数据的分析(方差,众数,中位数)复习
期末复习(五) 数据的分析

03 复习自测
一、选择题(每小题4分,共32分)
1.为了了解学生线上学习情况,老师抽查某组10名学生的单元测试成绩如下: , , , , , , , , , ,这组数据的平均数和中位数分别为( )
(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般情况,说明理由.
[答案] 平均数是10,中位数是6,众数是6.其中平均数10不能反映该班同学捐书册数的一般情况,因为40名同学中有38名同学的捐书册数都没有达到10册,平均数主要受到捐献90册的2位同学的捐书册数的影响,故不能反映该5.张大叔有一片果林,共有80棵果树.某日,张大叔开始采摘今年第一批成熟的果子,他随机选取1棵果树上的10个果子,称得质量(单位: )分别为: , , , , , , , , 如果一棵树平均结有120个果子,以此估算,张大叔收获的这批果子的单个质量和总质量分别约为( )
【解答】 小宇的分析是从第二步开始出现错误的.
②请你帮他计算正确的平均数,并估计这260名学生共植树多少棵.
【解答】 (棵),估计260名学生共植树 (棵).
3.某果园有果树200棵,从中随机地抽取5棵,每棵果树的产量(单位:千克)如下: , , , , .这5棵树的平均产量为_____千克,估计这200棵果树的总产量为________千克.
(2)求这20条鱼的平均质量.
解: .答:这20条鱼的平均质量为 .
(3)经了解,近期市场上这种鱼的售价为每千克18元.请利用这个样本的平均数,估计李大伯近期售完鱼塘里的这种鱼可收入多少元?
人教八年级数学平均数、加权平均数、中位数、众数、极差和方差归纳与复习

平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数:一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。
八年级数学《数据的分析-复习课》课件

3、了解算术平均数与加权平均数有什么联系和区别。 举例说明加权平均数中“权”的意义。
4、举例说明极差和方差是怎样刻画数据的波动情况 的。
问题1:求加权平均数的公式是什么?
若n个数 x1, x2, ,xn 的权分别是 w1, w2 , ,wn 则: x1w1 x2w2 xnwn w1 w2 w3 wn
哪些收获?
平均数
数据的代表 众数
中位数 数据的波动: 方差
数据的分析
2、区别:①平均数计算要用到所有数据,它能充分利用所有 的数据信息,任何一个数据的变动都会相应引起平均数的变 动,并且它受极端值的影响较大;②中位数仅与数据的排列 位置有关,某些数据的移动对中位数没有影响,中位数可能 出现在所给数据中也可能不在所给的数据中,当一组数据中 的个别数据变动较大时,可用中位数描述其趋势;③众数是 当一组数据中某一数据重复出现较多时,人们往往关心的一 个量,众数不受极端值的影响,它是它的一个优势。
合计
频数累计
频数
应用2:在一次中学生田径运动会上,参 加男子跳高的23名运动员的成绩如下表 所示:(单位:米)
求出它们的跳高成绩的平均数、众数、 中位数。
成 1.50 1.6 1.6 1.70 1.7 1.80 1.85 1.90
绩
05
5
人1 2
4
5
7
2
1
1
数
提高升华:某校八年级学生开展踢毽 子比赛活动,每班派5名学生加.按 团体总分多少排列名次,在规定时间 每人踢100个以上(含100个)为优秀, 下表是成绩最好的甲班和乙班5名学 生的比赛数据(单位:个)经统计发现 两班总分相等,此时有学生建议,可 通过考查数据中的其他信息作为参 考.请你回答下列问题:
数据分析知识点总复习含答案0001

数据分析知识点总复习含答案一、选择题1 . (11大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为S 甲2= 0.002、S 乙2= 0.03,贝y ()A. 甲比乙的产量稳定B. 乙比甲的产量稳定【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好 .【详解】因为S 甲=0.002<s 乙=0.03, 所以,甲比乙的产量稳定. 故选A【点睛】本题考核知识点:方差 .解题关键点:理解方差意义2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有 们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是 (【分析】按照笔试与面试所占比例求出总成绩即可C.甲、乙的产量一样稳定【答案】A D .无法确定哪一品种的产量更稳定20名学生,他A . 85, 90【答案】B B . 85, 87.5C. 90, 85D . 95, 90【解析】试题解析:85分的有8人,人数最多,故众数为 处于中间位置的数为第 10、11两个数, 为85分,90分,中位数为87.5分. 故选B .85分;考点:1.众数;2.中位数3.某单位招考技术人员,考试分笔试和面试两部分,成绩,若小李笔试成绩为 80分,面试成绩为90分,则他的总成绩为(笔试成绩与面试成绩按6: 4记入总A . 84 分【答案】A【解析】 B . 85 分 C. 86 分D . 87 分80 — 10 故选A 【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义4.