热电材料
2024年热电材料市场分析现状

2024年热电材料市场分析现状引言热电材料是一种能够将热能转化为电能的材料。
随着人们对可再生能源和节能环保的需求增加,热电技术作为一种高效能量转换方式被广泛研究和应用。
本文旨在分析当前热电材料市场的现状,包括市场规模、主要应用领域和市场竞争情况。
市场规模目前,全球热电材料市场规模呈现快速增长的趋势。
据市场研究机构的数据显示,热电材料市场规模从2015年的X亿美元增长到2019年的X亿美元,复合年增长率达到X%。
预计到2025年,全球热电材料市场规模将达到X亿美元。
主要应用领域热电材料主要应用于以下领域:1.温差发电:热电材料通过利用两个温度之间的热差,将热能转化为电能。
这一技术被广泛应用于汽车排放热能回收、工业余热回收以及可再生能源发电等领域。
2.电子产品:热电材料可以用于移动电源和无线充电设备,为电子产品提供便携式和可持续的能源。
3.航空航天:热电材料被广泛应用于航空航天领域,如热电发动机、太阳能航天器和航天装备等。
4.医疗领域:热电材料可以用于医疗设备和植入式医疗器械,如体温监测、生命支持设备和人工耳蜗等。
5.其他领域:热电材料还可应用于建筑、农业、环境监测等领域,为可持续发展提供支持。
市场竞争情况目前,全球热电材料市场竞争激烈,主要厂商包括国内外的热电材料制造商、研发机构和科技巨头。
主要竞争策略包括技术创新、产品质量和市场渠道拓展。
1.技术创新:热电材料市场在技术创新方面持续追求突破。
研发机构和科技巨头投入大量资源用于开发新型热电材料,提高能量转换效率和稳定性。
同时,研究人员还致力于降低生产成本,提高材料的可持续性。
2.产品质量:市场竞争导致厂商不断提高产品质量。
热电材料制造商通过优化生产工艺,改进材料特性和稳定性,提供高性能和可靠的产品。
同时,质量控制和认证也成为市场竞争的重要方面。
3.市场渠道拓展:厂商积极开拓市场,并建立稳定的销售渠道。
通过与合作伙伴合作,扩大销售网络,提升产品知名度和市场份额。
热电材料制备

热电材料制备
热电材料是一种能够将热能转化为电能或者将电能转化为热能的材料。
在当今社会,随着能源危机的日益加剧,热电材料的研究和制备变得尤为重要。
本文将介绍热电材料的制备方法及其相关研究进展。
首先,热电材料的制备方法主要包括物理法、化学法和生物法。
物理法是指利用物理手段对材料进行加工制备,如溅射法、热压法等。
化学法则是指利用化学反应合成热电材料,如溶胶-凝胶法、水热法等。
生物法则是指利用生物体或者生物分子合成热电材料,如植物提取物法、微生物法等。
这些方法各有优缺点,可以根据具体需求选择合适的方法进行制备。
其次,热电材料的制备过程中需要考虑的关键因素包括材料的成分、结构和性能。
材料的成分决定了其热电性能的基本特征,而材料的结构则直接影响了热电性能的提高。
因此,在制备过程中需要精确控制材料的成分和结构,以实现最佳的热电性能。
另外,近年来,随着纳米技术的发展,热电材料的制备方法也得到了很大的进步。
纳米技术可以有效地调控材料的结构和性能,从而提高热电材料的效率和稳定性。
因此,在热电材料的制备过程中,纳米技术的应用将是一个重要的发展方向。
总的来说,热电材料的制备是一个复杂而又具有挑战性的过程,需要综合运用物理、化学、生物等多个学科的知识。
随着科学技术的不断进步,相信热电材料的制备方法和性能将会得到进一步的提升,为能源领域的发展做出更大的贡献。
希望本文的介绍能够对热电材料的制备方法有所帮助,也希望热电材料的研究能够取得更多的突破,为人类社会的可持续发展做出贡献。
热电材料的性质及应用

热电材料的性质及应用热电材料是一种能够将热能转化为电能,或者将电能转化为热能的材料。
这种材料具有非常重要的应用价值,可以在能源领域、电子技术领域、传感器领域等多个领域发挥作用。
本文将从热电材料的性质和应用两个方面进行介绍。
1. 热电材料的性质热电材料的热电效应可以分成两种类型:Seebeck效应和Peltier效应。
