七年级第2章整式的加减拔高题汇总

合集下载

人教版七年级上册数学第二章整式的加减试题及答案(精华两份)[1]

人教版七年级上册数学第二章整式的加减试题及答案(精华两份)[1]

人教版七年级上册数学第二章整式的加减试题及答案(精华两份)(word版可编辑修改) 人教版七年级上册数学第二章整式的加减试题及答案(精华两份)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版七年级上册数学第二章整式的加减试题及答案(精华两份)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版七年级上册数学第二章整式的加减试题及答案(精华两份)(word版可编辑修改)的全部内容。

整式的加减试题(一)及答案一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 .2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。

3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 .4、已知:11=+xx ,则代数式51)1(2010-+++xx xx 的值是 .5、张大伯从报社以每份0。

4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0。

2元的价格退回报社,则张大伯卖报收入 元。

6、计算:=-+-7533x x , )9()35(b a b a -+-= 。

7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。

8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。

9、若多项式7322++x x 的值为10,则多项式6为 .10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n =11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;-2a 12、多项式172332+--x x x 是 次 项式,最高次常数项是 .二、选择题(每题3分,共30分) 13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x 14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。

人教版七年级数学上册第二章整式的加减法复习试题大全(含答案) (2)

人教版七年级数学上册第二章整式的加减法复习试题大全(含答案) (2)

人教版七年级数学上册第二章整式的加减法习题大全(含答案)下列各组中,不是同类项的是()A.a2b3与-a3b2B.-xy与yx C.0.2m2n与1-5 m2n D.52与25【答案】A【解析】【分析】根据同类项的概念求解.所含字母相同,相同字母的指数也相同的单项式是同类项.两个常数项也是同类项.【详解】解:A、a2b3与-a3b2相同字母的指数不同,所以不是同类项,故本选项符合题意;B、-xy与yx 2所含字母相同,相同字母的指数也相同,所以是同类项,故本选项不符合题意;C、0.2m2n与1-m2n所含字母相同,相同字母的指数也相同,所以是同类项,5故本选项不符合题意;D、52与25是常数,所以是同类项,故本选项不符合题意.故选:A.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.但要注意,两个常数项也是同类项.12.若22x y是同类项,则m等于( )-与323m x yA.1 B.2 C.3 D.4【答案】C【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得:m=3.注意同类项与字母的顺序无关,与系数无关.【详解】解:因为若22x y是同类项,-与323m x y所以m=3.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.13.下列计算正确的是( )A.a+a=a2B.6x3﹣5x2=x C.3a2b﹣4ba2=﹣a2bD.3x2+2x3=5x5【答案】C【解析】【分析】根据合并同类项法则对选项进行分析即可得到答案.【详解】A. a +a =2a ,故错误;B. 6x 3﹣5x 2=6x 3﹣5x 2,故错误;C. 3a 2b ﹣4ba 2=﹣a 2b ,故正确;D. 3x 2+2x 3=3x 2+2x 3,故错误;故选择C.【点睛】本题考查合并同类项,解题的关键是掌握合并同类项法则.14.下面各式中去括号错误的为( )A .()3x 2x 33x 2x 3-+=-+B .3(23)323x x x x ++=++C .3(23)323x x x x -+=--D .32(3)326x x x x -+=--【答案】A【解析】【分析】根据去括号法则,即可得到答案.【详解】解:()3x 2x 33x 2x 3-+=--,故A 错误,符合题意;BCD 选项书写正确,不符合题意;故选择:A.【点睛】本题考查了去括号法则,掌握去括号法则是解题的关键.15.计算23a a -+的正确结果为( )A .1B .aC .a -D .5a -【答案】B【解析】【分析】 根据合并同类项法则合并即可.【详解】解:()2323a a a a -+=-+=故选B【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键.16.下列各组单项式,不是同类项的是( )A .3x 2y 与-2yx 2B .2ab 2与-ba 2C .3xy 与5xyD .23a 与32a【答案】B【解析】【分析】根据同类项的定义判断即可.【详解】A .字母相同且相同字母的指数也相同,是同类项,故A 不符合题意;B .相同字母的指数不同,不是同类项,故B 符合题意;C .字母相同且相同字母的指数也相同,是同类项,故C 不符合题意;D .字母相同且相同字母的指数也相同,是同类项,故D 不符合题意.【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.17.下列去括号中,正确的是( )A .2(2)22a b a b -=-B .()(23)2232x y x x y x --+-=-++-C .4(5)420n m n n m n --=--D .(3)3c a b c a b --=--【答案】B【解析】【分析】根据去括号法则即可依次判断.【详解】A. 2(2)24a b a b -=-,故错误;B. ()(23)2232x y x x y x --+-=-++-,正确;C. 4(5)420n m n n m n --=-+,故错误;D. (3)3c a b c a b --=-+,故错误;故选B.【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.18.下列合并同类项中,正确的是( )A .235x x x -=B .358a b ab +=C .33332y y y -+=-D .2243a b a b -=【解析】【分析】根据合并同类项的方法即可依次判断.【详解】A. 23x x x -=-,故错误;B. 35a b +不能计算,故错误;C. 33332y y y -+=- ,正确;D. 22243a b a b a b -=,故错误.故选C.【点睛】此题主要考查整式的加减,解题的关键是熟知合并同类项的方法.19.下列各式计算正确的是( )A .(2a ﹣ab 2)﹣(2a+ab 2)=0B .x ﹣(y ﹣1)=x ﹣y ﹣1C .4m 2n 3﹣(2m 2n 3﹣1)=2m 2n 3+1D .﹣3xy+(3x ﹣2xy )=3x ﹣xy【答案】C【解析】【分析】先去括号,再合并同类项;分别计算各选项,即可得到正确结论.【详解】∵()()22222222220a ab a ab a ab a ab ab --+=---=-≠,故选项A 错误;x ﹣(y ﹣1)=x ﹣y+1≠x ﹣y ﹣1,故选项B 错误;4m 2n 3﹣(2m 2n 3﹣1)=4m 2n 3﹣2m 2n 3+1=2m 2n 3+1,故选项C 正确; ﹣3x y+(3x ﹣2x y )=﹣3x y+3x ﹣2x y=3x ﹣5x y ≠3x ﹣x y ,故选项D 错误. 故选:C.【点睛】此题主要考查整式的加减,熟练掌握,即可解题.20.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b == 【答案】C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.。

