七年级数学整式的加减练习题精选
七年级数学上册第二章《整式的加减》经典习题

1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C 解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.2.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C、一件上衣的进价为50元,售价为a元,用代数式表示一件上衣的利润为(50a-)元,错误,不符合题意;D、小明买了5支铅笔和4本练习本,其中铅笔x元1支,练习本y元1本,那么他应付(5x+4y)元,正确,符合题意;故选:D.【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.3.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.85D解析:D【分析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为()()122n n+++n2,根据规律求解.【详解】通过观察,得到小圆圈的个数分别是:第一个图形为:()1222+⨯+12=4,第二个图形为:()1332+⨯+22=10,第三个图形为:()1442+⨯+32=19,第四个图形为:()1552+⨯+42=31,…,所以第n个图形为:()()122n n+++n2,当n=7时,()()72712+++72=85,故选D.【点睛】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.4.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.5.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2tD 解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】 A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D .【点睛】 本题考查单项式的定义,较为简单,要准确掌握定义.6.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n A 解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n 个“金鱼”需用火柴棒的根数为6n +2.故选:A .【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 7.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D【分析】 利用大正方形的周长减去4个小正方形的周长即可求解.解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b -, ∴大正方形的周长与小正方形的周长的差是:2a b +×4-4a b -×4=a+3b. 故选;D.【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.下列去括号正确的是( )A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y xx y x +--=+-+ D .()()223423422x y xx y x --+=--+ C解析:C【分析】依据去括号法则计算即可判断正误.【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+- ⎪⎝⎭,故此选项错误; B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y xx y x +--=+-+,此选项正确; D. ()()223423422x y xx y x --+=---,故此选项错误;故选:C.【点睛】此题考查整式的化简,注意去括号法则.11.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.12.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C 解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.13.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - D解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D.【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.14.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.15.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关1.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 2.如图,阴影部分的面积用整式表示为_________.x2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x +6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x 2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.4.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x.【解析】解:系数为-2,次数为4的单项式为:-2x4.故答案为-2x4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.6.关于x的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x的次数逐渐减小排列,这个二次三项式为____.-3x2+5x-4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.7.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.8.礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n+-解析:a n1【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.9.当x=1时,ax+b+1=﹣3,则(a+b﹣1)(1﹣a﹣b)的值为_____.-25【分析】由x =1时代数式ax+b+1的值是﹣3求出a+b的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x=1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b=﹣4∴(a解析:-25.【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.10.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 11.为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.1.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-解析:(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 2.已知单项式﹣2x 2y 的系数和次数分别是a ,b .(1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值.解析:(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a 、b 的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m 的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b ﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.3.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.。
七年级数学上册整式的加减基础50题(原卷+解析)

2.3整式的加减基础50题一.整式的加减(共25小题)1.(2019秋•襄州区期末)下列运算正确的是( ) A .532−=a aB .235+=a b abC .()−−=+a b b aD .2−=ab ba ab2.(2019秋•自贡期中)一个多项式加上2233−x y xy 得323−x x y ,则这个多项式是( ) A .323+x xyB .323−x xyC .32263−+x x y xyD .32263−−x x y x y3.(2018秋•东城区期末)计算2653−+a a 与2521+−a a 的差,结果正确的是( ) A .234−+a aB .232−+a aC .272−+a aD .274−+a a4.下面计算正确的是( )A .2233−=x xB .235325+=a a aC .33+=x xD .10.2504−+=ab ba5.(2016秋•海原县期中)有理数a ,b ,c 表示的点在数轴上的位置如图所示,则||||2||(+−−−+=a c c b b a ) A .3−a bB .−−a bC .32+−a b cD .2−−a b c6.(2012秋•洪湖市期中)三个连续偶数中间的一个是2n ,则三个连续偶数的和是( ) A .62+nB .62−nC .6nD .3(21)−n7.(2011秋•虎林市校级期中)加上21−x 等于233−−x x 的多项式是( ) A .234+−x xB .2334−−x xC .2332−−x xD .232++x x8.(2009•江西)化简:2(21)−+−a a 的结果是( ) A .41−−aB .41−aC .1D .1−9.(2019秋•开福区校级月考)下列说法正确的是( ) A .单项式22π−xy 的系数是2π−,次数是3B .单项式432x 的次数是7C .多项式223+a b 与227−+−ab a b 的和为22102−−a ab bD .多项式222−+x xy y 的二次项的系数和是210.(2018秋•雨花区校级期末)多项式2835−+x x 与323457−−+x mx x 多项式相加后,不含二次项,则m 的值是( ) A .2B .4C .2−D .4−11.(2018秋•天心区校级期末)已知多项式322231=−+−A x mx x ,3226=−+++B x x nx ,若−A B 的结果中不含2x 和x 项,则m ,n 的值为( ) A .1=−m ,3=nB .1=−m ,3=−nC .1=m ,3=nD .1=m ,3=−n12.