Seebeck效应是指在温度差的作用下,导体中的电子向低温区域不断扩散,从而形成了一种“热电势差”。
此时如果连接一个电阻,就可以利用热电效应来实现热电能的转化。
比较常见的热电材料有铜、铁、金、铂等。
在具体应用的过程中,需要根据具体的需求来选择材料。
Peltier效应则是指在电流的作用下,热电材料中的电子会不断地吸收和释放热能,从而形成热冷颠倒现象。
在实际应用中,可以将Peltier效应用于温度控制领域,在低温环境制冷,高温环境制热。
除了上述两种效应之外,热电材料还需要具备一些特殊的属性,比如较高的热电系数、较低的电性能量、充分的电子迁移性、良好的热传导性等等。
这些特殊的属性都是热电材料能够实现热电转换的重要基础。
2. 热电材料的应用由于热电材料的高效率转换,以及对环境友好的特点,热电材料可以应用于各种领域,包括能源、电子技术、传感器、航空航天领域等等。
在能源领域,热电技术可以将废热转化为电能,并为各种便携式设备提供能源支持,比如远程探测器,智能手表,以及GPS 导航仪等。
在电子技术领域,热电设备可以应用于半导体材料的温度控制,在芯片制造等领域起到了非常重要的作用。
同时,还可以利用热电设备来实现能量的回收,提高设备工作效率。
在传感器领域,热电技术可以应用于气体传感器、温度计、湿度计等等,还可以用于热成像等技术。
在航空航天领域,则可以利用热电材料来制造能够适应极端环境下电源的装置,比如航空器的火星探测车。
由于热电设备具有基本无噪音、无污染等特点,适用于太空环境和其他特定环境下的应用。
总之,热电材料是一种非常重要的材料,具有广泛的应用前景。
热电材料分类

热电材料分类热电材料是一种能够实现热能和电能相互转换的材料,广泛应用于能源转换、温度控制、热电制冷等领域。
根据不同的分类方式,热电材料可以分为以下几类:一、按材料体系分类1.金属热电材料:这类材料以金属为主,具有较高的热电势和较低的热导率。
常见的金属热电材料包括铜、镍、铬、铁、钴等。
2.半导体热电材料:这类材料以半导体为主,其热电势和热导率都较高。
常见的半导体热电材料包括硅、锗、砷化镓、碳化硅等。
3.陶瓷热电材料:这类材料以陶瓷为主,其热电势较低但热导率较高。
常见的陶瓷热电材料包括钛酸钡、锆钛酸铅等。
4.复合热电材料:这类材料由金属、半导体和陶瓷等多种材料组成,具有优异的热电性能。
常见的复合热电材料包括氧化锌掺杂铅铋合金、碳化硅基复合材料等。
二、按应用领域分类1.能源转换领域:这类材料主要用于将热能转换为电能,常用于热电发电和太阳能发电等领域。
常见的能源转换用热电材料包括铋掺杂的铅基合金、硅锗合金等。
2.温度控制领域:这类材料主要用于精确控制物体的温度,常用于电子器件的温度控制和微型制冷等领域。
常见的温度控制用热电材料包括钛酸钡、锆钛酸铅等。
3.热电制冷领域:这类材料主要用于制冷和温度控制,常用于微型制冷器、温差发电和红外探测器等领域。
常见的热电制冷用热电材料包括铅铋合金、铜基合金等。
4.其他领域:除了以上三个领域,热电材料还可以应用于其他领域,如热电偶、温度传感器等。
三、按制备方法分类1.机械合金法:通过机械合金化的方法制备出具有优异热电性能的合金材料。
该方法具有制备工艺简单、成本低等优点,但易引入杂质元素影响材料的性能。
2.真空熔炼法:通过在真空环境中将原料加热至熔点以上并缓慢冷却的方法制备出纯净的热电材料。
该方法可有效去除杂质元素的影响,提高材料的性能,但制备工艺复杂、成本较高。
3.化学气相沉积法:通过化学反应的方式在基底上生长出具有优异性能的热电材料。
该方法可实现大面积制备,同时可精确控制材料的成分和结构,但工艺复杂且成本较高。
热电材料

宇宙探测卫星的电源。利 用原子炉的热能发电
热电转换材料的研究现状
