我们赖以生存的环境,从而严重威害人类的健康。

堪愧的环境,沉重的压力以及激烈的竞争,都侵入们的健康走入低餐,从而健康成为全人类共同关注的目标。

因此医学的发展面临严重的挑战,作为医生诊断和治疗重要手段的医学影像学也得到了相应的发展。

现今,医学图像在医疗诊断中起着不可低估的重要作用。

计算机断层扫描、核磁共振(Magnetic Resonance,MR)、超声(Ultras叫nd)以及其它成像技术等,都是无侵害性的器宫体外成像的有力手段。

但是,医学图像还有一个显著的特点,由于受成像设备的影响、局部体效应(同一个体素中包含多种组织)、患者的体位运动和检查床的匀速直线运动,使得医学图像不可避免地盘现噪声和伪影,边缘模糊和信号强度不均匀现缓,例如信号强度在同一种组织中会出现大幅度的变化或在同一个物体中也不均匀。

此外,在图像形成和传输的过程中,图像的像质也会受到一定的影响,这些都给医生下达准确的诊断造成了一定的障碍。

为了提高医学图像的可读性,使得医生可以对人体的解割结构以及病变部位进行更有效的观察和诊断,提离诊断的准确率,医学图像处理从而成为了一门应用性很强的学科而且得到了长足的发展。

1.2 医学图像分割的意义、分类及其研究现状1.2.1 医学图像分割的意义医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛的应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。

如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。

图像处理中的图像分割效果评估指标研究

图像处理中的图像分割效果评估指标研究

图像处理中的图像分割效果评估指标研究图像处理领域中的图像分割是一项重要的任务,广泛应用于医学图像分析、目标检测、图像识别等领域。

在图像分割过程中,评估其效果的指标对于算法的改进和优化具有重要意义。

本文将探讨图像处理中常用的图像分割评估指标,分析其原理和适用范围。

图像分割是将图像分成具有相似性质或特征的不重叠区域的过程。

评估图像分割的效果需要一个准确而全面的指标。

以下是几个常用的图像分割效果评估指标:1. 轮廓相似度(Contour Similarity)轮廓相似度是评估分割结果与真实分割之间轮廓接近程度的指标。

它通过计算分割边界与真实边界之间的重合程度来评估分割的准确性。

轮廓相似度的计算通常使用Jaccard系数或Dice系数,它们分别是分割轮廓区域与真实轮廓区域的交集除以它们的并集。

这些系数的取值范围为0到1,越接近1表示分割效果越好。

2. 区域相似度(Region Similarity)区域相似度是评估分割结果与真实分割之间区域匹配程度的指标。

它通过计算分割区域与真实区域之间的重合程度来评估分割的准确性。

常用的区域相似度指标包括覆盖率(Recall)和准确率(Precision)。

覆盖率表示分割中正确划分的区域与真实区域的比例,准确率表示真实区域中被正确划分的区域比例。

综合考虑覆盖率和准确率的F1得分是一个常用的评价指标,其计算公式为F1 = 2 * (Precision * Recall) / (Precision + Recall)。

3. 边界误差(Boundary Error)边界误差是评估分割结果边界与真实边界之间差异程度的指标。

它可以通过计算分割边界与真实边界之间的距离进行测量。

常用的边界误差指标包括平均绝对误差(MAE)和线段对称哈尔夫距离(LSHD)。

MAE计算所有点与最近边界之间的距离的平均值,而LSHD计算最小距离点对之间的平均距离。

4. 相似性指数(Similarity Index)相似性指数是评估分割结果与真实分割之间相似程度的指标。

AFM图像分割的自适应方法实验研究

AFM图像分割的自适应方法实验研究

AFM图像分割的自适应方法实验研究AFM(Atomic Force Microscopy)是一种表征材料表面形貌,获得原子尺度的高分辨率三维图像信息的非接触扫描热力学显微镜。