人教版七年级数学上册第二章整式的加减法习题大全(含答案) (2)

人教版七年级数学上册第二章整式的加减法习题大全(含答案) (2)

人教版七年级数学上册第二章整式的加减法习题大全(含答案)多项式2x3﹣10x2+4x﹣1与多项式3x3﹣4x﹣5x2+3相加,合并后不含的项是()A.三次项B.二次项C.一次项D.常数项【答案】C【解析】【分析】把两式相加,合并同类项得5x3﹣15x2+2,结果不含一次项.【详解】解:2x3﹣10x2+4x﹣1+3x3﹣4x﹣5x2+3=5x3﹣15x2+2,则多项式2x3﹣10x2+4x﹣1与多项式3x3﹣4x﹣5x2+3相加,合并后不含的项是一次项.故选:C.【点睛】本题主要考查整式的加法运算,涉及到多项式的定义知识点.12.已知27na b-是同类项,则2m n-的值是()-和4325ma bA.6 B.4 C.3 D.2【答案】D【解析】【分析】利用同类项的定义得出m ,n 的值进而得出答案.【详解】解:∵225m a b -和437n a b -是同类项,∴2m=4,3-n=1,∴m=2,n=2故2m n -的值是:2.故选:D .【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键.13.计算:6632x x -+的结果是( )A .65x -B .65xC .6xD .6x -【答案】D【解析】【分析】根据同类项的定义合并同类项即可.【详解】解:6632x x -+=6x -故选D.【点睛】此题主要考查了合并同类项,熟练掌握同类项的定义是解题的关键.14.下列各式去括号正确的是( )A .()a b c a b c --=--B .()23565a a a a +-=+-C .()22a a b c a a b c --+=--+D .()a b c a b c +-=+- 【答案】D【解析】【分析】根据去括号法则,对每个选项进行判断即可.【详解】解:A 、()a b c a b c --=-+,故A 错误;B 、()235610a a a a +-=+-,故B 错误;C 、()22a a b c a a b c --+=-+-,故C 错误;D 、()a b c a b c +-=+-,正确; 故选择:D.【点睛】本题考查了去括号法则,熟练掌握去括号法则是解题的关键.15.下列各组整式中是同类项的是( )A .a 3与b 3B .2a 2b 与﹣a 2bC .﹣ab 2c 与﹣5b 2cD .2x 与4x【答案】B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:A 、a 3与b 3 ,字母不相同,不是同类项;B 、2a 2b 与﹣a 2b ,是同类项;C、﹣ab2c与﹣5b2c,字母不相同,不是同类项;D、2x与4x,字母的指数不相同,不是同类项;故选择:B.【点睛】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.16.下列运算中,正确的是()A.3a+2b=5a B.2a3+3a2=5a5C.﹣4a2b+3a2b=﹣a2b D.5a2﹣4a2=1【答案】C【解析】【分析】根据合并同类项的运算法则,分别进行判断即可.【详解】解:A、3a与2b不是同类项,无法合并,故A错误;B、2a3与3a2不是同类项,无法合并,故B错误;C、﹣4a2b+3a2b=﹣a2b,正确;D、5a2﹣4a2= a2,故D错误;故选择:C.【点睛】本题考查了整式的加减运算,解题的关键是熟练掌握合并同类项法则. 17.下列各对单项式是同类项的是( )A.-1x3y2与3y2x3B.-x与y C.3与3a2D.3ab2与a2b【答案】A【解析】【分析】根据同类项的定义分别进行判断即可.【详解】x3y2与3y2x3是同类项,所以A选项正确;;解:A、-12B、-x与y不是同类项,所以B选项错误;C、3与3a不是同类项,所以C选项错误D、3ab2与a2b不是同类项,所以D选项错误.故选:A.【点睛】本题考查了同类项:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.18.计算22结果是()xy xy23A.2x y5x y D.245xy B.2xy C.24【答案】A【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行运算即可.【详解】2223xy xy +=()22235+=xy xy ;故选A.【点睛】本题考查同类项合并法则:系数相加作为系数,字母和字母的指数不变.19.下列式子中计算正确的是( )A .(3)(25)2x y x y x y -+--=--B .()22121221x x x x --+=-+-C .(2)(5)242x y z x y z x y z +--+-=---D .()()22222222424x xy y x xy y x y -+--+=+【答案】B【解析】【分析】根据去括号的法则逐项进行化简即可得出答案.【详解】A. (3)(25)32538-+--=-+-+=-+x y x y x y x y x y ,∴选项错误;B. ()2221211222221--+=-+-=-+-x x x x x x ,∴选项正确;C. (2)(5)253+--+-=+---+=-x y z x y z x y z x y z x ,∴选项错误;D. ()()222222222224224242--+=-+--+=+-x xy y x xy y x xy y x xy y x ,∴选项错误;故选B.【点睛】本题考查了去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”去括号后,括号里的各项都改变符号.运用这一法则去掉括号.20.对多项式34a b c +-进行添括号,正确的是( )A .3(4)a b c ++B .3(4)a b c -+C .34()a b c +-D .3(4)a b c --+ 【答案】D【解析】【分析】根据去括号法则即可依次化简,即可判断.【详解】A. 3(4)a b c ++=34a b c ++,故错误;B. 3(4)a b c -+=34a b c --,故错误;C. 34()a b c +-=344a b c +-,故错误;D. 3(4)a b c --+=34a b c +-,正确;故选D.【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.。