• 公认的热电材料有Bi2Te3,PbTe,SiGe等。这些 材料具有的ZT=1,变换效率超过10%的高性能。 但是有耐热,耐氧化性差,原料储藏少,对环境 有污染等问题。 • 热电材料要求导电率σ和Seebeck系数S要大,热 传导率要小。固体中输送电荷的电子同时输送热。 因为热电率对应单位载流子输送的熵,载流子密 度的增大可以使σ变大,但是S变小。也就是说, 决定热电性能三个物性保持互相约束的状态。 • 2007年Ohta(太田 ,名古屋大学)成功的合成 了SrTiO3化合物的人工超格子的2维电子气 (2DEG),得到了高性能的热电材料(ZT=2.4)
• 热电偶材料:热电偶种类很多,已研制的组合 热电偶材料近300种,已经标准化的15种,工 业上广泛应用的8种,有相应标推代号。
• 常用的热电偶的类别
热电偶类别 铂铑30-铂铑6 铂铑10-铂 镍铬-镍硅 镍铬-康铜 铂铑13-铂 代号 WRR WRP WRN WRE WRB 分度号 B S K E R 测温范围 0-1800℃ 0-1600℃ 0-1300℃ 0-800℃ 0-1600℃ 允许偏差限 ±0.25%t ±0.25%t ±0.75%t ±0.75%t ±0.25%t
• (2)温差电热效应 • 在热电回路中,与两接点间的温度差而引起的塞 贝克电动势相反,通电时,在回路中会引起两种 热效应,帕尔贴和汤姆逊热效应。前者出现在不 同的两个电极的接头处;后者一种导体的的两端 上。
帕尔贴效应
塞贝克,帕尔帖和汤姆逊称为热电三效应
汤姆逊效应
• 珀尔帖热效应
• 当直流电通过由两种不同导电材料所构成的回路时,接点 上将产生吸放热现象改变电流方向,吸放热也随之反向该 效应称之为珀尔帖效应。
热电材料

带在手上的发电机
返回
描述热电性能的参数
• 1911 年, 德国的阿持克希提出了一个令人 满意的温差热电制冷和发电的理论, 并提出 了热电优值公式: Z=S2σ/k 式中: S———材料的塞贝克系数 σ———电导率 k———热导率
• 无论用于发电还是制冷, 热电材料的Z 值越 高越好。从前面的公式可知, 材料要得到高 的Z 值, 应具有高的。Seebeck 系数、高的 电导率和低的热导率, 所以好的热电材料必 须要像晶体那样导电, 同时又像玻璃那样导 热,但在常规材料中是有困难的,因为三者 耦合,都是自由电子(包括空穴)密度的函数, 材料的Seebeck 系数随载流子数量的增大 而减小, 电导率和导热系数则随载流子数量 的增大而增大。
返回
当两种不同的导体A和B组成的电路且 通有直流电时,在接头处除焦耳热以外还 会释放出某种其它的热量,而另一个接头 处则吸收热量,且帕尔帖效应所引起的这 种现象是可逆的,改变电流方向时,放热 和吸热的接头也随之改变,吸收和放出的 热量与电流强度I/A成正比,且与两种导体 的性质及热端的温度有关,即: Qab=Iπab
返回
依其运作温度分为三类
• 碲化铋及其合金:这是目前被广为使用于 热电致冷器的材料,其最佳运作温度 <450℃。 • 碲化铅及其合金:这是目前被广为使用于 热电产生器的材料,其最佳运作温度大约 为1000℃。 • 硅锗合金:此类材料亦常应用于热电产生 器,其最佳运作温度大约为1300℃。
返回
• 体积小 重量轻,坚固,且工作中无噪音 体积小,重量轻,坚固 且工作中无噪音 重量轻 • 温度控制可在±0.1℃之内 温度控制可在± ℃ • 不必使用 不必使用CFC(CFC氯氟碳类物质,氟里昂。 氯氟碳类物质,氟里昂。 氯氟碳类物质 被认为会破坏臭气层), 被认为会破坏臭气层 ,不会造成任何环境 污染 • 可回收热源并转变成电能 节约能源),使用 可回收热源并转变成电能(节约能源 , 节约能源 寿命长, 寿命长,易于控制
热电材料的工作原理与性能改进

热电材料的工作原理与性能改进热电材料是一类具有热电效应的材料,可以将热能直接转化为电能,或者将电能转化为热能。
它们在能量转换和热电器件中具有广泛的应用潜力,如热电发电、温差传感、制冷等。
本文将探讨热电材料的工作原理以及如何改进其性能。
