薄膜材料制备原理、技术及应用知识点

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

薄膜材料制备原理、技术及应用知识点1

一、名词解释

1. 气体分子的平均自由程:自由程是指一个分子与其它分子相继两次碰撞之间,经过的直线路程。对个别分子而言,自由程时长时短,但大量分子的自由程具有确定的统计规律。气体分子相继两次碰撞间所走路程的平均值。

2. 物理气相沉积(PVD):物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。

3. 化学气相沉积(CVD):化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。

4. 等离子体鞘层电位:等离子区与物体表面的电位差值ΔV p即所谓的鞘层电位。

在等离子体中放入一个金属板,由于电子和离子做热运动,而电子比离子的质量小,热速度就比离子大,先到达金属板,这样金属板带上负电,板附近有一层离子,于是形成了一个小局域电场,该电场加速了离子,减速电子,最终稳定了以后,就形成了鞘层结构,该金属板稳定后具有一个电势,称为悬浮电位。

5. 溅射产额:即单位入射离子轰击靶极溅出原子的平均数,与入射离子的能量有关。

6. 自偏压效应:在射频电场起作用的同时,靶材会自动地处于一个负电位下,导致气体离子对其产生自发的轰击和溅射。

7. 磁控溅射:在二极溅射中增加一个平行于靶表面的封闭磁场,借助于靶表面上形成的正交电磁场,把二次电子束缚在靶表面特定区域来增强电离效率,增加离子密度和能量,从而实现高速率溅射的过程。

8. 离子镀:在真空条件下,利用气体放电使气体或被蒸发物部分离化,产生离子轰击效应,最终将蒸发物或反应物沉积在基片上。结合蒸发与溅射两种薄膜沉积技术而发展的一种PVD方法。

9. 离化率:被离化的原子数与被蒸发气化的原子数之比称为离化率.一般离化装置的离化率仅为百分之几,离化率较高的空心阴极法也仅为20~40%

10. 等离子体辅助化学气相沉积(PECVD)技术:是一种用等离子体激活反应气体,促进在基体表面或近表面空间进行化学反应,生成固态膜的技术。等离子体化学气相沉积技术的基本原理是在高频或直流电场作用下,源气体电离形成等离子体,利用低温等离子体作为能量源,通入适量的反应气体,利用等离子体放电,使反应气体激活并实现化学气相沉积的技术。

11. 外延生长:在单晶衬底(基片)上生长一层有一定要求的、与衬底晶向相同的单晶层,犹如原来的晶体向外延伸了一段,故称外延生长。

12. 薄膜附着力:薄膜对衬底的黏着能力的大小,即薄膜与衬底在化学键合力或物理咬合力作用下的结合强度。

二、填空:

1、当环境中元素的分压降低到了其平衡蒸气压之下时,元素发生净蒸发。反之,元素发生净沉积。

2、在直流放电系统中,气体放电通常要经过汤生放电阶段、辉光放电阶段和弧光放电阶段三个放电过程,其中溅射法制备薄膜主要采用辉光放电阶段所产生的大量等离子体来形成溅射。

3、溅射仅是离子轰击物体表面时发生的物理过程之一,不同能量的离子与固体表面相互作用的过程不同,不仅可以实现对物质原子的溅射,还可以在固体表面形成沉积现象和离子注入现象。

4、溅射法所采有的放电气体多为Ar气,主要原因是惰性气体做为入射离子时,物质溅射产额高,从经济方面考虑,多使用Ar做为溅射气体。

5、直流溅射要求靶材具有良好的导电性,否则靶电流过小,靶电压过高,而射频溅射方法以交流电源提供高频电场,高频电场可经由其它阻抗形式进入沉积室,不再要求电极一定是导电体,使溅射过程摆脱对靶材导电性的要求。