(2018秋•沙洋县期中)一个多项式与234−m 的和是25−+m m ,则这个多项式为( ) A .229−+m mB .221−−+m mC .229−−+m mD .229−++m m13.(2017秋•岳麓区校级期中)减去6−a 等于2425−+a a 的代数式是( ) A .2485−+a aB .2445−+a aC .2445++a aD .2485−−+a a14.(2019秋•开福区校级期中)已知3−=−a b ,2+=c d ,则()()+−−a c b d 的值是( ) A .1−B .5−C .5D .115.若A 与B 都是二次多项式,则关于−A B 的结论,下列选项中正确的有( ) A .一定是二次式B .可能是四次式C .可能是一次式D .不可能是零16.(2016秋•永城市期中)计算2(45)(32)−−−a b a b 的结果为 .17.(2015秋•大同期末)一个多项式加上2543−−x x 得23−−x x ,则这个多项式为 .18.(2008•台州)化简:1(24)22−+=x y y .19.(2002•江西)化简:2(21)−−=a a .20.(2019秋•雨花区校级月考)设有理数a ,b 在数轴上的对应点如图所示,化简|||||1|||+−−−+−a b a b b .21.(2019秋•娄底期中)化简 (1)225(3)(96)−++−−+x x x(2)(73)2−−y z (85)−y z22.(2018秋•开福区校级期中)已知:220−−=x y . (1)2−=x y .(2)求:(546)2(1)++−+−+x y y x 的值.23.(2017秋•岳麓区校级期中)已知a ,b 为常数,且多项式2+−+x ax y b 与多项式2363−+−bx x y 的差与x 的值无关,求代数式22017a b 的值.24.(2019秋•开福区校级期中)化简下列各式: (1)2223144−−+a b ab a b ab(2)2(23)3(23)−−−a b b a25.(2019秋•天心区校级期中)某同学做一道数学题:两个多项式A 、B ,其中2234=−−B x x ,试求2−A B 的值.这位同学把“2−A B ”看成“2+A B ”,结果求出的答2582−−x x . (1)2−A B 的正确答案是多少?(2)若2=−x 时,2−A B 的值是多少?二.整式的加减—化简求值(共25小题)26.(2018秋•开福区校级期中)先化简,再求值:2332(21)(122)−+−−−+x x x x ,其中2=x .27.先化简,再求值:22226[32(13)6]−+−+x xy xy x ,其中4=x ,12=−y .28.先化简,再求值:223(2)2(3)−−−−x xy y x y ,其中1=−x ,2=y .29.先化简,再求值:2212(35)2(32)+−−+xy x xy xy x ,其中2=x ,12=y .30.(2018秋•商南县期末)先化简,再求值(1)2222222(2)(2)−+−−+a b b a a b ,其中13=a ,3=−b ;(2)2223(23)(5)+−−−x x x x x ,其中2=−x .31.(2019秋•增城区期中)先化简下式,再求值:22(234)2(54)−++−−−x x x x ,其中2=−x .32.(2019秋•沙雅县期中)先化简再求值(1)2225435256+−−−−+x x x x x ,其中3=−x .(2)2211312()()2323−−+−+x x y x y ,其中2=−x ,23=y .33.(2018秋•云梦县期末)先化简,再求值.22223(23)2(5)−−+a b ab ab a b ,其中12=a ,2=−b .34.(2020春•开福区校级期末)化简求值:已知2222=−++A a ab b ,2222=−−B a ab b ,当12=−a ,1=b 时,求2+A B 的值.35.先化简,再求值:222(3)(2)+−−a b ab ab a b ,其中2=−a ,1=b .36.先化简,再求值:2222(21)3()23+−−+−−a a a a b b ,其中1=−a ,1=b .37.(2019秋•双清区期末)先化简再求值:已知1=−a ,2=b ,求代数式222[82(4)]−+−+a ab ab a ab 的值.38.(2019秋•岳麓区)先化简,再求值:22(37)(426)−+−−+−a ab a ab ,其中1=−a ,2=b .39.先化简,再求值:222252(2)(31)−−+++−a b ab ab a b ,其中2=a ,1=−b .40.(2019春•遵义期末)先化简222(32)4(2)−−−−−x xy y x xy y ,再求值其中3=−x ,1=y .41.先化简再求值:22222(1)(333)−−−−−x y xy x y xy ,其中1=x ,2=−y42.先化简,再求值:2222(42)3()−+−−+a ab b a ab b ,其中1=−a ,12=−b .43.(2018秋•芙蓉区校级期末)先化简,再求值:22(1)2(1)−+−−x x ,其中1=−x .44.(2018秋•芙蓉区校级期中)化简求值 (1)224()3−−+x x x x ,其中1=−x .(2)22(34)[2(22)]−−+−+a ab a a ab ,其中2=−a ,2004=b .45.(2017秋•雨花区校级期中)计算:(1)235()(36)3412−+⨯−;(2)22323||[3()(2)]32−⨯−÷+−;(3)222()3()4+−−−x y xy x y xy x y(4)已知:22253=−+A a ab b ,2232=+−B a ab b ,求(2)(32)+−−A B A B 的值46.(2017秋•岳麓区校级期中) (1)2332(21)(122)−+−−++x x x x ,其中2=x(2)222221112()5()4(3)32−+−−+a b ab ab a b a b ,其中15=a ,5=−b47.先化简,再求值:222226(3)5(3)−++−ab ab a b a b ab ,其中2=a ,1=−b .48.先化简,再求值:22222(3)2(2)−+−−−a b ab a b ab a b ,其中1=a ,2=−b .49.(2019秋•雨花区期末)化简求值:22(31)3(253)−−−+a a a ,其中13=−a50.先化简,再求值:22223(2)(52)−−+x y xy x y xy ,其中1=x ,12=y .50题参考答案与试题解析一.整式的加减(共25小题)1.(2019秋•襄州区期末)下列运算正确的是( ) A .532−=a aB .235+=a b abC .()−−=+a b b aD .2−=ab ba ab【解答】解:A 、原式2=a ,错误;B 、原式不能合并,错误;C 、原式=−+a b ,错误;D 、原式=ab ,正确, 故选:D .2.(2019秋•自贡期中)一个多项式加上2233−x y xy 得323−x x y ,则这个多项式是( ) A .323+x xyB .323−x xyC .32263−+x x y xyD .32263−−x x y x y【解答】解:3222(3)(33)−−−x x y x y xy 3222333=−−+x x y x y xy 32263=−+x x y xy , 故选:C .3.(2018秋•东城区期末)计算2653−+a a 与2521+−a a 的差,结果正确的是( ) A .234−+a aB .232−+a aC .272−+a aD .274−+a a【解答】解:2(653−+a a 2)(521)−+−a a 22653521=−+−−+a a a a 274=−+a a . 故选:D .4.下面计算正确的是( )A .2233−=x xB .235325+=a a aC .33+=x xD .10.2504−+=ab ba【解答】解:A 、222323−=≠x x x ,故A 错误;B 、23a 与32a 不可相加,故B 错误;C 、3与x 不可相加,故C 错误;D 、10.2504−+=ab ba ,故D 正确.故选:D .5.(2016秋•海原县期中)有理数a ,b ,c 表示的点在数轴上的位置如图所示,则||||2||(+−−−+=a c c b b a ) A .3−a b B .−−a bC .32+−a b cD .2−−a b c【解答】解:0<<a b ,0>c ,||||||>>a b c ,0∴+<a c ,0−>c b ,0+<a b ,∴原式()()2()=−+−−++a c c b b a 22=−−−+++a c c b b a 32=+−a b c . 故选:C .6.(2012秋•洪湖市期中)三个连续偶数中间的一个是n ,则三个连续偶数的和是( ) A .62+nB .62−nC .6nD .3(21)−n【分析】根据连续偶数间相差为2,表示出前一个与后一个偶数,相加列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:三个连续偶数分别为:22−n ,2n ,22+n , 则三个连续偶数之和为222226−+++=n n n n . 故选:C .7.(2011秋•虎林市校级期中)加上21−x 等于233−−x x 的多项式是( ) A .234+−x xB .2334−−x xC .2332−−x xD .232++x x【分析】本题考查整式的加法运算,要先去括号,然后合并同类项.【解答】解:根据题意得2(33)(21)−−−−x x x 23321=−−−−x x x 2332=−−x x . 故选:C .8.(2009•江西)化简:2(21)−+−a a 的结果是( ) A .41−−aB .41−aC .1D .1−【分析】本题考查了整式的加减.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:2(21)2211−+−=−+−=−a a a a .故选D . 9.(2019秋•开福区校级月考)下列说法正确的是( ) A .单项式22π−xy 的系数是2π−,次数是3B .单项式432x 的次数是7C .多项式223+a b 与227−+−ab a b 的和为22102−−a ab bD .多项式222−+x xy y 的二次项的系数和是2 【解答】解:A 、单项式22π−xy 的系数是2π−,次数是3,故原题说法正确;B 、单项式432x 的次数是3,故原题说法错误;C 、多项式223+a b 与227−+−ab a b 的和为210−a ab ,故原题说法错误;D 、多项式222−+x xy y 的二次项的系数和是1120+−=,故原题说法错误;故选:A .10.(2018秋•雨花区校级期末)多项式2835−+x x 与323457−−+x mx x 多项式相加后,不含二次项,则m 的值是( )A .2B .4C .2−D .4−【解答】解:原式2328353457=−++−−+x x x mx x 323(84)813=+−−+x m x x令840−=m ,2∴=m ,故选:A .11.