一、热电材料的工作原理热电材料的热电效应基于“Seebeck效应”,即当两个不同温度的导体连接在一起形成热电偶时,会产生电压差。
这是由于材料中电子的热扩散和电流的扩散移动造成的。
当热电材料的一侧受热,另一侧冷却时,热电材料中的电子会从高温侧传输到低温侧,形成电流。
这样,通过热电材料就可以将热能转化为电能。
二、热电材料的性能改进虽然热电材料有广泛的应用潜力,但目前仍面临一些挑战,如效率低、成本高等问题。
因此,改进热电材料的性能至关重要。
以下是一些改进热电材料性能的方法:1. 结构优化通过结构优化,可以改变热电材料的晶体结构和物理性质,从而改变其热电性能。
例如,通过合金化、掺杂、界面工程等手段,可以提高热电材料的电子迁移率和热导率,从而增强其热电效应。
2. 能带调控热电材料的热电性能与其能带结构密切相关。
通过调控热电材料的能带结构,可以调节材料的电子结构和能级分布,从而改善其热电性能。
例如,通过调节能带对称性、调控费米能级位置等手段,可以增强材料的热电效应。
3. 界面优化热电器件中的界面对热电性能起着重要的影响。
通过界面优化,可以改善热电材料的界面接触条件和界面热阻,从而提高器件的能效。
例如,通过表面修饰、界面化学反应等手段,可以改善热电材料与电极之间的接触质量,减小热阻。
4. 综合调控综合调控是改进热电材料性能的一种有效途径。
通过多种手段的综合调控,可以实现热电材料性能的协同改进。
例如,通过结构优化、能带调控和界面优化的综合调控,可以进一步提高热电材料的热电转换效率和稳定性。
通过以上的方法和技术手段,可以有效改进热电材料的性能,提高其热电转换效率和稳定性。
这将有助于推动热电技术的发展,促进清洁能源的利用和环境可持续发展。
热电材料的性能原理与应用

热电材料的性能原理与应用热电材料是指可以将热能转化成电能,或者将电能转化成热能的材料。
这种材料既能够实现节约能源的效果,又能够实现环保效益,是一种非常有前途的材料。
本文将从热电材料的性能原理与应用两个方面进行探讨。
一、热电材料的性能原理热电效应是指热能与电能的相互转换过程。
热电材料是一种可热电材料,可以将热能转换为电能,或者将电能转换为热能。
热电材料的性能原理主要可以从以下几个方面来探讨:1、热电材料的热电效应热电效应是热电材料能够实现热能与电能相互转换的基础。
热电效应可以分为Seebeck效应、Peltier效应、Thomson效应三种。
Seebeck效应是指当两种不同材料接触并形成电极后,在温度差异作用下,电极中就会产生电势差。
这种电势差的大小与材料的热电系数有关。
Peltier效应是指当电流通过材料中的两个导体时,从高电位移向低电位,会使一个导体发生吸热,另一个导体发生放热的现象。
Thomson效应是指当电流通过一个均匀导体时,会使导体的中心温度上升,而表面温度下降的现象。
2、热电材料的热电系数热电材料的热电系数用来表征材料在温度变化时所产生的电压变化。
这个系数可以用来计算热电材料的热电效率。
通常情况下,热电材料的热电系数越大,其热电效率也就越高。
因此,热电材料的热电系数是一个非常关键的参数。
3、热电材料的电阻率热电材料的电阻率用来描述材料对电流的阻碍程度。
这个参数对于热电材料的性能有很大的影响。
通常情况下,热电材料的电阻率越小,其性能也就越好。
4、热电材料的热传导率热电材料的热传导率用来描述材料对热能的传导能力。
这个参数对于热电材料的性能也有很大的影响。
通常情况下,热电材料的热传导率越小,其性能也就越好。
二、热电材料的应用领域热电材料的应用领域非常广泛。
可以分为以下几类:1、节能领域热电材料可以将废热转化为电能,实现了废热的回收利用,从而实现了节能效果。
这种技术已经被广泛应用于化工、电力、钢铁等行业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碲化铋及其合金:这是目前被广为使用于热电致冷器的材料,其最佳运作温度<450℃。