AFM技术广泛应用于化学、材料学、生物学、医学等各领域的研究中。

AFM图像处理是分析AFM图像信息的重要步骤,分割是其中的一个主要步骤。

AFM图像分割是将图像中的不同部分分割成不同的区域,以便于对目标物体进行精确分析和定量化研究。

因为AFM图像的噪声较大,而且表面形貌的连续变化比较剧烈,因此,对AFM图像进行分割是比较困难的。

目前,AFM图像分割的自适应方法已经得到了广泛的应用。

该方法能够根据图像的特点,自动选择适合的算法参数,提高算法的稳定性和分割精度。

下面,本文将从基本原理、方法分类、实验研究、应用前景等方面,对AFM图像分割的自适应方法进行详细的介绍。

一、基本原理AFM图像分割的自适应方法的基本原理是利用图像的内在特性和统计规律,运用适当的算法,将图像分割成不同的区域。

判定不同区域的标准主要是图像的亮度、颜色和纹理等视觉特征,一般采用基于像素、基于领域和基于特征的方法。

其中,基于像素的方法主要是利用像素的属性值进行分割,如阈值法。

基于领域的方法是通过确定像素周围的邻域范围,选取合适的特征作为输入,根据邻域内像素的值进行分割。

基于特征的方法是通过提取图像的纹理、几何形状、灰度直方图等特征,来表征不同区域之间的差异,识别出图像中不同的部分。

二、方法分类目前,常用的AFM图像分割自适应方法主要包括阈值法、区域生长法、基于统计的方法、基于能量泛函的方法、图像分水岭法、模型分割法等。

下面我们将按照方法的不同,对它们进行详细的介绍。

(一)阈值法阈值法是将图像分成两个部分:大于或等于阈值的像素部分为一个目标区域,小于阈值的像素部分为背景区域。

阈值的选择对分割结果影响很大,传统的手动选择阈值方法很容易受到人为因素的干扰,自适应阈值法则可以根据像素点周围的灰度范围进行动态选择,提高分割的稳定性。

医学图像分割技术中变形模型方法的研究综述

医学图像分割技术中变形模型方法的研究综述

收稿日期:2005208231;修返日期:2005210228基金项目:山东省自然科学基金资助项目(Y2003G01)医学图像分割技术中变形模型方法的研究综述3刘 新1,潘振宽2,李新照2,白 洁2(11山东电力研究院,山东济南250002;21青岛大学信息工程学院,山东青岛266071)摘 要:医学图像分割是医学图像处理中的一个经典难题。

医学图像分割技术的发展不仅影响到医学图像处理中其他相关技术的发展,如可视化、三维重建等,而且在生物医学图像的分析中也占有极其重要的地位。

近年来,由于一些新兴学科在医学图像处理中的应用,医学图像分割技术取得了显著的进展。

对近年来兴起的基于变形模型的医学图像分割技术进行研究,综述了其发展历程和基本原理,分析和比较了基于变形模型的图像分割的各种技术的优缺点,展望了该技术领域以后一段时间内的发展趋势。

关键词:医学图像分割;变形模型;Snake;Level Set 方法中图法分类号:TP399 文献标识码:A 文章编号:100123695(2006)0820014205Review of Defor mable Models in Medical I m age Seg mentati on TechniquesL I U Xin 1,P AN Zhen 2kuan 2,L I Xin 2zhao 2,BA I J ie2(1.Shandong Electric Po w er Research Institute,J inan Shandong 250002,China;2.College of Infor m ation Engineering,Q ingdao U niversity,Q ingdao Shandong 266071,China )Abstract:Medical i m age seg mentati on is a classical difficult p r oble m in medical i m age p r ocess .The devel opment of medicali m age seg mentati on techniques not only influence on other techniques in i m age seg mentati on such as medical i m age visualiza 2ti on and 3D reconstructi on etc,but als o p lay an i m portant r ole in the analysis of bi ol ogy medical i m age analysis .I n recent years,owning t o s ome app licati ons of ne w subjects in medical i m age p r ocess,the medical i m age seg mentati on techniques has a re markable p r ogress .I m age seg mentati on using defor mable models encompasses a class of techniques devel oped in recent years and has been studied extensively .This paper intr oduces briefly the fundamental p rinci p le and theory of i m age seg menta 2ti on techniques,analyses and compares the advantages and disadvantages of i m age seg mentati on using defor mable models and gives the trend of this technique .Key words:M edical I m age Seg mentati on;Def or mable Models;Snake;Level SetMethod1 引言图像分割是医学图像处理中重要研究内容之一。