在某次训练中,甲、乙两名射击运动员各射击 本次训练,有如下结论:①s | s 乙 ;②s 甲10发子弹的成绩统计图如图所示,对于 s乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是(■ - ~ -厲=■ = = =■'I■■■ ■ n*.■… 八〉‘乍忍■- :T -~........... T ■■L-——jl b ----- -----——L ——-------------------.—— ------------ 卜I 」耳环$ 67輻m “匸【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为 7, 7, 8, 9, 8, 9, 10, 9, 9, 9, 乙的成绩为8, 9,乙8, 10,乙9, 10, 7, 10,X 甲 = ( 7+7+8+9+8+9+10+9+9+9)十 10=8.5 X 乙 = ( 8+9+7+8+10+7+9+10+7+10) - 10=8.5甲的方差 S 甲 2=[2 ( 7-8.5) 2+2 X( 8-8.5) 2+ (10-8.5) 2+5 X( 9-8.5) 2] - 10=0.85 乙的方差 S 乙2=[3 ( 7-8.5) 2+2 X( 8-8.5) 2+2 X( 9-8.5) 2+3 X( 10-8.5) 2] - 10=1.45S 2甲 V S 2乙,•••甲的射击成绩比乙稳定; 故选:C. 【点睛】本题考查方差的定义与意义:一般地设n 个数据,X 1, X 2,…x 的平均数为X ,则方差S 2=~ [ ( x i - x ) 2+ ( x 2- x ) 2+…+ (X n -x ) 2],它反映了一组数据的波动大小,方差越大,波 n动性越大,反之也成立.A .①③ 【答案】C【解析】 B .①④C.②③D .②④【详解】根据题意, 按照笔试与面试所占比例求出总成绩:90 — 84 (分)10II in■ ,■甲5.对于一组统计数据:1 , 1, 4, 1, 3,下列说法中错误的是( A .中位数是1 B .众数是1 C.平均数是1.5D .方差是1.6【答案】C 【解析】 【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案. 【详解】解:将数据重新排列为:1、1、1、3、4, 则这组数据的中位数 1, A 选项正确; 众数是1 , B 选项正确;11134平均数为=2, C 选项错误;51方差为一X[ 1 - 2)2X 3+( 3- 2) 2+ (4 - 2) 2] = 1.6, D 选项正确;5故选:C. 【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及 方差的定义与计算公式.【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击 和方差,进而可得答案. 【详解】前 10 次平均数:(6X 3+7X 1+8X 2+9X 1+10X^10= 8, 方差:S^=丄[(6 - 8)2X 3+( 7 - 8) 2+ (8 - 8)2X 2+(9 - 8) 2+3 X( 10-8)2] = 2.6,101、 1、 1、 3、 10次相比,小明12次射击的成绩A .平均数变大,方差不变 C. 平均数不变,方差变大【答案】D 【解析】 B. 平均数不变,方差不变 D .平均数不变,方差变小2次后的平均数6.小明参加射击比赛,10次射击的成绩如表:( )再射击 2 次后的平均数::(6X 3+7X 1+8X 2+9X 1 + 10X 3+7+312= 8, 方差:S^= —[( 6 - 8)2X 3+( 7 - 8) 2 X 2(8 - 8) 2X 2+(9 - 8) 2X 2+3 入 10- 8) 2]=-,123平均数不变,方差变小, 故选:D . 【点睛】1 - -S 2= — [ ( X 1- X ) 2+ (X 2 - X ) nA. 队员1【答案】B 【解析】 【分析】根据方差的意义先比较出 4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出 答案. 【详解】解:因为队员1和2的方差最小,所以这俩人的成绩较稳定, 但队员2平均数最小,所以成绩好,即队员 2成绩好又发挥稳定.故选B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据 偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较 集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取 分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数 么甲、乙两班的优秀率的关系是( )又发挥稳定的运动员参加比赛,应选择(此题主要考查了方差和平均数,关键是掌握方差计算公式:7. 2022年将在北京--张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表 记录了某校4名同学短道速滑成绩的平均数X 和方差S 2,根据表中数据,要选一名成绩好27名女生进行一> 105次的为优秀,那【解析】9. 一组数据3、2、1、2、2的众数,中位数,方差分别是:(【解析】 【分析】根据众数,中位数,方差的定义计算即可 【详解】122 23 平均数为:52出现的次数最多,众数为: 中位数为:方差为: 故选:D【点睛】 本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方 法.10.在5轮 中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩A .甲优V 乙优【答案】A C.甲优=乙优 D .无法比较【分析】根据中位数可得甲班优秀的人数最多有 13人,乙班优秀的人数最少有 14人,据此可得答案. 【详解:由表格可知,每班有 •••甲班的中位数是 104, •••甲班优秀的人数最多有 27人,则中位数是排序后第 14名学生的成绩,乙班的中位数是 106, 13人,乙班优秀的人数最少有 14人,••甲优v 乙优, 故选:A .【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.A . 2, 1, 2【答案】DB . 3, 2, 0.2C. 2, 1 , 0.4D . 2, 2, 0.4将这组数据重新由小到大排列为:1、2、2、2、30.4B .甲优 >乙优方差是15,乙的成绩的方差是 3,下列说法正确的是()A. 甲的成绩比乙的成绩稳定 C. 甲、乙两人的成绩一样稳定【答案】B 【解析】 【分析】根据方差的意义求解可得. 【详解】•.•乙的成绩方差V 甲成绩的方差, •••乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离 散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2 4所以这组数据是:2, 2, 4, 8,则中位数是3.2•/ 2在这组数据中出现 2次,出现的次数最多,•••众数是故选A . 【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数 据的总个数;据此先求得 X 的值,再将数据按从小到大排列,将中间的两个数求平均值即 可得到中位数,众数是出现次数最多的数.12.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了 学,结果如下表所示:B .乙的成绩比甲的成绩稳定 D .无法确定甲、乙的成绩谁更稳定11. 若数据4, X , 2, 8,的平均数是 A . 3 和 2B . 2 和 3【答案】A【解析】 4,则这组数据的中位数和众数是()C. 2 和 2D . 2 和 4【分析】根据平均数的计算公式先求出 X 的值,【详解】 再根据中位数和众数的概念进行求解即可.•••数据2,X , 4, 8的平均数是4,•••这组数的平均数为2 X 4 84,解得:x=2;420名同5 出现了6 次,出现的次数最多,则众数是故选 D . 【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那 个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最 多的数.答案】 D 解析】故选 D .14. 已知一组数据 a 2 , 4 2a , 6, 8 3a , 9,其中 a 为任意实数,若增加一个数据 5,则该组数据的方差一定()A.减小B .不变 【答案】 A 【解析】【分析】 先把原来数据的平均数算出来,再把方差算出来,接着把增加数据 来,从而可以算出方差,再把两数进行比较可得到答案 . 【详解】这些同学平均每月阅读课外书籍本数的中位数和众数为A . 5, 5 【答案】 D 【解析】 【分析】 根据中位数和众数的定义分别进行解答即可. 【详解】 把这组数据从小到大排列中间的两个数都是B .6,6( )C . 5, 6D .6,56,则这组数据的中位数是 6;5.13. 下列说法正确的是( ) 要调查人们对 “低碳生活 ”的了解程度,宜采用普查方式 一组数据: 3, 4, 必然事件的概率是 若甲组数据的方差 A .B .C .D .稳定4,6,8,5 的众数和中位数都是 3 100%,随机事件的概率是 50% S 甲2=0.128,乙组数据的方差是 S 乙2=0.036,则乙组数据比甲组数据A 、B 、C 、D 、故不宜采取普查方式,故 A 选项错误; 8, 5的众数是4,中位数是4.5,故B 选项错误; 100%,随机事件的概率是 50%,故C 选项错误;D 选项正确.由于涉及范围太广, 数据3, 4, 4, 6, 必然事件的概率是 方差反映了一组数据的波动情况,方差越小数据越稳定,故D .不确定C 增大 5 以后的平均数算出a 2 4 2a 6 8 3a 9 25= ------- 5 石 5,(a 25)2 (4 5)2 (2a 6 5)2 (8 3a 5)2 (9 5)2增加数据 5后的平均数 a24 2a 68 3a95305 (平均数没变化),5增加数据 5后的方差=2 5)2(4 5)2 (2a 6 5)2(8 3a 5)2(9 5)2 (5 5)262 2比较S 2, S 发现两式子分子相同,因此 S 2> S (两个正数分子相同,分母大的反而 小), 故答案为A.【点睛】 本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的 方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较 . 15.某校为了解同学们课外阅读名著的情况,在八年级随机抽查了 表所示: 20名学生,调查结果如 关于这20名学生课外阅读名著的情况,下列说法错误的是 () A .中位数是10本的同学点70% 【答案】A B .平均数是10.25 C.众数是11 D .阅读量不低于10【解析】 【分析】根据中位数、平均数、众数的定义解答即可. 