(完整)七年级上册数学第二章整式的加减-专项练习100题含答案,推荐文档

(完整)七年级上册数学第二章整式的加减-专项练习100题含答案,推荐文档

整式的加减专项练习1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y);22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5);24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2);26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x2 1 x)-4(x-x21-+32 +);229、3x2-[7x-(4x-3)-2x2].30、5a+(4b-3a)-(-3a+b);31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a2-1+2a)-3(a-1+a2);34、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)].+(-35、 - 2 ab + 3 a 2b +ab3a 2b )-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 3 4 437、2x -(3x -2y +3)-(5y -2); 38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3)40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b )44、2x - {-3y + [3x - 2(3x - y )]}45、(-x 2+5+4x 3)+(-x 3+5x -4) 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).3a )]49、1 12 22 2 2 2xy+(- xy )-2xy -(-3y x ) 50、5a -[a -(5a -2a )-2(a -2 451、5m-7n-8p+5n-9m+8p 52、(5x2y-7xy2)-(xy2-3x2y)+5x 253、3x2y-[2x2y-3(2xy-x2y)-xy] 54、3x2-[5x-4(1x2-1)]21312 255、2a3b- a b-a2b+2a b-ab ;256、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab).57、a2+2a3+(-2a3)+(-3a3)+3a2;58、5ab+(-4a2b2)+8ab2-(-3ab)+(-a2b)+4a2b2; 59、(7y-3z)-(8y-5z);60、-3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2;63、3(a2-2ab)-2(-3ab+b2);64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m)-2(m2-3m)].66、-[2m-3(m-n+1)-2]-1.1 167、a-( a-4b-6c)+3(-2c+2b)3 268、-5a n-a n-(-7a n)+(-3a n)69、x2y-3xy2+2yx2-y2x70 、1a2b-0.4ab2-41a2b+22ab2;71、3a-{2c-[6a-(c-b)+c+(a+8b-6)]}572、-3(xy-2x2)-[y2-(5xy-4x2)+2xy];73、化简、求值1 x2-⎡2- ( 1 x2+ y2)⎤3 2 x2+1 y2),其中x=-2,y=-2 ⎢⎣243⎥⎦-2 (-3 3=-1 ; 74、化简、求值 1 x -2(x - 1 y 2)+(- 3 x + 1 y 2),其中 x =-2,y 2=- .2 3 2 3 375、 1 x 3 - ⎛- 3x 2 - 2 x 3 ⎫ - 1 x 2 + (4x + 6) - 5x 其中 x1 3⎝ 23⎪⎭2276、 化简,求值(4m+n )-[1-(m-4n )],m= 2 5 n=-1 1377、化简、求值 2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中 x=1,y=2,z=-3.79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中 x=-2.80、若两个多项式的和是 2x 2+xy+3y 2,一个加式是 x 2-xy ,求另一个加式.81、若 2a 2-4ab+b 2 与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求 5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、 求 3x 2+x -5 与 4-x +7x 2 的差.84、计算 5y+3x+5z 2 与 12y+7x-3z 2的和85、计算 8xy 2 +3x 2 y-2 与-2x 2 y+5xy 2-3 的差 86、 多项式-x 2+3xy- 1 y 与多项式 M 的差是-1 x 2 2 2-xy+y ,求多项式 M87、当 x=- 1,y=-3 时,求代数式 3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值. 288、化简再求值 5abc-{2a 2 b-[3abc-(4ab 2 -a 2 b )]-2ab 2},其中 a=-2,b=3,c=- 1489、已知 A=a 2 -2ab+b 2 ,B=a 2 +2ab+b 21(1)求 A+B ; (2) 求 (B-A);490、小明同学做一道题,已知两个多项式 A ,B ,计算 A+B ,他误将 A+B 看作 A- B ,求得 9x 2-2x+7,若 B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x2+2x-1,N=-x2-2+3x,求 M-2N.92、已知A = 4x2 - 4xy +y2 , B =x2 +xy - 5 y2 ,求 3A-B93、已知 A=x2+xy+y2,B=-3xy-x2,求 2A-3B.94、已知a - 2 +(b+1)2=0,求 5ab2-[2a2b-(4ab2-2a2b)]的值.95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中 a、b、c 满足|a-1|+|b- 2|+c2=0.96、已知 a,b,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知 a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知 m2+3mn=5,求 5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设 A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3) 2 =0,且B-2A=a ,求 a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当 a 取任意有理数时, 请比较 A 与 B 的大小.整式的加减专项练习答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a2 +6b 2 4、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5 、 3x 2-[7x-(4x-3)-2x 2] = 5x 2-3x-3 6、(2xy-y )-(-y+yx )= xy7、5(a 2 2b-3ab 2 )-2(a 2 b-7ab ) = -a 2 b+11ab 8、(-2ab+3a )-2(2a-b )+2ab= -2a+b 9、(7m2 n-5mn )-(4m 2 n-5mn )= 3m 2 n 10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-13 11、-3x2 y+3xy 2 +2x 2 y-2xy 2 = -x 2 y+xy 2 12、2(a-1)-(2a-3)+3.