基于VGG19的图像分割算法研究与优化

基于VGG19的图像分割算法研究与优化

基于VGG19的图像分割算法研究与优化图像分割算法是计算机视觉领域中的一项重要任务,它可以将一张图片分成多个区域,每个区域代表图片中的一个物体或者背景。

在深度学习技术广泛应用的今天,基于VGG19的图像分割算法已经成为了研究的热点之一。

本文就基于这一算法进行研究和优化,以期提高图像分割的效果。

一、VGG19算法介绍VGG19算法是一种深度卷积神经网络算法,是2014年由K. Simonyan和A. Zisserman提出的。

该算法是基于VGG16算法进行扩展,拥有更深的神经网络结构,包含了19层卷积层和全连接层。

与其他算法相比,VGG19算法在图像识别和分类中具有很高的准确率,因此常常被想用于图像分割任务。

二、VGG19在图像分割中的应用VGG19算法在图像分割中的应用主要分为两类:像素级分割和区域级分割。

像素级分割可以将图像中的每一个像素都归类到不同的物体或者背景区域,要求准确率非常高,因此需要比较复杂的神经网络。

而区域级分割主要是将图像分成几块不同区域,每个区域代表同一个物体或者背景。

三、研究与优化为了进一步提高VGG19算法在图像分割中的效果,我们尝试对其进行研究和优化。

1、改良网络结构当前的VGG19算法虽然已经拥有了19层卷积神经网络结构,但仍会在处理大尺寸图像时出现计算量过大、运行速度过慢的问题。

因此,我们尝试着对其网络结构进行改良。

首先,我们可以考虑使用更小的滤波器,以减少神经网络的参数量。

其次,我们可以通过添加一些附加层,如池化层或者卷积层,来增强网络的特征提取能力。

最后,我们还可以使用一些更加高效的卷积方式,例如深度可分离卷积,以大幅度减少算法的计算量。

2、引入注意力机制注意力机制是一种类似于生物视觉的机制,可以使神经网络对图像中某些特征的感知程度更高。

使用注意力机制可以提高VGG19算法的准确率和鲁棒性。

目前,较为常见的注意力机制包括SENet、CBAM、Squeeze-and-Excitation、Non-local等。

肺部CT图像分割及特征提取算法研究

肺部CT图像分割及特征提取算法研究

肺部CT图像分割及特征提取算法研究随着医疗技术的不断发展,肺部CT图像的应用越来越广泛。

在医学影像诊断中,肺部CT图像分割和特征提取算法的研究非常重要。

本文将探讨肺部CT图像分割及特征提取算法的研究现状和未来发展趋势。

一、肺部CT图像分割算法肺部CT图像分割是医学影像诊断中的一个重要步骤,主要目的是将图像中的肺部区域和非肺部区域进行分离。

常见的肺部CT图像分割方法有基于阈值分割、基于边缘检测、基于区域生长、基于图像分割模型等。

1、基于阈值分割基于阈值分割的方法是将图像像素值与预设的阈值进行比较,将像素值大于或小于阈值的像素划分到不同的区域中。

在肺部CT图像中,肺部区域的像素值范围一般比较明显,因此可以通过这种方法比较准确地分割出肺部区域。

2、基于边缘检测基于边缘检测的方法是通过检测图像中的边缘信息进行分割。

在肺部CT图像中,肺部和胸腔的边缘一般比较明显,可以采用这种方法进行分割。

常用的边缘检测算法有Sobel算子、Canny算子等。

3、基于区域生长基于区域生长的方法是从某一种种子点出发,不断扩大区域,直到周围像素的灰度值和它的像素值差异不大为止。

在肺部CT图像中,可以用这种方法将肺部区域生长出来。

4、基于图像分割模型基于图像分割模型的方法是建立数学模型,通过优化算法来进行分割。