【详解】 解:A 、把这20名周学课外阅读经典名著的本书按从小到大的顺序排列,则中位数是 10+ 11 10.5,故本选项错误; B 、C 、 平均数是:(8 X 3+9 X 3+10 X 4+11 X 6+12->20=10.25此选项不符合题意;众数是11,此选项不符合题意; D 、 ,4 + 6 + 4 阅读量不低于10本的同学所占百分比为 _肓—X 100%=70%此选项不符合题意; 故选:A .【点睛】解:原来数据的平均数原来数据的方差=s2本题考查了平均数、众数和中位数,平均数平均数表示一组数据的平均程度•中位数是将 一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均 数)•众数是一组数据中出现次数最多的数. 16.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩 如表: 则下列关于这组数据的说法,正确的是( A .众数是2.3C.中位数是2.5 【答案】B 【解析】 B .平均数是2.4 D .方差是0.01 【分析】一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数•它是反映数据集中趋势的一项 指标;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中 间位置的数就是这组数据的中位数•如果这组数据的个数是偶数,则中间两个数据的平均 数就是这组数据的中位数; 一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差. 【详解】 这组数据中出现次数最多的是 2.4,众数是2.4,选项A 不符合题意; •••( 2.3+2.4+2.5+2.4+2.4) +5 =12+5 =2.4 •••这组数据的平均数是2.4, •••选项B 符合题意. 17.下列关于统计与概率的知识说法正确的是( ) 武大靖在2018年平昌冬奥会短道速滑 500米项目上获得金牌是必然事件 检测100只灯泡的质量情况适宜采用抽样调查 A .B . C.了解北京市人均月收入的大致情况,适宜采用全面普查 甲组数据的方差是 0.16,乙组数据的方差是 0.24,说明甲组数据的平均数大于乙组数D 据的平均数 【答案】B 【解析】 【分析】根据事件发生的可能性的大小,可判断A ,根据调查事物的特点,可判断B ;根据调查事物的特点,可判断 C;根据方差的性质,可判断 D . 【详解】解:A 、武大靖在2018年平昌冬奥会短道速滑 500米项目上可能获得获得金牌,也可能不 获得金牌,是随机事件,故 A 说法不正确;B 、 灯泡的调查具有破坏性,只能适合抽样调查,故检测抽样调查,故B 符合题意;C 、 了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C 说法错误;D 、 甲组数据的方差是 0.16,乙组数据的方差是 0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故 D 说法错误;故选B . 【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概 念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不 发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事 件.方差越小波动越小.18. 一组数据:1、2、2、3,若添加一个数据 2,则发生变化的统计量是 ( )B.中位数C.众数 D .方差【详解】解:A .原来数据的平均数是 2,添加数字2后平均数仍为2,故A 与要求不符;B. 原来数据的中位数是 2,添加数字2后中位数仍为2,故B 与要求不符;C. 原来数据的众数是 2,添加数字2后众数仍为2,故C 与要求不符;2 2 2D. 原来数据的方差=一2 (2 2)__ =-,2故方差发生了变化. 故选D .19. 某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还 未登记,只好重新算一次.已知原平均分和原方差分别为100只灯泡的质量情况适宜采用A .平均数【答案】D 【解析】 42 2 2添加数字2后的方差=(1 2) 3 (22)(32)=^5s 2,新平均分和新方差分别【答案】 【解— 2为X1 , S1 ,若此同学的得分恰好为X,则()一 2 2 一 2 2A. X X1 , s S1B. X X1 , S S1— 2 2 — 2 2 C. X X1 , S S1 D. X X1 , s S1B【分析】根据平均数和方差的公式计算比较即可.【详解】设这个班有n 个同学,数据分别是a i ,a 2,…a …,a , 第i 个同学没登录, 第一次计算时总分是(n-1) x ,、、, 1方差是 s 2= ----- [(a 1-x)2+…(a 1 -x)2+(a i+1-x)2+…+(a- x)2] n 1第二次计算时,x = n 1 x x =x ,n方差 S 12=1[(a 1-x)2+^ (a 1 -x)2+(a i - x)2+(a i+1- x)2+^ +(a- x)2]= —_-n n 故 s 2 s 2, 故选B .【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法. 20.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位 数和众数分别是()温度f 口 A403020100 A .中位数31,众数是22 C. 中位数是26,众数是22【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22, 22, 23, 26, 28, 30, 31所以中位数为26,众数为22故选:C.【点睛】s 2, 2呂2$ 22 22 S0^ W 12^ im 时间B .中位数是22,众数是31D .中位数是22,众数是26此题考查中位数,众数的定义,解题关键在于看懂图中数据。