=413、-2(ab-3a2 )-[2b 2 -(5ab+a 2 )+2ab]= 7a 2 +ab-2b 2 14、(x2 -xy+y )-3(x 2 +xy-2y )= -2x 2 -4xy+7y 15、3x 2 -[7x-(4x-3)-2x 2 ]=5x 2 -3x-3 16、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y 18、2(2x-3y )-(3x+2y+1)=2x-8y-1 19、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2 -4a 20、5m-7n-8p+5n-9m-p = -4m-2n-9p 21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2+7a+223、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+1024、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 225、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+126、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a2 +ab-2b 2 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=028、(2x 2- 1 +3x )-4(x -x 2+ 1 ) = 6x2 -x- 52 2 229、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -3 30、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a2 -3ab+2b 2 )+(a 2 +2ab-2b 2 )= 4a 2 -ab32、2a 2 b+2ab 2 -[2(a 2 b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235 、36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=0 37、2x -(3x -2y +3)-(5y -2)=-x-3y-1ab-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+4 39、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+4 41、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a 42、 3x -[5x +(3x -2)]=-5x+2 43、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、 2x - {- 3y + [3x - 2(3x - y )]} = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x3 -x 2+5x+1 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、11xy+(- 1xy )-2xy 2-(-3y 2x )= xy+xy2 24450、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a 51、5m-7n-8p+5n-9m+8p=-4m-2n52、(5x 2y-7xy 2)-(xy 2-3x 2y )=8x 2y-6xy 253、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]=-2x 2y+7xy1 54 、 3x 2-[5x-4(x 2-1)]+5x 2= 10x 2 -5x-4211 31 55、2a 3b- a 3b-a 2b+ a 2b-ab 2= a 3b- a 2b-ab 2222256、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab )=-2a 2+11ab-14b 257、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2= -3a 3+4a 258 、 5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2=8ab+8ab 2-a 2b 59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-2461、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a2 -2b 2 64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 265、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m 66、-[2m-3(m-n+1)-2]-1=m-3n+41 11 67、 a-(a-4b-6c)+3(-2c+2b)= - a+10b32668 、 -5a n-a n-(-7a n)+(-3a n)= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 22 - ab +3 a 2b +ab +(-3 a 2b )-1 = 13 4 4 3⎭71、a 2b71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)1-[y 2-(5xy-4x 2)+2xy]=3 2x 2 2-y 21 4 73、化简、求值 x 2-⎡2- ( 1 x 2+ y 2)⎤ - (- x 2+ y 2),其中 x =-2, y =- 2⎢⎣ 2 1 8原 式 =2x 2+ y 2-2 =629⎥⎦ 2 3 3 3 1 1 3 1 2 74、化简、求值 x -2(x - y 2)+(- x + y 2),其中 x =-2,y =- .23233原式=-3x+y2 =6 49 1 x 3 - ⎛- 3 x 2 - 2 x 3 ⎫ - 1 x 2 + (4x + 6) - 5x 其中 x =-11 ;75、 3⎝ 23 ⎪ 223原式=x 3 +x 2 -x+6=6 82 1 76、 化简,求值(4m+n )-[1-(m-4n )],m=n=-153原式=5m-3n-1=577、化简、求值 2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中 a =-3,b =2 原式=-2ab 3+3ab 2=12 78、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中 x=1,y=2,z=-3.原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中 x=-2. 原式=-2x2 +x-6=-16 80、若两个多项式的和是 2x 2+xy+3y 2,一个加式是 x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若 2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求 5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y83、 求 3x 2+x -5 与 4-x +7x 2 的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z2 与 12y+7x-3z 2 的和 (5y+3x+5z2 )+(12y+7x-3z 2 )=17y+10x+2z 2 85、计算 8xy 2 +3x 2 y-2 与-2x2 y+5xy 2 -3 的差 (8xy2 +3x 2 y-2)—(-2x 2 y+5xy 2 -3)=5x 2 y+3xy 2 +1 86、 多项式-x2 +3xy- 1 y 与多项式 M 的差是- 1x 2-xy+y ,求多项式 M 221 3 M=- x 2+4xy — y221 a 2b-0.4ab 2- 1 a 2b+2 ab 2 = - 1 4 2 5 4187、当x=- ,y=-3 时,求代数式3(x2-2xy)-[3x2-2y+2(xy+y)]的值.2原式=-8xy+y= —1588、化简再求值 5abc-{2a 2b-[3abc-(4ab 2-a 2b)]-2ab 2},其中 a=-2,b=3,c=-14原式=83abc-a 2b-2ab 2=3689、已知 A=a 2-2ab+b 2,B=a 2+2ab+b 21(1)求 A+B;(2)求 (B-A);4 A+B=2a 2+2b 21(B-A)=ab 490、小明同学做一道题,已知两个多项式 A,B,计算 A+B,他误将 A+B 看作 A-B,求得9x2-2x+7,若 B=x2+3x-2,你能否帮助小明同学求得正确答案?A=10x2+x+5 A+B=11x2+4x+391、已知:M=3x2+2x-1,N=-x2-2+3x,求 M-2N. M-2N=5x2-4x+392、已知A = 4x2 - 4xy +y2 , B =x2 +xy - 5 y2 ,求 3A-B3A-B=11x 2-13xy+8y 293、已知 A=x2+xy+y2,B=-3xy-x2,求 2A-3B.2A-3B= 5x2+11xy+2y294、已知a - 2 +(b+1)2=0,求 5ab2-[2a2b-(4ab2-2a2b)]的值.原式=9ab2-4a2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中 a、b、c 满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-3296、已知 a,b,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知 a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知 m2+3mn=5,求 5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设 A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且 B-2A=a,求a 的值. B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a 取任意有理数时,请比较 A 与B 的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