常用的图像分割模型有基于能量函数的模型、基于统计形状的模型等。

在肺部CT图像中,可以使用ACWE模型、level set模型等进行分割。

以上方法各有优缺点,可根据具体情况选择合适的方法进行分割。

二、肺部CT图像特征提取算法肺部CT图像特征提取是对图像信息进行处理、分析和提取,从而提取出与疾病相关的特征。

常用的特征提取方法有基于形态学的方法、基于统计的方法、基于机器学习的方法等。

1、基于形态学的方法基于形态学的方法是利用形态学运算对图像进行处理,提取特定的形态特征。

在肺部CT图像中,可以利用形态学方法提取肺部的形态特征,如平均密度、面积、轮廓等。

显著性图像分割算法的研究与优化

显著性图像分割算法的研究与优化

显著性图像分割算法的研究与优化一、引言图像分割是计算机视觉领域中的一个重要研究和应用方向,其主要目的是将图像分为不同的区域,使得每个区域内的像素具有相似的特征。

在目标检测、图像识别和图像处理等应用中,图像分割作为前置步骤扮演着重要角色。

当前,显著性图像分割算法是研究的热点之一。

本文将对显著性图像分割算法的研究现状和优化策略进行探讨。

二、显著性图像分割算法1. 基于传统方法的显著性区域提取传统的显著性图像分割算法通常采用手工设计的特征提取方法,如边缘检测、颜色直方图、纹理等,以及一些经典的分割技术,如聚类、阈值化、分水岭等。

常见的基于传统方法的显著性图像分割算法包括GrabCut、Mean-Shift、GraphCut等。

其中,GrabCut是一种基于交互操作的图像分割算法,它通过人工标记前景和背景来分割图像。

该算法先对用户标记的前景和背景像素进行聚类,得到前景区域和背景区域的高斯混合模型,然后将图像像素分配到前景或背景,直到模型收敛为止。

2. 基于深度学习的显著性区域提取近年来,深度学习技术的快速发展使得其成功地应用在图像分割中。

基于深度学习的显著性图像分割算法通常采用卷积神经网络(Convolutional Neural Network,CNN)或循环神经网络(Recurrent Neural Network,RNN)等深度模型进行特征提取和分割。

常见的基于深度学习的显著性图像分割算法包括DeepLab、FCN-8s、U-Net等。

其中,DeepLab是一种基于深度学习的图像分割算法,该算法采用深度卷积神经网络学习图像特征,然后使用空洞卷积(Dilated Convolutions)进行多尺度分析,最终生成图像分割结果。

U-Net是一种基于卷积神经网络的图像分割算法,通过特征提取和下采样操作得到低分辨率的特征图,然后通过上采样操作和特征融合得到高分辨率的分割结果。

三、显著性图像分割算法的优化策略1. 多尺度特征融合多尺度特征融合是提高显著性图像分割精度的常用策略之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像分割技术研究 杨家慧 2014021014 指导老师 秦茂玲 山东师范大学信息科学与工程学院,250014,济南; Research on Image Segmentation Technology 摘要 图像分割是图像特征提取和识别等图像理解的基础,对图像分割的研究一直是数字图像处理技术研究中的热点和焦点。本文介绍了数

字图像处理技术中图像分割技术的基本原理和主要方法,对经典的图像分割算法进行了较全面的叙述,分别研究了基于边缘、区域和形态学分水岭法的图像分割方法,并使用MATLAB软件对各种分割方法进行了仿真,对仿真结果进行了分析。 关键词 图像分割; 边缘; 区域