碲化铅及其合金:这是目前被广为使用于热电产生器的材料,其最佳运作温度大约为1000℃。
硅锗合金:此类材料亦常应用于热电产生器,其最佳运作温度大约为1300℃。
本图显示的是直接将热能转化成电能的实验设备。
这种设备在实际应用中可以将任何高温损耗热量转化为有用的电能。
图片左侧的是一个热电极,它像任何发热金属一样,该热电极表面覆盖着电镀层,如果它接触到冰冻的物体表面,便会产生电能。
然而在一般情况下,在高温热电极下却很少产生电流。
热电转换材料是一种可以将热能和电能相互转换的材料。
目前常用的热电转换材料多以重金属铋、锑和铅等为原料,这些原料不仅在自然界含量少、熔点低,而且还有剧毒,这在很大程度上影响了真正的实用化。
与热电发电相反,热电制冷利用Peltier效应可以制造热电制冷机。
它具有机械压缩制冷机所没有的一些优点:尺寸小、质量轻、无任何机械转动部分,工作无噪声,无液态或气态介质,因而不存在污染环境问题,可实现精确控温,响应速度快,器件使用寿命长。
因此热电制
冷已用于很多领域。
除冰箱、空调、饮水机等家用电器外,热电制冷更重要的应用是信息技术领域,如红外探测器、激光器、计算机芯片等。
例如,俄罗斯米格战斗机配备的AA-8和AA-11系列导弹就采用热电制冷对红外探测系统进行温控。
热电制冷也已用于医学,如半导体制冷运血箱、冷敷仪、冷冻切片机、呼吸机、N D:YAG激光手术器,PCR仪等。
另外,热电制冷材料的一个可能具有实际应用意义的场合是为超导材料的使用提供低温环境。
方钴矿型热电材料
方钴矿( Skutterudite)是一类通式为AB3的化合物,其中A是金属元素,如Ir、C o、Rh、Fe等,B是V族元素,如P、As、Sb等。
方钴矿(Skutterudite)化合物是立方晶系晶体结构,具有比较复杂的结构,如图1所示。
一个单位晶胞包含了8个A岛分子,共32个原子,每个晶胞内还有两个较大的笼状孔隙。
半导体金属合金型
热电材料半导体金属合金型热电材料以Ⅲ、Ⅳ、V族及稀土元素为主,目前研究比较成熟。
已用作热电设备的材料主要是金属化合物及固溶体合金。
如:Bi 2Te3/Sb2Te3、PbTe、SiGe、CrSi等。
氧化物及钴酸盐类类热电材料
氧化物热电材料具有使用温度高、不怕氧化、无污染、使用寿命长、制备方便等优点,因此在中温区热电发电领域的应用潜力很大。
此外,氧化物热电材料还具有原料资源丰富,制样时可在空气中直接烧结,无需抽真空,成本费用低等方面的优势,在民用上有重要价值,因而备受人们的关注。
目前此类热电材料以过渡金属氧化物为典型代表,如NaCo2O4,Ca3Co4O9等。
NaCo2O4是一种很有前途的热电材料。
NaCo2O4材料是由N a+和CdI2:型Co2O4:单元沿着c轴交叠形成的层状六角形结构,NaCo2O4中的CoO2 单元构成的扭曲[ CoO6]八面体结构共享一组边,形成三角形格子,Na+处于CoO2层之间,呈5 0 %无规则占据,并处于无序状态。
NaCo2O4 在a 、c 两轴向的电阻值表现为明显的各向异性。
多个八面体通过棱的重合排列构成类钙钛矿结构,由于八面体问的间隙大,可以进行某些元素填充,增大声子的散射,也可以进行元素的替代诱发化学力导致晶格变形,提高品质因子。
金属硅化物型热电材料金属硅化物是指元素周期表中过渡元素与硅形成的化合物,如FeSi2、MnSi2、CrSi2等。
由于熔点高,资源丰富,价格低廉,适合于中高温区热电发电应用。
在上述几类硅化物中,研究较多的是β-FeSi2,它具有高抗氧化性、无毒、价格低廉等优点,通过掺入不同杂质,可制成P型或N型半导体,适合于在200~900℃范围内使用。
由于P 型FeSi z的无量纲优值过低,人们正寻找新的硅化物取代它,一种较有前景的是高锰硅化物HMS,这实际上是一种由4个相,即Mn11Sil9、Mn26Si45、Mnl5Si24和Mn27Si47组成的非均匀硅化锰材料。