人教版七年级数学上册 第二章整式的加减综合知识点测试题(含答案)

人教版七年级数学上册 第二章整式的加减综合知识点测试题(含答案)

人教版七年级数学上册整式的加减综合知识点测试题知识点1 整式、单项式、多项式1.下列代数式中:1x ,2x +y ,13a 2b ,x -y 2,5y 4x,0,整式有( ) A .3个 B .4个C .5个D .6个2.单项式2a 3b 的次数是( )A .2B .3C .4D .53.单项式-2x 3y 的系数和次数分别是( )A .-2,4B .4,-2C .-2,3D .3,-24.5πx2y46的系数和次数分别为( )A .56,7B .5π6,6C .5π6,8D .5π,65.下列关于多项式5ab 2-2a 2bc -1的说法中,正确的是() A .它是三次三项式 B .它是四次两项式C .最高次项是-2a 2bcD .常数项是16.对于式子:x +2y 2,a 2b ,12,3x 2+5x -2,abc,0,x +y 2x ,m ,下列说法正确的是( )A .有5个单项式,1个多项式B .有3个单项式,2个多项式C .有4个单项式,2个多项式D .有7个整式7.-xy25的系数是 ,次数是 .8.-πx2y 6的系数是 ,次数是 . 9.要使关于x ,y 的多项式my 3+3nx 2y +2y 3-x 2y +y 不含三次项,求2m +3n 的值.知识点2 同类项1.下列各组代数式中,是同类项的是( )A .-3p 2与2p 3B .2xy 与2abC .a 3b 2与a 2b 3D .-5mn 与10mn2.若3a m +2b 与12ab n -1是同类项,则m +n =( ) A .-2 B .2C .1D .-13.下列计算中,正确的是( )A .3+2ab =5abB .5xy -y =5xC .-5m 2n +5nm 2=0D .x 3-x =x 24.已知4x 2m y m +n 与-3x 6y 2是同类项,则m -n = .5.若代数式mx 2+5y 2-2x 2+3的值与字母x 的取值无关,则m 的值是 .6.化简:x 2y -3xy 2+2yx 2-y 2x .7.化简:3x 2+2xy -4y 2-3xy +4y 2-3x 2.知识点3 整式的加减1.下面计算中,正确的是( )A .3x 2-x 2=3B .3a 2+2a 3=5a 5C .3+x =3xD .-0.25ab +14ba =0 2.一个多项式减去x 2-2y 2等于x 2+y 2,则这个多项式是( )A .-2x 2+y 2B .2x 2-y 2C .x 2-2y 2D .-x 2+2y 23.化简:-2a +(3a -1)-(a -5).4.化简:(1)x -2y +(2x -y );(2)(3a 2-b 2)-3(a 2-2b 2).5.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1,求3A +6B .6.有一道题目,是一个多项式减去x 2+14x -6,小强误当成了加法计算,结果得到2x 2-x +3,正确的结果应该是多少?知识点4 整式化简求值1.若a -b =5,则3a +7+5b -6a +13b =( ) A .-7 B .-8C .-9D .102.若a -b =1,则整式a -(b -2)的值是 .3.若x =1,y =-2,代数式5x -(2y -3x )的值是 .4.先化简,再求值:14(-4x 2+2x -8)-⎝ ⎛⎭⎪⎫12x -1,其中 x =12.5.先化简,再求值:-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =-1,b =-2.6.有这样一题:计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中x =12,y =-1.甲同学把“x =12”错抄成了“x =-12”.但他计算的结果也是正确的,请你通过计算说明原因.知识点5 列代数式1.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )A .(7m +4n )元B .28mn 元C .(4m +7n )元D .11mn 元2.一个两位数,个位上是x ,十位上是y ,用代数式表示这个两位数( )A .xyB .yxC .10x +yD .10y +x3.某工厂一月份的产值为a ,若二月份的产值比一月份的产值增长了x %,三月份的产值又比二月份的产值增长了x %,则三月份的产值是( )A .2x %aB .(1+2x %)aC .(1+x %)x %aD .(1+x %)2a4.今年,某校成功举办了“经典诵读”比赛,其中参加比赛的男同学有a 人,女同学比男同学的56少24人,则参加“经典诵读”比赛的学生一共有( )A .⎝ ⎛⎭⎪⎫56a -24人 B .65(a -24)人 C .65(a +24)人 D .⎝ ⎛⎭⎪⎫116a -24人 5.下列表达错误的是( )A .比a 的2倍大1的数是2a +1B .a 的相反数与b 的和是-a +bC .比a 的平方小1的数是a 2-1D .a 的2倍与b 的差的3倍是2a -3b6.x 表示一个两位数,y 表示一个三位数,如果把x 放在y 的左边组成一个五位数,那么表示这个五位数的代数式是( )A.xy B.x+yC.100x+y D.1 000x+y7.三个小伙伴各出资a元,共同购买了一个价格为b元的篮球,还剩下一点钱,则剩余金额为元.(用含a,b的代数式表示) 8.某种商品n千克的售价是m元,则这种商品8千克的售价是元.9.请列代数式表示“a的3倍与b的相反数的和”: . 10.每件m元的上衣,现按原价的7折出售,这件上衣现在的售价是元.11.如图,在一个长方形休闲广场的中央设计一个圆形的音乐喷泉,若圆形音乐喷泉的半径为r米,广场的长为a米,宽为b米,则广场空地的面积表示为平方米.12.一件童装每件的进价为a元(a>0),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为元.13.如图,将边长为2的小正方形和边长为x的大正方形放在一起.(1)用x表示阴影部分的面积;(2)计算当x=5时,阴影部分的面积.14.某公园准备修建一块长方形草坪,长为30米,宽为20米,并在草坪上修建如图所示的十字路,已知十字路宽为x米,回答下列问题:(1)修建的十字路面积是多少平方米?(2)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?知识点6 整式的加减应用1.已知2a+3b-1=0,则6a+9b的值为 .2.若2x2+3x+7的值是8,则9-4x2-6x的值为 .3.已知2y-x=3,则3(x-2y)2-5(x-2y)-4的值为 .4.如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆.(1)求剩下铁皮的面积(用含a,b的式子表示);(2)当a=4,b=1时,求剩下铁皮的面积是多少(π取3.14)?5.小明用3天看完一本课外读物,第一天看了a页,第二天看的比第一天多50页,第三天看的比第二天少85页.(1)用含a的代数式表示这本书的页数;(2)当a=50时,这本书的页数是多少?6.笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本,6支圆珠笔;小明买6本笔记本,3支圆珠笔.(1)买这些笔记本和圆珠笔小红和小明一共花费多少元钱?(2)若每本笔记本比每支圆珠笔贵2元,求小明比小红多花费了多少元钱?7.小芳房间的窗户如图所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同).(1)装饰物所占的面积是多少?(2)窗户中能射进阳光的部分的面积是多少?(窗框面积忽略不计)(3)计算当a=6 dm,b=4 dm时,窗户中能射进阳光的部分的面积.(π取3.14)答案知识点1 整式、单项式、多项式1.B2. C3. A4. B5.C6. C7.-15 ,38. -π69.解:因为多项式my 3+3nx 2y +2y 3-x 2y +y =(m +2)y 3+(3n -1)x 2y +y 不含三次项,所以m +2=0,3n -1=0.所以m =-2,n =13. 所以2m +3n =2×(-2)+3×13=-3 知识点2 同类项1. D2. C3. C4. 45. 26.解:原式=(1+2)x 2y -(3+1)xy 2=3x 2y -4xy 2.7.解:原式=(3x 2-3x 2)+(2xy -3xy )+(4y 2-4y 2)=-xy. 知识点3 整式的加减1. D2. B3.解:原式=-2a +3a -1-a +5=4.4.(1)解:原式=x -2y +2x -y =3x -3y.(2)解:原式=3a 2-b 2-3a 2+6b 2=5b 2.5.解:3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.6.解:这个多项式为(2x 2-x +3)-(x 2+14x -6)=x 2-15x +9,所以(x 2-15x +9)-(x 2+14x -6)=-29x +15,所以正确的结果为-29x +15.知识点4 整式化简求值1. B2. 33. 124.解:原式=-x 2+12x -2-12x +1=-x 2-1,当x =12时,原式=-⎝ ⎛⎭⎪⎫122-1=-54.5.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2, 当a =-1,b =-2时,原式=-(-1)×(-2)2=4.6.解:原式=2x 3-3x 2y -2xy 2-x 3+2xy 2-y 3-x 3+3x 2y -y 3=-2y 3, 此题的结果与x 的取值无关. 知识点5 列代数式1. C2. D3. D4. D5. D6. D7.(3a -b)8.8m n9. 3a -b 10.0.7m 11. (ab -πr2) 12. 0.8a 13.解:(1)阴影部分的面积为12×2(2+x )+12x 2=2+x +12x 2.(2)当x =5时,2+x +12x 2=2+5+12.5=19.5.14.(1)解:30x +20x -x 2=50x -x 2.答:修建十字路的面积是(50x -x 2)平方米.(2)解:600-(50x -x 2)=600-50x +x 2=600-50×2+2×2=504. 答:草坪(阴影部分)的面积是504平方米. 知识点6 整式的加减应用 1. 3 2. 7 3. 384.(1)解:长方形的面积为a ×2b =2ab , 两个半圆的面积为π×b 2=πb 2, 所以阴影部分面积为2ab -πb 2. (2)解:当a =4,b =1时,2ab -πb 2=2×4×1-3.14×1=4.86.5.解:(1)a +(a +50)+[(a +50)-85]=a +a +50+a -35=3a +15.(2)当a =50时,3a +15=3×50+15=165. 答:当a =50时,这本书的页数是165页. 6.解:(1)由题意,得3x +6y +6x +3y =9x +9y.答:买这些笔记本和圆珠笔小红和小明一共花费了(9x +9y )元. (2)由题意,得(6x +3y )-(3x +6y )=3x -3y. 因为每本笔记本比每支圆珠笔贵2元,即x -y =2, 所以小明比小红多花费3x -3y =3(x -y )=6(元). 答:小明比小红多花费了6元钱.7.(1)解:依题意,得装饰物的面积正好等于一个半径为b4的圆的面积,即π⎝ ⎛⎭⎪⎫b 42=116πb 2.(2)解:窗户中能射进阳光的部分的面积是ab -116πb 2.(3)解:当a =6 dm ,b =4 dm 时,ab -116πb 2=6×4-116×3.14×42=24-3.14=20.86(dm 2).答:窗户中能射进阳光的面积是20.86 dm 2.。