第二十章数据的分析复习学案

第二十章数据的分析复习学案学习目标:1、进一步理解平均数、中位数和众数等统计量的统计意义。
2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。
一、知识点回顾1、平均数:在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
已知该班平均成绩为80分,问该班有多少人?2、中位数和众数○1.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是. ○2.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()A.24、25B.23、24C.25、25D.23、25○3.3、极差和方差○1.一组数据X1、X2…Xn的极差是8,则另一组数据2X1+1、2X2+1…,2Xn+1的极差是()A. 8B.16C.9D.17○2.如果样本方差[]242322212)2()2()2()2(41-+-+-+-=xxxxS,那么这个样本的平均数为.样本容量为.二、专题练习1、方程思想:例:某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是_____________.点拨:本题可以用统计学知识和方程组相结合来解决。
同类题连接:某班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,设原来参加春游的学生x人。
可列方程:2、分类讨论法:例:汶川大地震牵动每个人的心,一方有难,八方支援,5位衢州籍在外打工人员也捐款献爱心。
已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是___________;点拨:做题过程中要注意满足的条件。
人教版八年级下册数学第二十章 数据的分析 知识点归纳

第二十章数据的分析知识点:数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=[(x1-)2+(x2-)2+…+(x n-)2];方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
一、选择题1.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是()A.6B.7C. 7.5D. 152.小华的数学平时成绩为92分,期中成绩为90分,期末成绩为96分,若按3:3:4的比例计算总评成绩,则小华的数学总评成绩应为()A.92 B.93 C.96 D.92.73.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B. 中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4.某小组在一次测试中的成绩为:86,92,84,92,85,85,86,94,92,83,则这个小组本次测试成绩的中位数是()A.85 B.86 C.92 D.87.95.某人上山的平均速度为3km/h,沿原路下山的平均速度为5km/h,上山用1h,则此人上下山的平均速度为()A.4 km/hB. 3.75 km/hC. 3.5 km/hD.4.5 km/h6.在校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题:(每小题6分,共42分)7.将9个数据从小到大排列后,第个数是这组数据的中位数8.如果一组数据4,6,x,7的平均数是5,则x = .9.已知一组数据:5,3,6,5,8,6,4,11,则它的众数是,中位数是 . 10.一组数据12,16,11,17,13,x的中位数是14,则x = .11.某射击选手在10次射击时的成绩如下表:则这组数据的平均数是,中位数是,众数是 .12.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为 .13.为了了解某立交桥段在四月份过往车辆承载情况,连续记录了6天的车流量(单位:千辆/日):3.2,3.4,3,2.8,3.4,7,则这个月该桥过往车辆的总数大约为辆.第二十章数据的分析知识点:选用恰当的数据分析数据知识点详解:一:5个基本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。
浙教版数学八年级下册《第3章数据分析初步》归纳与复习

9.3
9.2
9.4
0.2
学校规定该年级卫生评比要求:去掉一个最高分,去掉一个最低分
后进行评比.去掉最高和最低的两个分数后,表中相关的数据一定不
发众数 C. 中位数 D. 方差
【答案】 C
归纳
平均数、中位数、众数是描述一组数据集中程度的统计量,方 差是描述一组数据离散程度的统计量.解决有关决策问题时,经常对 数据的变化趋势及平均数、中位数、众数、方差等多个统计量进行 分析,角度不同,作出的决策也不同.
学中选拔 1 人来担任运动会志愿者,选拔项目有普通话、体育知识
和旅游知识,两人得分如表所示.若将普通话、体育知识和旅游知识
依次按 4∶3∶3 记分,则最终胜出的同学是________.