Abstract Image segmentation is the foundation of the understanding in image feature extraction and recognition, and the reseach on it is usually the hotspot and focus in the study of digital image processing technology. This paper introduces the basic principles of techniques and the main methods in image segmentation, which is always used in digital image processing techniques, were investigated by the law of marginal, regional and morphological, then use the MATLAB software simulating a variety of segmentation methods and the simulation results are analyzed. In this paper, the classic image segmentation algorithm has been comprehensively narratived. Key words: image Segmentation;marginal image segmentation;regional image segmentation 1 引言 在图像研究的过程中,人们往往仅对各幅图像中的某些部分感兴趣.这些部分常称为目标或前景,它们一般对应图像中特定的具有独特性质的区域.为了辨别和分析目标,需要将这些区域分离提取出来,在此基础上才有可能对目标进一步利用.图像分割就是将图像分成各具特性的区域并提取出感兴趣的目标的技术和过程.在进行图像分割时,首先要根据目标和背景的先验知识来对图像中的目标、背景进行标记、定位,然后将等待识别的目标从背景中分离出来.图像分割是由图像处理进到图像分析的关键步骤,也是一种基本的计算机视觉技术.这是因为图像的分割、目标的分离、特征的提取和参数的测量将原始的图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能.因此,图像分割多年来一直得到人们的高度重视。 图象分割在实际中已得到广泛的应用,例如在工业自动化,在线产品检验,生产过程控制,文档图象处理,遥感和生物医学图象分析,保安监视,以及军事,体育,农业工程等方面。概括来说,在各种图象应中,只要需对图象目标进行提取,测量等都离不开图象分割。近年来,图象分割在对图象的编码中也起到越来越重要的作用,例如国际标准MPEG一4中模型基/目标基编码等都需要基于分割的结果。可见,图象分割在图象工程中有重要的地位和影响。 2 图像分割 2.1 图像分割的定义 在图像的研究和应用中,人们往往只对一幅图像中的某些部分感兴趣,这些感兴趣的部分一般对应图像中特定的、具有特殊性质的区域(可以对应单个区域,也可以对应多个区域),称之为目标或前景;而其它部分称为图像的背景。为了辨识和分析目标,需要把目标从一幅图像中孤立出来,这就是图像分割要研究的问题。所谓图像分割,从广义上来讲,是根据图像的某些特征或特征集合(包括灰度、颜色、纹理等)的相似性准则对图像像素进行分组聚类,把图像平面划分成若干个具有某些一致性的不重叠区域。这使得同一区域中的像素特征是类似的,即具有一致性;而不同区域间像素的特征存在突变,即具有非一致性。 “集合”定义: 令集合R代表整个图象区域,对R的分割可看作将R分成若干个满足如下五个条件的非空的子集(子区域): (1)RRUin1i(分割所得全部子区域的总和(并集)应能包括图象中所有象素或将图象中每个象素都划分进一个子区中) (2)对所有的i和j,有Ri∩Rj=ø(i≠j);(各子区互不重叠) (3)对i=1,2,3……,N,有P(Ri)=TRUE;(属于同一子区象素应具有的某些共同特性) (4)对i≠j,有P(Ri∪Rj)=FALSE;(属于不同子区象素应具有某些不同特性) (5)对i=1,2,……,N,Ri是连通区域(同一子区内象素应当是连通的). 2.2 图像分割的意义 在一副图像中,我们常常只对其中的某些目标感兴趣,对于这些我们感兴趣的目标,它们通常在要分割的图像中占据一定的区域,而且在某些特性上与周围的图像存在一定的差别。这些差别可能非常明显,也可能十分细微,以至于人眼无法觉察。图像分割是按一定的制约规则把图像划分为若干个互不相交、具有特定性质的区域,是把我们关注的区域从需要分割的图像中提取出来,以此进行进一步研究分析和处理的技术。