《常考题》初中七年级数学上册第二单元《整式的加减》经典复习题(含答案解析)

《常考题》初中七年级数学上册第二单元《整式的加减》经典复习题(含答案解析)

一、选择题1.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .222.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y =3.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 4.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3 5.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022 6.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时A .2m n +B .mn m n +C .2mn m n +D .m n n m + 7.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- 8.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个 9.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差 10.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( )A .2B .﹣2C .0D .4 11.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍12.式子5x x-是( ). A .一次二项式 B .二次二项式C .代数式D .都不是 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c 14.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式 D .23xy π的系数是23π 15.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( ) A .3a B .6a +bC .6aD .10a -b 二、填空题16.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______.17.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.18.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.19.若212m m a b -是一个六次单项式,则m 的值是______. 20.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____. 21.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.22.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______. 23.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.24.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)25.“a 的3倍与b 的34的和”用代数式表示为______. 26.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________三、解答题27.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n 个点阵图相对应的等式.28.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .29.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是.(用含a,b的代数式表示)(2)若a=0.5米,b=2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).30.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸x,分别回答下条的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为cm列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求P的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点P的距离(用P表示)。

人教版七年级上《第2章整式的加减》拔高题及易错题附答案

人教版七年级上《第2章整式的加减》拔高题及易错题附答案

人教版七年级数学第2章整式的加减拔咼及易错题精选一、选择题(每小题4分,共40分)1.计算3a3+ a3,结果正确的是()A . 3a6B . 3a3C . 4a62 .单项式-Z a2n-1b4与3a2m b8m是同类项,则(1+n)100?(1-m)102:28. —个多项式A与多项式B = 2x2—3xy —y2的和是多项式C = x2+ xy + y2,则A等于(A.C.9. 当A.C.12.已知单项式討°与单项式才严的差是ax肽严,则耐A .无法计算3.已知a3b m+ x n—1y3m—1A. 6B. —6B .141 —s n+1 2m—5 s+3n—a b +x yC. 12C. 4D. 1的化简结果是单项式,那么D. —12mn s=(10. 一种商品进价为每件a元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利()A. 0.125a 元B. 0.15a 元C. 0.25a 元D. 1.25a 元4 .若A和B都是五次多项式,则(A. A + B 一定是多式C. A —B是次数不高于5的整式15 . a—b=5,那么3a+ 7+ 5b —6(a+— b)等于(3C. —9 B. A —B 一定是单项式D. A + B是次数不低于5的整式、填空题(每小题5分,共30分)3_. 2 42 abA. - 7B. —8 D. 1011.单项式-宁的系数是,次数是6.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价次打7折,现售价为b元,则原售价为()A丄1°b A. a —7 c — 1°a C. b —7ba10 b 7a10a元后,再 5 3 5 313.当x=1 时,代数式ax +bx +cx+1=2017,当x= —1 时,ax +bx +cx+ 1 =14 .已知2=3,代数式=一洱的值为a-b 3(a 卞b)7.如图,阴影部分的面积是(A 11 13A. xyB. xy2 2D. 3xyC. 6xy15.已知a, b, c在数轴上的位置如图所示,化简: |a— b|+ |b+ c|+ |c—a|=(全卷总分150分)姓名得分D .4a3)x2—4xy —2y2 B . —x2+ 4xy+ 2y23x2—2xy —2y2 D . 3x2—2xyx = 1 时,ax+ b+ 1 的值为一2,则(a+ b—1)(1 —a—b)的值为(—16 B . —816•平移小菱形◊可以得到美丽的中国结”图案,下面四个图案是由◊平移后得到的类似中国结”的图案,按图中规律,第20个图案中,小菱形的个数是__________ .佃.(8分)多项式a2x3+ax2—4x3+2x2+x+1是关于x的二次三项式,求a2+— +a的值. a20. (8分)已知多项式(2x2+ ax—y+ 6) —(bx2—2x+ 5y —1).(1)若多项式的值与字母x的取值无关,求a、b的值;(2)在⑴的条件下,先化简多项式2(a2—ab+ b2) —(a2+ ab+ 2b2),再求它的值.三、解答题(共80分)17. (8分)已知数轴有A、B、C三点,位置如图,分别对应的数为x、2、y,若, BA=BC,求4x+4y+30 的值。

人教版七年级数学上册第二章整式的加减法习题大全(含答案) (4)

人教版七年级数学上册第二章整式的加减法习题大全(含答案) (4)