6、磁控溅射存在的缺点。

1微观永远大于宏观你永远大于人类今天永远大于永远■■■■■■■■纯属个人行为,仅供参考■■■■■■■■勿删■■■■■■■■■

1、磁控溅射所利用的环状磁场迫使二次电子跳栏式地沿着环状磁场转圈。相应地,环状磁场控制的区域是等离子体密度最高的部位。在磁控溅射时,可以看见溅射气体——氩气在这部位发出强烈的淡蓝色辉光,形成一个光环。处于光环下的靶材是被离子轰击最严重的部位,会溅射出一条环状的沟槽。环状磁场是电子运动的轨道,环状的辉光和沟槽将其形象地表现了出来。磁控溅射靶的溅射沟槽一旦穿透靶材,就会导致整块靶材报废,所以靶材的利用率不高,一般低于40%;

2、等离子体不稳定;

3、不能实现强磁性材料的低温高速溅射,因为几乎所有的磁通都通不过磁性靶子,所以在靶面附近不能加外加强磁场

7、要想得到粗大甚至是单晶结构的薄膜,一个必要的条件往往是需要适当的提高沉积的温度,并降低沉积的速率。反之,低温条件和沉积速率增加将使得薄膜组织的晶粒发生细化。

8、在薄膜沉积的最初阶段,先要有新相核心的形成。新相的形核过程可以被分为两种类型,即自发形核与非自发形核。自发形核指的是整个形核过程完全是在相变自由能的推动下进行的,而自发形核则指的是除了有相变自由能作推动力外,还有其它因素起着帮助新相核心生成的作用。自发形核一般只发生在一些精心控制的过程之中,在薄膜与衬底之间浸润性较差的情况下,薄膜的形核过程可近似认为是一个自发形核过程;在大多数相变过程中,形核的过程都是非自发的,新相的核心将首先出现在那些能量比较有利的位置上。

9、薄膜在沉积过程中,原子最容易被表面能较高的表面所吸引,凝聚到非密排面上,因而在非密排晶面上,薄膜的沉积速率最高,而在其它的晶面上,薄膜的沉积速率较低。

10、外延薄膜的生长方式。产生这两种不同生长模式的主要原因是原子在薄膜表面具有不同的扩散能力。当原子的扩散能力较高,其平均扩散距离大于台阶的平均间距时,薄膜将采取台阶流动式的生长模式。否则,薄膜只能采取二维形核式的生长模式。

11、金属有机化学气相沉积的优点和应用。

优点:

混合后通入反应腔,混合气体流经加热的衬底表面时,在衬底表面发生热分解反应,并外延生长成化合物单晶薄膜。与其他外延生长技术相比,MOCVD 技术有着如下优点:

1用于生长化合物半导体材料的各组分和掺杂剂都是以气态的方式通入反应室,因此,可以通过精确控制气态源的流量和通断时间来控制外延层的组分、掺杂浓度、厚度等。可以用于生长薄层和超薄层材料。

2反应室中气体流速较快。因此,在需要改变多元化合物的组分和掺杂浓度时,可以迅速进行改变,减小记忆效应发生的可能性。这有利于获得陡峭的界面,适于进行异质结构和超晶格、量子阱材料的生长。

3晶体生长是以热解化学反应的方式进行的,是单温区外延生长。只要控制好反应源气流和温度分布的均匀性,就可以保证外延材料的均匀性。因此,适于多片和大片的外延生长,便于工业化大批量生产。

4通常情况下,晶体生长速率与Ⅲ族源的流量成正比,因此,生长速率调节范围较广。较快的生长速率适用于批量生长。

5使用较灵活,非常适合于生长各种异质结构材料。原则上只要能够选择合适的原材料就可以进行包含该元素的材料的 MOCVD 生长。而可供选择作为反应源的金属有机化合物种类较多,性质也有一定的差别。

6由于对真空度的要求较低,反应室的结构较简单。

7生长易于控制,随着检测技术的发展,可以对 MOCVD 的生长过程进行在位监测。

MOCVD 的应用范围

MOCVD 主要功能在於沉积高介电常数薄膜,可随著precursor 的更换,而沉积出不同种类的薄膜.对於LED 来说,LED 晶片由不同半导体材料的多层次架构构成,这些材料放在一个装入金属有机化学气相沉积系统的圆形

相关文档
最新文档