选拔项目 普通话 体育知识 旅游知识
小聪
80
90
72
小慧
90
80
70
【答案】 小慧
专题二 方差
【例 2】 (2022 春·绍兴市上虞区期末)如图所示为甲、乙两名运
【跟踪训练 3】 (2023 春·宁波市慈溪市期末)某校调查九年级学生对党的二十大知识的
掌握情况,从九年级的两个班各随机抽取了 10 名学生进行测试,成绩整理、描述和统计
如下(单位:分):
九(1)班 10 名学生的成绩是 96,83,96,86,99,98,92,100,89,81.
九(2)班 10 名学生中成绩 x 在 90≤x<95 组的数据是 94,90,92.
九(1)班、九(2)班所抽取学生的成绩数据统计表
班级
平均数
中位数
众数
方差
九(1)班
a
94
b
42.8
2024中考数学总复习课件:第31讲 数据的分析(共42张PPT)

2
甲
乙 = 165 , 甲
= 1.5 , 乙
= 2.5 ,那么身高更整齐的是____.
知识点三 频数分布直方图
1.整理数据时,我们往往把数据分成若干组,每一小组出现的数据个数叫做该
频数
频率
组的______,而各小组的频数与数据总数的比叫做该组的______,由此可见,各小
1
组的频率之和等于___.
大
不稳定
度)的量,方差越大,数据的波动越____,偏离平均数越多,数据越________;方差
小
稳定 .
越小,数据的波动越____,偏离平均数越少,数据越______
4.应用:当几组数据的平均数相同时,可用方差来比较几组数据的稳定性.
5.数据变化对平均数、方差的影响
数据
1 , 2 , ⋯ ,
48
15
75
24
51
24
0
报班
300
0.02
(1)根据表1, 的值为_____,
的值为_____.
分析处理
(2)请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比.
12
解:
500
× 100% = 2.4% .
答:“双减”后报班数为3的学生人数所占的百分比为 2.4% .
差
组数
2.画频数分布直方图的步骤:①计算最大值与最小值的____;②决定______与
组距
列频数分布表
______;③决定分点;④______________;⑤用横轴表示各分段数据,用纵轴表示
各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
捐2册
的人数占
30%图书/册人数123456246
8
101214163米3
2.5米3
1.5米3
1米3数据的分析单元练习题
21.济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计表: 节水量/m 3 1 1.5 2.5 3 户数
50
80
100
70
(1)300户居民5月份节水量的众数是 米3,中位数是 米3; (2)扇形统计图中2.5米3对应扇形圆心角为 度; (3)该小区300户居民5月份平均每户节约用水多少米3?
22.如图是某校八年级(1)班全体同学为山区中学捐赠图书的情况统计图,请根据统计图中的信息,解答下列问题:
(1)该班有多少学生? (2)补全条形统计图;
(3)八年级(1)班全体同学所捐赠图书的中位数和众数分别是多少?
23.张明、王成两位同学在初二年级10次数学单元自我检测(成绩均为整数,且个位数为0)如图所示,利用图中提供的信息,解答下列问题:
(1)完成下表;
姓名 平均成绩
中位数 众数 方差(s 2)
张明 80 80 王成
260
(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是 ; (3)根据图表信息,请你对这两位同学各提一条不超过20字的学习建议。
2. 一组数据4,3,6,9,6,5是中位数和众数分别是 ( ) A.5和5.5 B. 5.5和6 C. 5和6 D. 6和6 4.某中学足球队的18名队员的年龄情况如下表: 年龄(单位:岁)
14 15 16 17 18 人数
3
6
4
4
1
则这些队员年龄的众数和中位数分别是 ( )
A.15,15
B. 15,15.5,
C. 15,16
D. 16,15
5. 某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要去前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的 ( ) A. 中位数 B. 众数 C. 平均数 D. 众数和平均数
9. 已知样本甲的平均数甲x =60,方差s 2甲=0.05,样本乙的平均数乙x =60,方差s 2乙=0.1,那么这两组数据的波动情况为 ( )
A.甲、乙两样本波动一样的;
B. 甲样本的波动比乙样本大;
C. 乙样本的波动比甲样本大;
D. 无法比较两样本波动的大小。
12. 已知一个样本1,3,2,5,x ,它的平均数为3,则这个样本的标准差是 。
极差______ 6.如图,点A 的坐标可以看成是方程组 的解.