(2018秋•天心区校级期末)已知多项式322231=−+−A x mx x ,3226=−+++B x x nx ,若−A B 的结果中不含2x 和x 项,则m ,n 的值为( )A .1=−m ,3=nB .1=−m ,3=−nC .1=m ,3=nD .1=m ,3=−n【解答】解:原式3232223126=−+−+−−−x mx x x x nx 323(22)(3)7=−++−−x m x n x , 令220+=m ,30−=n ,1∴=−m ,3=n ,故选:A .12.(2018秋•沙洋县期中)一个多项式与234−m 的和是25−+m m ,则这个多项式为( )A .229−+m mB .221−−+m mC .229−−+m mD .229−++m m【解答】解:这个多项式为22222(5)(34)53429−+−−=−+−+=−−+m m m m m m m m , 故选:C .13.(2017秋•岳麓区校级期中)减去6−a 等于2425−+a a 的代数式是( )A .2485−+a aB .2445−+a aC .2445++a aD .2485−−+a a【分析】直接利用整式的加减运算法则计算得出答案.【解答】解:减去6−a 等于2425−+a a 的代数式是:22425(6)485−++−=−+a a a a a . 故选:A .14.(2019秋•开福区校级期中)已知3−=−a b ,2+=c d ,则()()+−−a c b d 的值是( )A .1−B .5−C .5D .1【分析】直接去括号进而结合已知条件代入求出答案.【解答】解:3−=−a b ,2+=c d ,()()∴+−−a c b d =+−+a c b d ()=−++a b c d 32=−+1=−.故选:A .15.(2019秋•天心区校级期中)若A 与B 都是二次多项式,则关于−A B 的结论,下列选项中正确的有( )A .一定是二次式B .可能是四次式C .可能是一次式D .不可能是零 【解答】解:多项式相减,也就是合并同类项,而合并同类项时只是把系数相加减,字母和字母的指数不变,∴结果的次数一定不高于2次,当二次项的系数相同时,合并后结果为0,故只有选项C 符合题意.故选:C .16.(2016秋•永城市期中)计算2(45)(32)−−−a b a b 的结果为 58−a b .【分析】原式去括号合并即可得到结果.【解答】解:原式8103258=−−+=−a b a b a b ,故答案为:58−a b17.(2015秋•大同期末)一个多项式加上2543−−x x 得23−−x x ,则这个多项式为 263−++x x .【解答】解:设这个多项式是A ,则225433+−−=−−A x x x x ,222223(543)354363∴=−−−−−=−−−++=−++A x x x x x x x x x x ,故答案是263−++x x .18.(2008•台州)化简:1(24)22−+=x y y x . 【解答】解:原式22=−+=x y y x .19.(2002•江西)化简:2(21)−−=a a 1 .【解答】解:原式2211=−+=a a .20.(2019秋•雨花区校级月考)设有理数a ,b 在数轴上的对应点如图所示,化简|||||1|||+−−−+−a b a b b .【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:101<−<<<a b ,0∴+<a b ,0<a ,10−>b ,0−<b ,则原式11=−−+−++=−a b a b b b .21.(2019秋•娄底期中)化简(1)225(3)(96)−++−−+x x x ;(2)(73)2−−y z (85)−y z【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式2225396534=−+++−=−++x x x x x ;(2)原式73161097=−−+=−+y z y z y z .22.(2018秋•开福区校级期中)已知:220−−=x y .(1)2−=x y 2 .(2)求:(546)2(1)++−+−+x y y x 的值.【分析】(1)由220−−=x y ,移项即可得出22−=x y ;(2)原式去括号合并得到最简结果,把22−=x y 整体代入计算即可求出值.【解答】解:(1)220−−=x y ,22∴−=x y . 故答案为2;(2)22−=x y ,∴原式546222=+−+−+x y y x 724=+−x y 72(2)=+−x y 722=+⨯11=.23.(2017秋•岳麓区校级期中)已知a ,b 为常数,且多项式2+−+x ax y b 与多项式 2363−+−bx x y 的差与x 的值无关,求代数式22017a b 的值.【分析】根据题意列出关系式,由结果与x 值无关,求出a 与b 的值,原式去括号合并后代入计算即可求出值.【解答】解:222363(1)(3)73+−+−+−+=−++−++x ax y b bx x y b x a x y b ,结果与字母x 的值无关, 10∴−=b ,30+=a ,解得:3=−a ,1=b ,则原式22017(3)1919=−⨯=⨯=.24.(2019秋•开福区校级期中)化简下列各式:(1)2223144−−+a b ab a b ab ;(2)2(23)3(23)−−−a b b a【分析】(1)根据合并同类项的方法可以解答本题;(2)先去括号,然后合并同类项即可解答本题.【解答】解:(1)2223144−−+a b ab a b ab 212=−+a b ab(2)2(23)3(23)−−−a b b a 4669=−−+a b b a 1312=−a b .25.(2019秋•天心区校级期中)某同学做一道数学题:两个多项式A 、B ,其中2234=−−B x x ,试求2−A B 的值.这位同学把“2−A B ”看成“2+A B ”,结果求出的答2582−−x x .(1)2−A B 的正确答案是多少?(2)若2=−x 时,2−A B 的值是多少?【解答】解:(1)根据题意得:22222225822(234)58246826=−+=−−−−−=−−−++=−+A A B B x x x x x x x x x x , 则222222262(234)264683414−=−+−−−=−+−++=−++A B x x x x x x x x x x ;(2)当2=−x 时,223(2)4(2)146−=−⨯−+⨯−+=−A B .二.整式的加减—化简求值(共25小题)26.(2018秋•开福区校级期中)先化简,再求值:2332(21)(122)−+−−−+x x x x ,其中2=x .【分析】原式去括号合并得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式23322211222=−+++−=−+x x x x x ,当2=x 时,原式422=−+=−.27.先化简,再求值:22226[32(13)6]−+−+x xy xy x ,其中4=x ,12=−y . 【分析】原式去括号合并得到最简结果,将x 与y 的值代入计算即可求出值.【解答】解:22226[32(13)6]−+−+x xy xy x 222263266=−−+−x xy xy x 232=−xy ,把4=x ,12=−y 代入2213234()212−=⨯⨯−−=xy . 28.(2019秋•金牛区期末)先化简,再求值:223(2)2(3)−−−−x xy y x y ,其中1=−x ,2=y .【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式2233626=−−−+x xy y x y 23=−x xy ,把1=−x ,2=y 代入223(1)3(1)27−=−−⨯−⨯=x xy .29.先化简,再求值:2212(35)2(32)+−−+xy x xy xy x ,其中2=x ,12=y . 【分析】根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:原式22123564=+−−−xy x xy xy x 22(1256)(34)=−−+−xy xy xy x x 2=−xy x , 当2=x ,12=y 时,原式21221432=⨯−=−=−.30.(2018秋•商南县期末)先化简,再求值(1)2222222(2)(2)−+−−+a b b a a b ,其中13=a ,3=−b ; (2)2223(23)(5)+−−−x x x x x ,其中2=−x .【解答】解:(1)原式222222222=−+−−−a b b a a b 2=−b ,把3=−b 代入29−=−b(2)原式2223235=+−−+x x x x x 2=−x ,把2=−x 代入24−=x31.(2019秋•增城区期中)先化简下式,再求值:22(234)2(54)−++−−−x x x x ,其中2=−x .【解答】解:原式222341082=−++−++x x x x 611=−+x当2=−x 时,原式121123=+=.32.(2019秋•沙雅县期中)先化简再求值(1)2225435256+−−−−+x x x x x ,其中3=−x .(2)2211312()()2323−−+−+x x y x y ,其中2=−x ,23=y . 【解答】解:(1)原式2225325645=−−−++−x x x x x 1=−x当3=−x 时,原式314=−−=−.(2)原式22123122323=−+−+x x y x y 22132122233=−−++x x x y y 23=−+x y 当2=−x ,23=y 时,原式223(2)()3=−⨯−+469=+589=. 33.(2018秋•云梦县期末)先化简,再求值.22223(23)2(5)−−+a b ab ab a b ,其中12=a ,2=−b . 【解答】解: 原式222269210=−−−a b ab ab a b 2222(610)(92)=−+−−a b a b ab ab 22411=−−a b ab当12=a ,2=−b 时,原式22114()(2)11(2)22=−⨯⨯−−⨯⨯−114211442=⨯⨯−⨯⨯222=−20=− 34.(2020春•开福区校级期末)化简求值:已知2222=−++A a ab b ,2222=−−B a ab b ,当12=−a ,1=b 时,求2+A B 的值. 【解答】解:2+A B 22222(22)(22)=−+++−−a ab b a ab b 222224422=−+++−−a ab b a ab b 223=+ab b ,当12=−a ,1=b 时,原式13=−+2=.35.先化简,再求值:2=−,1=b .【解答】解:222(3)(2)+−−a b ab ab a b 22262=+−+a b ab ab a b 2(21)(62)=++−a b ab 234=+a b ab , 当2=−a ,1=b 时,原式23(2)14(2)11284=⨯−⨯+⨯−⨯=−=.36.先化简,再求值:2222(21)3()23+−−+−−a a a a b b ,其中1=−a ,1=b . 【解答】解:2222(21)3()23+−−+−−a a a a b b 224223232=+−−−+−a a a a b b 22=+−a b 当1=−a ,1=b 时,原式2(1)120=−+−=.37.