图像分割的结果是图像特征提取和识别等图像理解的基础,对图像分割的研究一直是数字图像处理技术的焦点和热点图像分割把图像空间分成一些有意义的区域,与图像中各种物体目标相对应。它使得其后的图像分析和识别等处理过程中所要处理的数据量大大减少了,同时又保留了有关图像结构特征的信息。通过对分割结果的描述,能够理解图像中包含的有关信息。图像分割质量直接影响后续图像处理的效果,甚至决定其成败,因此,分割的方法和精确程度至关重要。由此可知,图像分割在图像工程中占据非常重要的位置。分割在不同的领域也有其它的名称,如目标轮廓技术、目标检测技术、阈值化技术、目标跟踪技术等,这些技术本身或其核心实际上也就是图像分割技术。 2.3 图像分割的基本现状 图像分割算法的研究已经有几十年的历史,一直都受到人们的高度重视。关于图像分割的原理和方法国内外已有不少的研究成果,但一直以来没有一种分割方法适用于所有图像分割处理传统的图像分割方法存在着一些不足,无法满足人们的要求,给进一步的图像分析和理解过程带来了困难。随着计算机技术的发展及其相关技术的成熟,结合图像增强等图像处理技术,我们已经能够在计算机上实现图像分割处理过程。然而,到目前为止,人们还没有制定出选择合适分割算法的标准,这给图像分割技术的应用带来许多实际困难。因此,图像分割的研究还在不断深入,是目前图像处理中研究的热点之一。图像分割在图像工程中起着承上启下的作用,是介于低层次处理和高层次处理的中间层次。早在1965年就有人提出了检测边缘算子边缘检测方法,边缘检测已产生了不少经典算法。目前越来越多的学者开始将数学形态学、模糊理论、遗传算法理论、分形理论和小波变换理论等研究成果运用到图像分割中,产生了结合特定数学方法和针对特殊图像分割的先进图像分割技术。 2.4 图像分割的发展趋势 由于图像分割技术在当今图像工程的发展过程中起着十分重要的作用,得到了广泛应用,促使人们致力于寻找新的理论和方法来提高图像分割的质量,以满足各方面的需求。由于遗传算法、统计学理论、神经网络、分形理论以及小波理论等理论在图像分割中广泛应用,图像分割技术呈现出新的发展趋势: (1)多种特征融合的分割方法。除利用图像的原始灰度特征外,我们还可以利用图像的梯度特征、几何特征(形态、坐标、距离、方向、曲率等)、变换特征(傅立叶谱、小波特征、分形特征等)及统计学特征(纹理、不变矩、灰度均值等)等高层次特征,对于每个待分割的像素,将所提取的特征值组成一个多维特征矢量,再进行多维特征分析。通过多种特征的融合,图像像素能被全面描述,从而获得更好的分割结果。 (2)多种分割方法结合的分割方法。由于目标成像的不确定性以及目标的多样性,单一的分割方法很难对含复杂目标的图像取得理想的分割结果。此时,除需要利用多种特征融合外,还需将多种分割方法结合,使这些方法充分发挥各自的优势,并避免各自的缺点。采用哪种方式结合以获得良好的分割效果是这种方法研究的重点。 3 图像分割算法 3.1 阈值法 阈值法的优点是计算简单,速度快,易于实现。尤其是对于不同类的物体灰度值或其他特征值相差很大时,能很有效地对图像进行分割。 阈值法的缺点是当图像中不存在明显的灰度差异或灰度值范围有较大的重叠时,分割效果不理想。并且阈值法仅仅考虑图像的灰度信息而没有考虑图像的空间信息,致使阈值法对噪声和灰度不均匀十分地敏感。在实际应用中,阈值法通常与其他方法结合使用[4]。 阈值分割法是简单地用一个或几个阈值将图像的直方图分成几类,图像中灰度值在同一个灰度类内的象素属干同一个类。其过程是决定一个灰度值,用以区分不同的类,这个灰度值就叫做“阈值”。它可以分为全局阈值分割和局部阈值分割。所谓全局阈值分割是利用利用整幅图像的信息来得到分割用的阈值,并根据该阈值对整幅图像进行分割而局部阈值分割是根据图像中的不同区域获得对应的不同区域的阈值,利用这些阈值对各个区域进行分割,即一个阈值对应相应的一个子区域,这种方法也称适应阈值分割。 阈值法是一种简单但是非常有效的方法,特别是不同物体或结构之间有很大的强度对比时,能够得到很好的效果它一般可以作为一系列图像处理过程的第一步。它一般要求在直方图上能得到明显的峰或谷,并在谷底选择阈值。如何根据图像选择合适的阈值是基于阈值分割方法的重点所在,也是难点所在。 它的主要局限是,最简单形式的阈值法只能产生二值图像来区分两个不同的类。另外,它只考虑象素本身的值,一般都不考虑图像的空间特性,这样就对噪声很敏感它也没有考虑图像的纹理信息等有用信息,使分割效果有时不能尽如人意[5]。 阈值法的几种阈值选择方法: 全局阈值法 (1)双峰法 对于目标与背景的灰度级有明显差别的图像,其灰度直方图的分布呈双峰状,两个波峰分别与图像中的目标和背景相对应,波谷与图像边缘相对应。当分割阈值位于谷底时,图像分割可取得最好的效果。该方法简单易行,但是对于灰度直方图中波峰不明显或波谷宽阔平坦的图像,不能使用该方法[6]。 假设,一副图像只有物体和背景两部分组成,其灰度图直方图呈现明显的双峰值,如下图:

相关文档
最新文档