人教版七年级数学上册第二章整式的加减法习题大全(含答案)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:3(x﹣1)+▇=x2﹣5x+1(1)求所挡的二次三项式.(2)若x=﹣3,求所挡的二次三项式的值.【答案】(1)x2﹣8x+4;(2)37.【解析】【分析】(1)直接利用整式的加减运算法则计算得出答案;(2)直接把x的值代入求出答案.【详解】解:(1)由题意,可得所挡的二次三项式为:(x2-5x+1)-3(x-1)=x2-5x+1-3x+3=x2-8x+4;(2)当x=-3时,x2-8x+4=(-3)2-8×(-3)+4=9+24+4=37.【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.32.先化简,再求值:222243(31)2(12)x x x x x x ⎡⎤-------⎣⎦,其中:12x = 【答案】28135x x --;192- 【解析】【分析】原式去括号合并得到最简结果,把x 的值代入计算即可求出值.【详解】22224--3-3-1-2-[ ]1-2x x x x x x ()()22224--393-224)x x x x x x =++++(224--4135x x x =++()2244-13-5x x x =+28-13-5x x = 当12x =时,原式21113198-13-5=2--5=2222=⨯⨯-() 【点睛】此题考查整式的加减—化简求值,解题关键在于掌握运算法则.33.计算:222(53)3(2)3(24)x y x y y x ---+-【答案】2109x y +﹣【解析】【分析】先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【详解】解:222(53)32324x y x y y x ---+-()()2225336612x y x y y x =--++-2225312366x x x y y y =---++2109x y =-+【点睛】此题考查整式的加减,解题关键在于掌握运算法则.34.化简:()()222232mn mn mn mn ----+【答案】2mn -【解析】【分析】按照去括号、合并同类项的法则进行运算即可.【详解】原式=224232mn mn mn mn -++-2mn =-;【点睛】本题主要考查去括号、合并同类项,掌握去括号、合并同类项的法则是解题的关键,注意当括号前有数字因数时,要用数字因数去乘括号里的每一项,同时注意运算符号.35.(1)化简:222(29)(34)a b a b ++--(2)合并同类项:2222325352a b ab a b ab +---+【答案】(1)214a b +;(2)233ab --【解析】【分析】(1)先去括号,再合并同类项即可;(2)根据合并同类项的法则进行合并即可.【详解】(1)原式2224183414a b a b a b =+--=+(2)原式22222(33)(25)5233a b a b ab ab ab =-+--+=--【点睛】本题主要考查代数式的化简,熟练掌握化简的基本步骤是关键.36.如图,一只蚂蚁从点A 沿数轴向右爬2个单位长度到达点B ,若点A 表示的数32a =-,设点B 所表示的数为b .(1)求b 的值.(2)先化简:()()2232322a ab a b ab b ⎡⎤---++⎣⎦,再求值.【答案】(1)12b =;(2)-8ab ;6. 【解析】【分析】 (1)用点A 表示的数加上2,求出b 的值是多少即可.(2)原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:(1)根据题意可得b=31222-+=. (2)原式()()22363222a ab a b ab b =---++()()2236328a ab a ab ab =--+=-. 当32a =-,12b =时,原式318622⎛⎫=-⨯-⨯= ⎪⎝⎭.【点睛】此题考查了数轴的知识和整式的加减-化简求值,熟练掌握运算法则是解本题的关键.37.(1)若代数式﹣4x6y与x2n y是同类项,求(4n﹣13)2015的值.(2)若2x+3y=2015,求2(3x﹣2y)﹣(x﹣y)+(﹣x+9y)的值.【答案】(1)-1;(2)4030【解析】【分析】(1)根据同类项的概念即可求出n的值,然后代入原式即可求出答案.(2)先将原式化简,然后将2x+3y=2015代入即可求出答案.【详解】(1)由题意可知:2n=6,n=3,∴(4n−13)2015=(12−13)2015=−1(2)当2x+3y=2015时,∴原式=6x−4y−x+y−x+9y=4x+6y=2(2x+3y)=4030【点睛】本题考查整式的加减,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型.38.先化简,再求值:2229636(1)3x x x x x ⎛⎫+---- ⎪⎝⎭,其中12x =-. 【答案】8x 2+6;当x=-0.5时,原式=8【解析】【分析】先去括号,再合并同类项得到原式=8x 2+6,然后把12x =-代入计算即可.【详解】原式=9x +6x 2−3x +2x 2−6x +6=8x 2+6, 当x =−12时,原式=8×(−12)2+6=2+6=8. 【点睛】本题考查了整式的加减−化简求值:先去括号,再合并同类项,然后把字母的值代入计算得到对应整式的值.39.先化简后求值:2222(43)(35)a ab b a ab b +--+-,其中a=3,b=-2.【答案】a 2−2ab ;21【解析】【分析】先将多项式化简为22a ab -,再代入求解即可.【详解】222222222(43)(35)43352a ab b a ab b a ab b a ab b a ab+--+-=+---+=-,∵a=3,b=-2,∴222323(2)91221a ab -=-⨯⨯-=+=.【点睛】本题考查多项式的化简求值,解题的关键是能熟练、正确地化简所给多项式.40.化简:(1)533a b a b +-+(2)22(53)(231)x x x x --+-(3)22222(4)3(2)a b ab ab a b ---(4)225[23(2)1]x x x x ----【答案】(1)24a b +;(2)2361x x -+;(3)22145a b ab -;(4)2881x x -+.【解析】【分析】根据多项式的加减运算法则计算即可,注意有括号的要先去括号.【详解】(1)533(53)(31)24a b a b a b a b +-+=-++=+;(2)22222(53)(231)53231361x x x x x x x x x x --+-=---+=-+;(3)22222222222(4)3(2)8236145a b ab ab a b a b ab ab a b a b ab ---=--+=-; (4)2222222225[23(2)1]5[2361]5[381]5381881x x x x x x x x x x x x x x x x ----=--+-=--+-=+-+=-+.【点睛】本题考查多项式的混合运算,解题的关键是掌握合并同类项的方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、1、如果a <0,ab <0,那么a b +1+a –b-3的值等于____________________
2、有一块长为a ,宽为b 的长方形铝片,四角各截去一个相同的边长为x 的正方形,折起来做成一个没有盖的盒子,则此盒子的容积V 的表达式应该是( )
A.V=x 2(a-x)(b-x)
B.V=x(a-x)(b-x)
C.V=3
1
x(a-2x)(b-2x) D.V=x(a-2x)(b-2x)
3、若P 是关于x 的三次三项式,Q 是关于x 的五次三项式,则P+Q 是关于x 的_____次多项式,P -Q 是关于x 的______次多项式.
4、若A 和B 都是4次多项式,则A+B 一定是( )
A 、8次多项式
B 、4次多项式
C 、次数不高于4次的整式
D 、次数不低于4次的整式 二、找规律题 1、已知一组数:1,
43,95,167,25
9
,…,用代数式表示第n 个数为
2、如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表: 所剪次数 1 2 3 4 … n 正三角形个数
4
7
10
13