(2019秋•双清区期末)先化简再求值:已知1=−a ,2=b ,求代数式222[82(4)]−+−+a ab ab a ab 的值.【解答】解:原式2222828109=−−++=−a ab ab a ab a ab ,当1=−a ,2=b 时,原式210(1)9(1)228=⨯−−⨯−⨯=.38.先化简,再求值:22(37)(426)−+−−+−a ab a ab ,其中1=−a ,2=b .【解答】解:(1)原式2237426=−++−+a ab a ab 27313=−+a ab ,当1=−a ,2=b 时,原式7613=++26=;39.先化简,再求值:222252(2)(31)−−+++−a b ab ab a b ,其中2=a ,1=−b .【解答】解:原式2222522431=−+−++−a b ab ab a b 225=−+a b ab将2=a ,1=−b 代入上式,原式410=+14=;40.(2019春•遵义期末)先化简222(32)4(2)−−−−−x xy y x xy y ,再求值其中3=−x ,1=y .【解答】解:原式22642844=−−−++x xy y x xy y 222=−+x y当3=−x ,1=y 时,原式2921=−⨯+⨯16=−41.(2019秋•天心区校级期中)先化简再求值:22222(1)(333)−−−−−x y xy x y xy ,其中1=x ,2=−y【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式2222222223331=−−−++=−++x y xy x y xy x y xy ,当1=x ,2=−y 时,原式2417=++=.42.先化简,再求值:2222(42)3()−+−−+a ab b a ab b ,其中1=−a ,12=−b . 【解答】解:原式222242333=−+−+−a ab b a ab b 222=+−a ab b ,当1=−a ,12=−b 时,原式11122=+−1=. 43.(2018秋•芙蓉区校级期末)先化简,再求值:22(1)2(1)−+−−x x ,其中1=−x .【解答】解:原式222221=−+−+=−x x x x ,当1=−x 时,原式110=−=.44.(2018秋•芙蓉区校级期中)化简求值(1)224()3−−+x x x x ,其中1=−x .(2)22(34)[2(22)]−−+−+a ab a a ab ,其中2=−a ,2004=b .【解答】解:(1)原式22443=−++x x x x 25=−x x当1=−x 时,原式511=⨯+6=;(2)原式2234(44)=−++−−a ab a a ab 223444=−++−−a ab a a ab 224=−−a a , 当2=−a ,2004=b 时,原式244(2)=−⨯−⨯−88=−+0=.45.(2017秋•雨花区校级期中)计算:(1)235()(36)3412−+⨯−;(2)22323||[3()(2)]32−⨯−÷+−;(3)222()3()4+−−−x y xy x y xy x y (4)已知:22253=−+A a ab b ,2232=+−B a ab b ,求(2)(32)+−−A B A B 的值【解答】解:(1)235()(36)2123953242715123412−+⨯−=−⨯+⨯−⨯=−+−=−; (2)22323242||[3()(2)](98)12832393−⨯−÷+−=⨯−⨯−=−⨯=−; (3)2222222()3()433464+−−−=+−+−=−+x y xy x y xy x y x y xy x y xy x y x y xy ;(4)22253=−+A a ab b ,2232=+−B a ab b ,2222(2)(32)2323(253)3(32)∴+−−=+−+=−+=−−+++−A B A B A B A B A B a ab b a ab b 222222253936779=−+−++−=−+−a ab b a ab b a ab b46.(2017秋•岳麓区校级期中) (1)2332(21)(122)−+−−++x x x x ,其中2=x(2)222221112()5()4(3)32−+−−+a b ab ab a b a b ,其中15=a ,5=−b 【解答】解:(1)当2=x 时,原式233221122=−++−−x x x x 3242=−−+x x 34=−(2)当15=a ,5=−b 时, 原式2222212455212=−+−−−a b ab ab a b a b 22512=+−a b ab115(5)2512255=⨯⨯−+⨯−1512=−+−8=− 47.先化简,再求值:222226(3)5(3)−++−ab ab a b a b ab ,其中12=a ,1=−b . 【解答】解:原式2222263155=−−+−ab ab a b a b ab 212=a b ,当12=a ,1=−b 时,原式112(1)4=⨯⨯−3=−. 48.先化简,再求值:22222(3)2(2)−+−−−a b ab a b ab a b ,其中1=a ,2=−b .【解答】解:原式22222222342(112)(34)=−+−−+=−−++−=−a b ab a b ab a b a b ab ab , 当1=a ,2=−b 时,原式21(2)4=−⨯−=−.49.(2019秋•雨花区期末)化简求值:22(31)3(253)−−−+a a a ,其中13=−a 【解答】解:原式226261592198=−−+−=−−a a a a a ,把13=−a 代入,原式21121()9()87181633=⨯−−⨯−−=−−−=−. 50.先化简,再求值:22223(2)(52)−−+x y xy x y xy ,其中1=x ,12=y . 【分析】直接去括号进而合并同类项,再把已知数据代入求出答案.【解答】解:原式22226352=−−−x y xy x y xy 225=−x y xy ,当1=x ,12=y 时,原式22113151()224=⨯−⨯⨯=−.。
七年级数学专题训练:整式的加减计算题100题(含答案)

题减整式的加计算1、已知A =4x 2-4xy +y 2,B =x 2-xy -5y 2,求3A -B2、已知A=x 2+xy +y 2,B=-3xy -x 2,求2A-3B.3、已知1232+-=a a A ,2352+-=a a B ,求BA 32-4、已知325A x x =-,2116B x x =-+,求:⑴A+2B;⑵、当1x =-时,求A+5B 的值。
5、)(4)()(3222222y z z y y x ---+-6、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =27、-)32(3)32(2a b b a -+-8、21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.9、222213344a b ab ab a b ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭10、()()323712p p p p p +---+11、21x-3(2x-32y 2)+(-23x+y 2)12、5a-[6c-2a-(b-c)]-[9a-(7b+c)]13、2237(43)2x x x x ⎡⎤----⎣⎦14、-22225(3)2(7)a b ab a b ab ---15、2(-a 3+2a 2)-(4a 2-3a+1)16、(4a 2-3a+1)-3(1-a 3+2a 2).17、3(a 2-4a+3)-5(5a 2-a+2)18、3x 2-[5x-2(14x -32)+2x 2]19、7a +(a 2-2a )-5(a -2a 2)20、-3(2a +3b )-31(6a -12b )21、222226284526x y xy x y x xy y x x y+---+-22、3(2)(3)3ab a a b ab -+--+;23、22112()822a ab a ab ab ⎡⎤--+-⎢⎥⎣⎦;24、(a 3-2a 2+1)-2(3a 2-2a +21)25、x-2(1-2x+x 2)+3(-2+3x-x 2)26、)24()215(2222ab ba ab b a +-+-27、-4)142()346(22----+m m m m28、)5(3)8(2222xy y x y x xy ++--+-29、ba ab b a ab ab b a 222222]23)35(54[3--+--30、7xy+xy 3+4+6x-25xy 3-5xy-331、-2(3a 2-4)+(a 2-3a)-(2a 2-5a+5)32、-12a 2b-5ac-(-3a 2c-a 2b)+(3ac-4a 2c)33、2(-3x 2-xy)-3(-2x 2+3xy)-4[x 2-(2x 2-xy+y 2)]34、-2(4a-3b)+3(5b-3a)35、52a -[2a +(32a -2a)-2(52a -2a)]36、-5xy 2-4[3xy 2-(4xy 2-2x 2y)]+2x 2y-xy37、),23()2(342222c a ac b a c a ac b a +-+---38、(2)()xy y y yx ---+39、2237(43)2x x x x ⎡⎤----⎣⎦40、7-3x-4x 2+4x-8x 2-1541、2(2a 2-9b)-3(-4a 2+b)42、8x 2-[-3x-(2x 2-7x-5)+3]+4x43、)(2)(2b a b a a +-++;44、)32(2[)3(1yz x x xy +-+--]45、)32(3)23(4)(5b a b a b a -+--+;46、)377()5(322222a b ab b ab a a ---+--47、)45()54(3223--++-x x x x 48、)324(2)132(422+--+-x x x x49、)69()3(522x x x +--++-.50、)35()2143(3232a a a a a a ++--++-51、)(4)(2)(2n m n m n m -++-+52、]2)34(7[522x x x x ----53、(2)(3)x y y x ---54、()()()b a b a b a 4227523---+-55、()[]22222223ab b a ab b a ---56、2213[5(3)2]42a a a a ---++57、()()()xy y x xy y xy x -+---+-2222232258、-32ab +43a 2b +ab +(-43a 2b )-159、已知m+n =-3,mn=2,求116432n mn mn m ⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭的值;60、(2x 2-21+3x )-4(x -x 2+21);61、2x -(3x -2y +3)-(5y -2);62、已知()()()2222A=232B=231A 22x xy y x xy y B A B A -++-+--,,求;63、已知()()222222120522422a b a b a b ab a b ab ⎡⎤++-=-----⎣⎦,求;64、1-3(2ab +a )十[1-2(2a -3ab )].65、3x 2-[7x -(4x -3)-2x 2].66、已知323243253A a a a B a a a =--++=--,,当a =-2时,求A-2B 的值.67、已知xy=2,x+y=-3,求整式(4xy+10y)+[5x-(2xy+2y-3x)]的值.68、已知2222224132a ab b ab a b a ab b +=+=--++,,求及的值.69、221131222223233x y x y x y ⎛⎫⎛⎫--+-+=-= ⎪ ⎪⎝⎭⎝⎭,,70、()()232334821438361a a a a a a a -+---+-=-,其中71、已知()()()()23412043535712714m n m m n m n m n ++--=---+++-,求的值72、已知222232542A b a ab B ab b a =-+=--,,当a=1,b =-1,求3A-4B 的值.73、已知222A=23B=25C=1276x x x x x ----+,,,求A-(B-4C)的值.74、已知22A=23211x kx x B x kx +--=-+-,,且2A+4B 的值与x 无关,求k 的值.75、()()2221254322x x x x x x -----+=,其中.76、已知()()()222222120745223a a b a b a b ab a b ab -++=--+--,求的值.77、2222220A=3B=23A B C a b c a b c ++=+---+已知,且,,求C.78、()()22221532722a b ab a b ab a b ---==,且,79、(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y 80、若()0322=++-b a ,求3a 2b-[2ab 2-2(ab-1.5a 2b)+ab]+3ab 2的值;81、233(4333)(4),2;a a a a a a +----+=-其中82、22222222(22)[(33)(33)],1, 2.x y xy x y x y x y xy x y ---++-=-=其中83、()()()2222223224b ab a ab b a b ab a +-+-+----其中4.0,41=-=b a 84、3-2xy +2yx 2+6xy -4x 2y ,其中x =-1,y =-2.85、(-x 2+5+4x 3)+(-x 3+5x -4),其中x =-2;86、(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =-3,b =-287、已知222244,5A x xy y B x xy y =-+=+-,其中1122x y ==-,,求3A -B88、已知A =x 2+xy +y 2,B =-3xy -x 2,其中,113x y =-=-,,求2A -3B .89、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.90、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;91、21x 2-2⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛-222231322331y x y x ,其中x =-2,y =-3492、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =293、()()233105223xy x y xy y x xy y x =-+=++-+-⎡⎤⎣⎦已知,,求的值94、已知()()22222322322A x xy y B x xy y A B B A =-+=+-+---⎡⎤⎣⎦,,求95、已知()222232232M a ab b N a ab b M N M M N =-+=+-----⎡⎤⎣⎦,,化简96、小美在计算某多项式减去2235a a +-的差时,误认为加上2235a a +-,得到答案是24a a +-,问正确答案是多少?97、已知2222113532A a b abB ab a b x y =-=+==-,,当,,求5A-3B 的值.98、已知2223226mx xy y x nxy y +--+-+的值与x 的取值无关,求22m n -的值99、已知231x x -=,求326752019x x x +-+的值100、()()11111111321014122m n n m m n x y y x x y m n +--++-⎛⎫+---- ⎪⎝⎭,其中为自然数,为大于的整数整式的加减计算100题答案1、2211118x xy y -+2、225112x xy y ++3、2954a a -+-4、()()3231322122553084x x x x x --+--+;,5、222325x y z +-6、322312ab ab -+,7、-13a+12b8、24369x y -+,9、22122a b ab -10、325797p p p +--11、273x y -+12、-2a+8b-6c13、2533x x --14、22729a b ab -+15、3231a a -+-16、323232a a a ---17、22271a a ---18、2932x x --19、211a 20、-8a-5b 21、2224382x xy x y y x ---+22、3a+b23、2592a ab -24、32524a a a --+25、25148x x -+-26、2232a b ab+27、2261213m m --+28、22272x xy y --29、2231532a b ab+30、332615y xy x +++31、2723a a -++32、22122a b ac a c --33、224154x xy y -+34、-17a+21b 35、2112a a -36、226xy x y xy ---37、22474a b ac a c--38、xy39、2533x x --40、2128x x -+-41、21621a b -42、2108x -43、a-b44、1-3x-3xy-6yz45、-a+4b 46、2266a ab b -+47、32341x x -+48、-8x-249、2534x x -++50、32941a a a --++51、4m+4n 52、2733x x --53、4x-3y 54、4a-b 55、22710a b ab -56、2912a a -+57、225x xy y -+58、113ab -59、2660、21622x x --61、-x-3y-162、2222424109x xy y x xy y ---+;63、221462a b ab -+;64、2-7a 65、2533x x --66、7967、-2068、5,269、24369x y -+;70、-5371、-1.7572、2221716a ab b --+;73、2473026x x -+74、2/575、-2.576、22710a b ab +-;77、222a c --78、221352a b ab -;79、-x-8y;1380、212ab ab +;81、327353a a a -++-;5582、222x y xy -+;83、22478150a ab b --;84、224315x y xy -++;--21---21-85、3235137x x x -++-;86、2224ab -;87、22111388x xy y -+;88、228511289x y y ++;89、A<B90、323668x x x +-+;91、2211226x y --;827-92、232223a b ab ab -+;4893、2294、224611x xy y +-95、2221614a ab b -+96、2356a a --+97、23-98、-899、2022100、118m n x y +--+。
七年级数学整式的加减练习题

七年级数学整式的加减练习题【例1】下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y④﹣3(x﹣y)+(a﹣b)=﹣3x﹣3y+a﹣b.A.1个B.2个C.3个D.4个【变式1-1】下列添括号正确的是()A.a+b﹣c=a﹣(b﹣c)B.a+b﹣c=a+(b﹣c)C.a﹣b﹣c=a﹣(b﹣c)D.a﹣b+c=a+(b﹣c)【变式1-2】给下列多项式添括号.使它们的最高次项系数变为正数:(1)﹣x2+x=;(2)3x2﹣2xy2+2y2=;(3)﹣a3+2a2﹣a+1=;(4)(4)﹣3x2y2﹣2x3+y3=.b2添上括号:【变式1-3】去分别按下列要求把多项式5a﹣b﹣2a2+13(1)把前两项括到前面带有“+”号的括号里,后两项括到前面带有“﹣”号的括号里;(2)把后三项括到前面带有“﹣”号的括号里;(3)把含有字母a的项括到前面带有“+”号的括号里,把含有字母b的项括到前面带有“﹣”号的括号里.【例2】去括号,合并同类项(1)﹣3(2s﹣5)+6s;x﹣4)];(2)3x﹣[5x﹣(12ab);(3)6a2﹣4ab﹣4(2a2+12(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)【变式2-1去括号,合并同类项得:3b﹣2c﹣[﹣4a+(c+3b)]+c=.【变式2-2】将下列各式去括号,并合并同类项.(1)(7y﹣2x)﹣(7x﹣4y)(2)(﹣b +3a )﹣(a ﹣b )(3)(2x ﹣5y )﹣(3x ﹣5y +1)(4)2(2﹣7x )﹣3(6x +5)(5)(﹣8x 2+6x )﹣5(x 2−45x +15)(6)(3a 2+2a ﹣1)﹣2(a 2﹣3a ﹣5)【变式2-3】将4a 2﹣2(a 2﹣b 2)﹣3(a 2+b 2)先去括号,再合并同类项得( )A .﹣a 2﹣b 2B .﹣a 2+b 2C .a 2﹣b 2D .﹣2a 2﹣b 2 【例3】若代数式2mx 2+4x ﹣2(y 2﹣3x 2﹣2nx ﹣3y +1)的值与x 的取值无关,则m 2019n 2020的值为( )A .﹣32019B .32019C .32020D .﹣32020【变式3-1】已知a ﹣b =5,c +d =﹣3,则(b +c )﹣(a ﹣d )的值为( )A .2B .﹣2C .8D .﹣8【变式3-2】观察下列各式:(1)﹣a +b =﹣(a ﹣b );(2)2﹣3x =﹣(3x ﹣2);(3)5x +30=5(x +6);(4)﹣x ﹣6=﹣(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你的探索出来的规律,解答下面的题目:已知a 2+b 2=5,1﹣b =﹣2,求1+a 2+b +b 2的值.【变式3-3】阅读下列材料:为了简化计算,提高计算速度,我们在日常的加减运算中,通常会利用运算律来计算较长且繁杂的代数式.