10.如果二元一次方程组⎩
⎨
⎧=+=-a y x a
y x 3的解是二元一次方程
0753=--y x 的一个解,那么a 的值是( )
A .3
B .5
C .7
D .9 14.如果方程组⎩
⎨
⎧=-+=+5)1(210
73y a ax y x 的解中的x 与y 的值相等,那么a 的值是( )
A .1
B .2
C .3
D .4 15.解方程组 (1)⎩⎨⎧-==+73825x y y x (2)2528
x y x y +=⎧⎨
-=⎩
(3)⎩
⎨⎧=+=-74823x y y x
20. (10分)(1)求一次函数的坐标的交点的图象与的图象P l x y l x y 2112
1
22-=
-=. (2)求直线1l 与y 轴交点A 的坐标; 求直线2l 与X 轴的交点B 的坐标; (3)求由三点P 、A 、B 围成的三角形的面积.
F
F E
E
22
22
1
111
A
B
C
D
A B
C D A B
C
D
A
B
C
D
D C
B
A
32
1
A
B
C
D
选择题(每题3分,共30分) 1. 下列各语句中命题有 ( )
(1)你吃过午饭了吗? (2)同位角相等;(4)红扑扑的脸蛋; (3)若两直线被第三直线所截,同位角相等,则内错角一定相等. A.1个 B. 2个 C. 3个 D. 4个
2. 下列图形中,已知∠1=∠2,则可得到AB ∥CD 的是 ( )
3.如图所示,下列条件中,能判断AB ∥CD 的是( )
A.∠BAD=∠BCD
B.∠1=∠2
C.∠3=∠4
D.∠BAC=∠ACD 4.如图,△ABC 中,∠B=55°,∠C=63°,DE ∥AB,则∠DEC 等于( )
A.63°
B.62°
C.55°
D.118
°
第3题 第4题 第5题
5. 如图所示,AB ∥CD ,AD ∥BC ,则下列各式中正确的是 ( ) A. ∠1+∠2>∠3 B.∠1+∠2=∠3 C. ∠1+∠2<∠3 D. ∠1+∠2与∠3无关
6. 一个角的两边与另一个角的两边分别平行,则这两个角( )
A.相等
B.互补
C.相等或互补
D.不能确定
7. 在直角三角形中,其中一个锐角是另一个锐角的 2倍,则这个三角形中最小的角是( ) A.15° B. 30° C. 60° D. 90°
8.已知△ABC 的三个内角,∠A 、∠B 、∠C 满足关系式:∠B+∠C=2∠A ,则此三角形 ( )
3
4
D
C
B
A
2
1
A.一定有一个内角是45°; B 一定有一个内角是60°; C.一定是直角三角形; D.一定是钝角三角形。
9.(2013•安徽中考)如图,AB ∥CD ,∠A+∠E=75°,则∠C 为( )
A .60°
B .65°
C .75°
D .80°
二、填空题 11、“两直线平行,同位角互补”是 命题(填真、假)
12、把命题“对顶角相等”改写成“如果…那么…”的形式
13、如图所示,∠1+ ∠2=180°,若∠3=50°,则∠4=
第17题
14、如图,△ABC 中,∠ACD=115°,∠B=55°,则∠A= . 15、在△ABC 中,∠C=90°,若∠A=30°,则∠B= 16、在△ABC 中,∠A=100°,∠B —∠C=40°,则∠C= . 17、在△ABC 中,∠ABC 和∠ACB 的平分线交于点I, 若 ∠A=60°,则∠BIC=
18.把一张长方形纸片如图所示折叠后,再展开, 如果∠1=55°,那么∠2等于 。
三、解答题
19、如图,AB ∥CD ,AD ∥BC ,∠B=50°,∠EDA=60°,求∠CDO.
I
A B
C
20、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?
21、已知如图,在△ABC 中,∠1是它的一个外角,E 为边AC 上一点,延长BC 到H ,连接HE 。
求证:∠1 > ∠2
22、已知如图,AB ∥DE 。
(1)、猜测∠A 、∠ACD 、∠D 有什么关系,并证明你的结论。
(2)、若点C 向右移动到线段AD 的右侧,此时∠A 、∠ACD 、∠D 之间的关系,仍然满足(1)中的结论吗?若符合请你证明,若不符,请你写出正确的结论并证明。
要求画出相应的图形。
d e
c
b a 34
1
2。