a n
n
3、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图15-12(1)所示;第2次把第1次铺的完全围起来,如图15-12(2)所示;第3次把第2次铺的完全围起来,如图15-12(3)所示……依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块块数为 .
4、观察下列各等式:
①9-1=8 ②16-4=12 ③25-9=16 ④36-16=20 ……
这些等式反映自然数间的某种规律,设n(n ≥1)表示自然数,用关于n 的等式表示 这个规律为 ___________ .
15、如图1是小明用火柴搭的1条、2条、3条“金鱼”,则搭n 条“金鱼”需要火柴
根.
16、根据如图所示的程序计算, 若输入x 的值为1,则输出y 的值为 ;
三、拓展延伸
1、已知A=a 2+b 2-c 2,B=-4a 2+2b 2+3c 2,且A+B+C=0,求C .
2、的为多少?,则的值为代数式634
964322+-+-x x x x
3、()[]
(){}2222223111432437bab ab b a ab ab ab b a ab b a -------+-计算:
4、试说明:不论x 取何值代数式)674()132()345(323223x x x x x x x x x +--+--+---++的值是不会改变的。

1条
2条
3条
图1
输入x
输出y
平方 乘以2 减去4
若结果大于0
否则
5、已知整式2x 2+ax -y+6与整式2bx 2-3x+5y -1的差与字母x 的值无关,试求代数式2(ab 2+2b 3-a 2b )+3a 2-(2a 2b -3ab 2-3a 2)的值.
6、有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中x=0.25,y=-1;甲同学把“x=0.25”,错抄成“x=-0.25”,但他的计算结果也是正确的,你说这是为什么?
7、已知:;)()(,,0553
2
12=+-m x y x m 满足 231272)2(a b b a y 与+-是同类项,求代数
式:)733()9(6222222y xy x y xy m y x +---+-的值。

8、已知3a -5b+19=0,a+8b -1=0,不用求出a ,b 的值,•你能计算出下列代数式的值吗?
(1)-12a -9b (2)4a -26b
四、解答题
1、某工厂用12万元购进一台机器,随着使用年限的增加,机器的实际价值降低,下表是机器的实际价值y(单位:万元)与使用年限x的关系.
①写出实际价值y与年限x的关系;②计算8年后该机器的实际价值;
③若机器的实际价值降到3万元时,就必须报废处理,计算这台机器可以使用多少年?
2、(本题满分7分)根据下面的两种移动电话计费方式表,考虑下列问题。

(1)若一个月内在本地通话250分时,按哪种方式交费更合算?
(2)在某地每月通话时间为多少分时,两种计费方式收费一样多?

用方式一每月收月租费30元,此外根据累计通话时间按0.30元∕分加收通话费;用方式二不收月租费,根据累计通话时间按0.40元∕分收通话费。

相关文档
最新文档