例如计算1+2+3+4+5+⋯+99+100时我们可以运用加法的运算律来简化计算,即1+2+3+4+5+⋯+99+100=(1+100)+(2+99)+(3+98)+⋯+(50+51)=101×50=5050.请你根据阅读材料给出的方法计算:(1)a +(a +m )+(a +2m )+(a +3m )+⋯+(a +100m );【例4】如果M =x 2+3x +12,N =﹣x 2+3x ﹣5,那么M 与N 的大小关系是( )A .M >NB .M <NC .M =ND .无法确定【变式4-1】已知A =a 3+3a 2b 2+2b 2+3b ,B =a 3﹣a 2b 2+b 2+3b .A 与B 的关系是( )A .A <B B .A >BC .A ≤BD .A ≥B【变式4-2】整式5m 2﹣6m +3和整式5m 2﹣7m +5的值分别为M 、N ,则M 、N 之间的大小关系是( )A .M >NB .M <NC .M =ND .无法确定【变式4-3】若P =4a 2+2a +2,Q =a +2a 2﹣5,则P 与2Q 之间的大小关系是( )A .P >2QB .P =2QC .P <2QD .无法确定【例5】小文在做多项式减法运算时,将减去2a 2+3a ﹣5误认为是加上2a 2+3a ﹣5,求得的答案是a 2+a ﹣4(其他运算无误),那么正确的结果是( )A .﹣a 2﹣2a +1B .﹣3a 2+a ﹣4C .a 2+a ﹣4D .﹣3a 2﹣5a +6【变式5-1】小宇在计算A ﹣B 时,误将A ﹣B 看错成A +B ,得到的结果为4x 2﹣2x +1,已知B =2x 2+1,则A ﹣B 的正确结果为 .【变式5-2】由于看错了运算符号,“小马虎”把一个整式减去一个多项式2a ﹣3b 误认为加上这个多项式,结果得出的答案是a +2b ,则原题的正确答案是 .【变式5-3】小明做一道代数题:“求代数式10x 9+9x 8+8x 7+7x 6+6x 5+5x 4+4x 3+3x 2+2x +1,当x =1时的值”,由于粗心误将某一项前的“+”号看为“﹣”号,从而求得代数式的值为39,小明看错了 次项前的符号.【例6】若多项式8a 2﹣3a +5和多项式3a 3+(n +4)a 2+5a +7相加后结果不含a 2项,则n 的值为( )A .﹣4B .﹣6C .﹣8D .﹣12【变式6-1】若(2x 2+mx ﹣y +3)﹣(3x ﹣2y +1﹣nx 2)的值与字母x 的取值无关,则代数式(m +2n )﹣(2m ﹣n )的值是 .【变式6-2】若关于a ,b 的代数式ma 2b 2﹣3ma 2b 2﹣(3a 3﹣6a 2b 2)+34a 3−12ab ﹣5中不含四次项,则有理数m = .【变式6-3】已知关于x 的多项式(a +b )x 5+(a ﹣3)x 3﹣2(b +2)x 2+2ax +1不含x 3和x 2项,则当x =﹣1时,这个多项式的值为 .【例7】小明准备完成题目:化简:(□x 2+6x +8)﹣(6x +5x 2+2)发现系数“□”印刷不清楚.(1)她把“□”猜成4,请你化简(4x 2+6x +8)﹣(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”请通过计算说明原题中“□”是几?【变式7-1】老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1(1)求所挡的二次三项式;(2)若x =﹣1,求所挡的二次三项式的值.【变式7-2】(2022秋•常宁市期末)李老师在黑板上写了一个含m ,n 的整式:2[3mn +m ﹣(﹣2m ﹣n )]﹣(4mn +5m +5)﹣m ﹣3n .(1)化简上式;(2)老师将m,n的取值挡住了,并告诉同学们当m,n互为倒数时,式子的值为0,请你计算此时m,n的值;(3)李老师又将这个题进行了改编,当m取一个特殊的值时,式子的结果与n无关,那么此时m的值为多少.【变式7-3】已知:A、B都是关于x的多项式,A=3x2﹣5x+6,B=□﹣6,其中多项式B有一项被“□”遮挡住了(1)当x=1时,A=B,请求出多项式B被“□”遮挡的这一项的系数;(2)若A+B是单项式,请直接写出多项式B.【例8】若M、N都是三次四项式,那么它们的和的次数一定是()A.六次B.三次C.不超过三次D.以上都不对【变式8-1】A、B都是五次多项式,则A﹣B的次数一定是()A.四次B.五次C.十次D.不高于五次【变式8-2】两个三次多项式的和的次数一定是()A.3B.6C.大于3D.不大于3【变式8-3】若A是三次多项式,B是二次多项式,则A+B一定是()A.五次多项式B.三次多项式C.三次单项式D.三次的整式【例9】先化简,再求值:5ab2﹣[2a2b﹣(4ab2﹣2a2b)],其中a=2,b=﹣1.【变式9-1】计算:①n﹣(﹣n+3);②4a3﹣3a2b+5ab2+a2b﹣5ab2﹣3a3;③5(3x﹣2y)﹣7(3x﹣2y)﹣3(3x﹣2y)+(3x﹣2y);④5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)].【变式9-2】先化简,再求值:已知2(﹣3xy+y2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【变式9-3】已知A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y时,求B﹣2A的值.(1)当x=2,y=−15(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.【例10】如图,在矩形ABCD中放入正方形AEFG,正方形MNRH,正方形CPQN,点E在AB上,点M、N在BC上,若AE=4,MN=3,CN=2,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.8【变式10-1】下列式子表示十位上的数是a,个位上的数是b的两位数减去十位上的数是b,个位上的数是a的两位数的差的是()A.ab﹣ba B.10a+b﹣10b+aC.10b+a﹣(10a+b)D.(10a+b)﹣(10b+a)【变式10-2】如图①所示,在一个边长为a的正方形纸片上剪去两个小长方形,得到一个如图②的图案,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a﹣3b B.2a﹣4b C.4a﹣10b D.4a﹣8b【变式10-3】数学实践活动课上,陈老师准备了一张边长为a和两张边长为b(a>b)的正方形纸片如图1、图2所示,将它们无重叠的摆放在矩形ABCD内,矩形未被覆盖的部分用阴影表示,设左下阴影矩形的周长为l1,右上阴影矩形的周长为l2.陈老师说,如果l1﹣l2=6,求a或b的值.下面是四位同学得出的结果,其中正确的是()A.甲:a=6,b=4B.乙:a=6,b的值不确定C.丙:a的值不确定,b=3D.丁:a,b的值都不确。
七年级上册 数学 第二章 整式的加减-专项练习100题含答案

整式的加减专项练习1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p ;21、(5x 2y-7xy 2)-(xy 2-3x 2y ); 22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a].23、3a 2-9a+5-(-7a 2+10a-5); 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2).25、(5a-3a 2+1)-(4a 3-3a 2); 26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]27、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 28、(2x 2-21+3x )-4(x -x 2+21);29、3x 2-[7x -(4x -3)-2x 2]. 30、5a+(4b-3a )-(-3a+b );31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2); 32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].33、(2a 2-1+2a )-3(a-1+a 2); 34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)].35、 -32ab +43a 2b +ab +(-43a 2b )-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x -(3x -2y +3)-(5y -2); 38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3) 40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b ) 44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4) 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ). 48、4a 2+2(3ab-2a 2)-(7ab-1).49、 21xy+(-41xy )-2xy 2-(-3y 2x ) 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p 52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x2y-[2x2y-3(2xy-x2y)-xy] 54、5556、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab).57、a2+2a3+(-2a3)+(-3a3)+3a2;58、5ab+(-4a2b2)+8ab2-(-3ab)+(-a2b)+4a2b2; 59、(7y-3z)-(8y-5z);60、-3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2; 63、3(a2-2ab)-2(-3ab+b2);64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m)-2(m2-3m)].66、-[2m-3(m-n+1)-2]-1.67、31a-( 21a-4b-6c)+3(-2c+2b) 68、 -5a n -a n -(-7a n )+(-3a n ) 69、x 2y-3xy 2+2yx 2-y 2x70、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a2b+2b3-ab3)+3a3-(2ba2-3ab2+3a3)-4b3,其中a=-3,b=278、化简,求值:(2x3-xyz)-2(x3-y3+xyz)+(xyz-2y3),其中x=1,y=2,z=-3.79、化简,求值:5x2-[3x-2(2x-3)+7x2],其中x=-2.80、若两个多项式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.81、若2a2-4ab+b2与一个多项式的差是-3a2+2ab-5b2,试求这个多项式.82、求5x2y-2x2y与-2xy2+4x2y的和.83、求3x2+x-5与4-x+7x2的差.84、计算 5y+3x+5z2与12y+7x-3z2的和85、计算8xy2+3x2y-2与-2x2y+5xy2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2 a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值.98、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值99、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.整式的加减专项练习答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a 2+6b 2 4、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5、3x 2-[7x-(4x-3)-2x 2] = 5x 2 -3x-36、(2xy-y )-(-y+yx )= xy7、5(a 22b-3ab 2)-2(a 2b-7ab ) = -a 2b+11ab 8、(-2ab+3a )-2(2a-b )+2ab= -2a+b9、(7m 2n-5mn )-(4m 2n-5mn )= 3m 2n10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-1311、-3x 2y+3xy 2+2x 2y-2xy 2= -x 2y+xy 212、2(a-1)-(2a-3)+3.=413、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]= 7a 2+ab-2b 214、(x 2-xy+y )-3(x 2+xy-2y )= -2x 2-4xy+7y15、3x 2-[7x-(4x-3)-2x 2]=5x 2-3x-3 16、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y18、2(2x-3y )-(3x+2y+1)=2x-8y-1 19、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2 +7a+223、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+1024、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 225、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+126、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a 2+ab-2b 2 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=028、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-25 29、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+439、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+441、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+243、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、()[]{}y x x y x --+--32332 = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、 21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 2 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a51、5m-7n-8p+5n-9m+8p=-4m-2n59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-24 61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=0 62、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 265、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m66、-[2m-3(m-n+1)-2]-1=m-3n+467、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b 68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 271、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2 = -41a 2b 71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 2 73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =698 74、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32. 原式=-3x+y 2=694 75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121; 原式=x 3+x 2-x+6=683 76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131 原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+186、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M23y 87、当3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值. 原式=-8xy+y= —1588、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=3689、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2 (1)求A+B ;(2)求41(B-A); A+B=2a 2+2b 2 41(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得 9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .M-2N=5x 2-4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .2A -3B= 5x 2+11xy +2y 294、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值. 原式=9ab 2-4a 2b=3495、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0. 原式=8abc-8a 2b=-3296、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值: 2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .原式=-5x 2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值. 原式=10a+10b-2ab=5098、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值原式=2m 2+6mn+5=1599、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值. B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A与B 的大小. A=2a 2-4a +1 B =2a 2-4a +3 所以A<B。
人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
七年级数学整式的加减练习题精选

1、 多项式322333243b ab a b a b -+-=-( ).2、一个多项式与21x x +2-的和是32x -,则这个多项式为( )3、(1)若2316x x +-=,则238x x ++= ;(2)若2316x x +-=,则21133x x +-=4、已知 22227,4,x xy xy y x y -=-=-=则 5、若多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 等于( ) 6、若B 是一个四次多项式,C 是一个二次多项式,则“B -C ” ( )A.可能是七次多项式B.一定是大于七项的多项式C.可能是二次多项式D.一定是四次多项式 7、多项式2237583xy y x y x -+-按x 的降幂排列是8、已知3xy x y=+,求代数式3533x xy y x xy y-+-+-的值。
1、 多项式322333243b ab a b a b -+-=-( ).2、一个多项式与21x x +2-的和是32x -,则这个多项式为( )3、(1)若2316x x +-=,则238x x ++= ;(2)若2316x x +-=,则21133x x +-=4、已知 22227,4,x xy xy y x y -=-=-=则 5、若多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 等于( ) 6、若B 是一个四次多项式,C 是一个二次多项式,则“B -C ” ( )A.可能是七次多项式B.一定是大于七项的多项式C.可能是二次多项式D.一定是四次多项式 7、多项式2237583xy y x y x -+-按x 的降幂排列是8、已知3xy x y=+,求代数式3533x xy y x xy y-+-+-的值。
2、 多项式322333243b ab a b a b -+-=-( ).2、一个多项式与21x x +2-的和是32x -,则这个多项式为( )3、(1)若2316x x +-=,则238x x ++= ;(2)若2316x x +-=,则21133x x +-=4、已知 22227,4,x xy xy y x y -=-=-=则 5、若多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 等于( ) 6、若B 是一个四次多项式,C 是一个二次多项式,则“B -C ” ( )A.可能是七次多项式B.一定是大于七项的多项式C.可能是二次多项式D.一定是四次多项式7、多项式2237583xy y x y x -+-按x 的降幂排列是8、已知3xy x y=+,求代数式3533x xy y x xy y-+-+-的值。
七年级数学整式加减计算题100道

七年级数学整式加减计算题100道1.一个长方形的长为3x+5,宽为2x-1,求这个长方形的周长。
2.已知A=5x²+3x-2,B=3x²-2x+7,求A-B。
3.某商店第一天卖出m个文具,第二天比第一天多卖出2m-3个,两天一共卖出多少个文具?4.小明有5a元钱,花了3a-2元,还剩下多少钱?5.一个多项式加上2x²-3x+5等于4x²+5x-3,求这个多项式。
6.长方形的长是4a+3b,宽比长少2a-b,求长方形的面积。
7.化简求值:3(2x²-xy)-4(x²-xy-6),其中x=-1,y=2。
8.已知A=-2x³+3x²-1,B=3x³-2x²+5,求2A-3B。
9.某车队有大客车n辆,小客车比大客车的2倍多5辆,这个车队一共有多少辆车?10.一个多项式减去3x²-2x+1得-5x²+3x-2,求这个多项式。
11.三个连续整数中,中间的数为m,求这三个数的和。
12.已知a=3,b=-2,求(2a²-3ab+b²)-(a²-2ab+3b²)的值。
13.长方形的长是3x+2y,宽是x-y,求长方形的周长。
14.某商店进了一批货物,其中甲货物有a件,乙货物比甲货物的3倍少5件,求乙货物有多少件?15.一个多项式A加上-2x²+3x-1得3x²-5x+2,求A。
16.已知A=4x²-3x+1,B=2x²+5x-3,求A+B。
17.小明有x元钱,小红比小明多2x-3元,两人一共有多少钱?18.一个长方形的长为5a-3,宽为3a+1,求它的面积。
19.化简求值:2(3x²-2xy)-3(2x²-xy+1),其中x=2,y=-1。
20.已知A=-3x³+2x²-4,B=2x³-3x²+5,求A-B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学整式的加减练习题精选Revised as of 23 November 202022(4).(426)2(225)a a a a ----- 其中 1-=a .221131(5).2()()2223a ab a b ----- 其中 32,2=-=b a .(6).化简 )]72(53[2b a a b a ----一、选择题1.下列说法中,正确的是( )A. 234x -的系数是34B. 232a π的系数是32C. 23ab 的系数是3aD. 225xy 的系数是252.下列计算正确的是 ( )22.34a a A a +=).2(2a b B a b --=-+ 222.2C a b a b a b -=- .541D a a -=3.下列说法中,不正确的是 ( )A.单项式是整式B.多项式322358r x yr axr π-+-是按r 的降幂排列的 C.含加减运算的式子都是单项式D.不含加减运算的式子都是单项式 4.下列说法正确的是( )A. 23xyz 与23xy 是同类项 B. 1x和12x是同类项 C. 320.5x y 和237x y D. 25m n 与24nm -是同类项5.下列各式中去括号正确的是( )2222..(2)2A x y x z x y x z --+=--+ ..36(41)3641B a a a a a a -[--]=--+..2(6423)2642C a x y a x y +-+-=-=-22..(2)(1)21D x y z x y z --+-=----6.若多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 等于( ) 7.如图,边长为3m +()的正方形纸片剪出一个边长为m 的正方形之后剩余部分又剪拼成一个矩形不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )二、填空题8.单项式2323ab c -的系数为 ,次数为9.若2512m x y --与212n xy =是同类项,则m n += 10. 3(2)a a b --= .11.若代数式2345x x --的值为7,则2453x x --的值为 12.如图,∠AOB =45︒过射线OA 上到点O 的距离分别为1,3,5,7,9,11,…的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,…观察其中的规律,则第n 个黑色梯形的面积S n = 三、解答题 13.计算 1.32)(57)2(24)a b a b a b -+---()(2222(2).(2)2(3)3(24)x xy y xy x y xy -+---+-14.化简求值:2(1)..3(2)322()x x y x y xy y ---[-++],其中1,32x y =-=-222222.7(45)(23)a b a b ab a b ab +-+--(),其中12,2a b ==-15.已知代数式22(27)(291)x ax y bx x y +-+--+-的值与字母x 的取值无关,试求代数式2014()a b +的值16.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:m ),解答下列问题:(1)用含x 的狮子表示厨房的面积为 ,厨房的面积为 (2)设此经济适用房的总面积为2ym ,请你用含x 的式子表示y(3)已知厨房面积比卫生间面积多32m ,且铺12m 地砖的平均费用为80元,那么铺地砖的总费用为多少元1、已知a b =,下列边形中正确的是220;55;;11;a b a b ac bc a x b x -=-=-=++=++①②③④;33b a =⑥a m n b n m +-=-+⑦.2、下列变形正确的是( )A.由431,x x =-得1x =;B.由84,x =得12x =C.由10,2y +=22y +=; D.由0.21,0.5z =得2105z =3、下列变形正确的是( )A.若11,x y -=+则x y =;B.若,m n =则33m n =C.若22x x =-,则2x =-;D.若23,x =则23x =4、下列变形正确的是( ) A.若,am bm =则a b =; B.若a b mm=,则a b =C.若22a b =,则ab =; D.若12,2x =则1x=5、利用等式的基本性质解方程1463x +=1、已知a b =,下列边形中正确的是220;55;;11;a b a b ac bc a x b x -=-=-=++=++①②③④;a b m m =⑤;33b a=⑥a m n b n m +-=-+⑦. 2、下列变形正确的是( )A.由431,x x =-得1x =;B.由84,x =得12x =C.由10,2y +=22y +=; D.由0.21,0.5z =得2105z =3、下列变形正确的是( )A.若11,x y -=+则x y =;B.若,m n =则33m n =C.若22x x =-,则2x =-;D.若23,x =则23x =4、下列变形正确的是( ) A.若,am bm =则a b =; B.若a b mm=,则a b =C.若22a b =,则ab =; D.若12,2x =则1x=5、利用等式的基本性质解方程1463x +=;a b m m=⑤一.选择题(共10小题)1.(2015春淄博校级期中)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做者两点之间的距离2.(2014秋温州期末)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC 3.(2015河北模拟)如图,AB=12,C为AB的中点,点D 在线段AC上,且AD:CB=1:3,则DB的长度为()A.4 B. 6 C.8 D. 10 4.(2015春东平县校级期末)已知点A、B、C在同一条直线上,线段AB=5,BC=3,则线段AC的长度()A.一定是8或2B.一定是2C.一定是8D.以上都不对5. C是线段AB上一点,点M是AC的中点,点N是BC的中点,如果MC比NC长2cm,AC比BC长()A.2cm B. 4cm6.(2015亳州一模)已知线段AB=16cm,O是线段AB上一点,M是AO的中点,N是BO的中点,则MN=()A.10cm B. 6cm C. 8cm D. 9cm 7.(2015长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B. 3cm C. 4cm D.6cm 8.(2015春东平县校级月考)已知线段AB=6cm,C是AB 的中点,D是AC的中点,则DB等于()A. B. C. 3cm D.9.(2015安庆一模)如图,点C在线段AB上,点D是AC 的中点,如果310CD cm AB cm==,,那么BC的长度是()C. 4cm (2015郸城县校级模拟)如果点C在线段AB上,下列表达式2AC AB AB BC AC BC AC BC AB ===+=①;②;③;④中.能表示点C是AB中点的有()A.1个 B. 2个 C. 3个 D. 4个二.填空题(共10小题)11.次取A、B、C三点,使得AB=3cm,BC=5cm,若点D是线段AC的中点,则线段DB的长度等于cm.12.(2015春龙口市期中)若点B在直线AC上,AB=12,BC=7,则A,C两点的距离是.13.(2015春泰山区期中)若C、D是线段AB上两点,D 是线段AC的中点,AB=10cm,BC=4cm,则AD的长是14.(2015岳麓区校级B是线段AC上的点,点D是线段BC的中点,若AB=4cm,AC=10cm,则CD= cm.15.线段AB=10cm,BC=5cm,A、B、C三点在同一条直线上,则AC= .16.如图,若47CB cm DB cm==,,且D是AC的中点,则AC= cm.17.如图,已知点M是线段AB的中点,点P是线段AM的中点,若AB=10cm,则PM= cm.18.如图,已知B、C、D是线段AE上的点,如果AB=BC=CE,D是CE的中点,BD=6,则AE= .19.(2014秋安龙县期末)如图,点C在线段AB上,E是AC中点,D是BC中点,若ED=6,则线段AB的长为.20.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=三.解答题(共5小题)21.如图,已知点C为AB上一点,AC=12cm,12CB AC=,D、E分别为AC、AB的中点,求DE的长.22.如图所示,点C、D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB的长度.23.如图,线段AB=8cm,C是线段AB上一点,AC=3.2cm,M是AB的中点,N是AC的中点.(1)求线段CM的长;(2)求线段MN的长.24.如图,已知线段AB=8cm,点E在AB上,且14AE AB=,延长线段AB到点C,使12BC AB=,点D是BC 的中点,求线段DE的长.25.如图,E、F分别是线段AC、AB的中点,且EF=3cm,求BC的长.。