力学量期望值随时间的变化 守恒定律
量子力学课件:3.8 力学量期望值随时间的变化 守恒定律

力学量算符的平均值:
| cn |2 n
F n
| cn |2
n
基本对易关系:
x , p i
lˆ lˆ i lˆ 或
对易的意义:
F *(x)Fˆ (x)dx *(x) (x)dx
1 0
( ) ( )
lˆ ,lˆ i lˆ
Fˆ ,Gˆ 0
经典力学中守恒量:体系取确定值! ①
量子力学守恒量:不一定确定值! 但测量值几率不随时间变化!
② 量子力学定态特点:测量值几率不随时间变化!
守恒量:1、是体系特殊的力学量。
——与H对易!
VS
2、在一切状态(不管是否是定态)
——平均值、测量几率分布不随时间变化!
定态:1、是体系特殊的状态。 ——能量本征态!
[ x,pˆ x ] i [Lˆ x,Lˆ y ] iLˆz
(x)2
•(px
)2
2 4
(Lx )2
•(Ly )2
2 4
2
Lz
一、力学量的平均值随时间的变化
量子力学中,处于一定状态下的体系,在每一 时刻,不是所有的力学量都具有确定的值,而只是 具有确定的平均值及几率分布。
力学量F的平均值
F *Fˆ d *(x,t)Fˆ (x,t)dx
2、对一切力学量(不显含时间,不管是不是守恒量) ——平均值、测量几率分布不随时间变化!
[1 i Fˆ , Hˆ ] i[Fˆ , Hˆ ] 0
就F^是体系的一个守恒量,是与变换Q相联 系的可观测量。
1.空间平移不变性
设体系具有平移不变性,
Dˆ (a) (x) (x a)
其中平移变换: D(a) e i pˆxa
量子力学最全名词解释及知识点整理

是三重简并的,对应于这些能级的态称为三重态( | 1,1⟩, | 1, − 1⟩, | 1,0⟩)
29. 正氦与仲氦p206
处于三重态的氦称为正氦,处于单态的氦称为仲氦,或者说基态的氦是仲氦
一些结论
1. 谐振子能量本征函数及其性质


为动量,λ为波⻓。
4. 态叠加原理(Superposition principle):p17
对 于 一 般 的 情 况 , 如 果 ψ1 和 ψ2 是 体 系 的 可 能 状 态 , 那 么 它 们 的 线 性 叠 加
ψ = c1ψ1 + c2ψ2也是这个体系的一个可能状态,其中c1和c2为复常数。
20. 偶极跃迁、偶极近似(Electric Dipole Approximation): p146
由于电磁波中电场对电子能量的影响远大于磁场,忽略光波中的磁场作用和原子的尺
寸,把电场近似地用Ex = E0 cos ωt(沿z轴传播的平面单色偏振光的电场)表示后得到的
结果,这样讨论的跃迁称为偶极跃迁,这种近似叫做偶极近似。
22. 简单塞曼效应、复杂塞曼效应(Zeeman e ect):p181
在外磁场较强的情况下,没有外磁场时的一条谱线在外磁场中将分裂为三条,这就是 简单塞曼效应。
在外磁场较弱时,电子自旋与轨道相互作用不能够忽略,光谱线分裂成偶数条,这称 为复杂塞曼效应。
23. 好量子数:p187
守恒量的特点:测量值的几率分布不随时间变化,守恒量的量子数称为好量子数。
•
谐振子能量的本征函数为:ψn(x)
=
Nne−
1 2
α2 x2Hn(α
量子力学_第三章3.8力学量期望值随时间的变化__守恒定律

2. 例子(运动恒量举例)
<1>自由粒子的动量
ˆ2 p ˆ 当粒子不受外力,即 H 时 2 ˆ p ˆ, H ˆ ] i [p ˆ ] j[p ˆ ] k[p ˆ]0 ˆ x,H ˆ y,H ˆ z,H 如果 0 , [p t
dp 0 ,即为量子力学中的动量守恒定律。 则有 dt
ˆ 的本征值 C 1 。 所以 P
Байду номын сангаас
ˆ (x, t) (x, t) ; P ˆ (x, t) (x, t) 即: P 1 1 2 2
ˆ 的本征函数中本征值为 1 的 为有偶宇称态,本征值为 1 称P 1
的 2 为有奇宇称态。
ˆ 在空间反演不变时的宇称守恒: c. H
2 2 ˆ L 2 ˆ 2 , H] ˆ [L ˆ2 , ˆ2 , ˆ 2 , U(r)] 0 [L (r )] [L ] [L 2r 2 r r 2r 2 ˆ ,H ˆ ] 0; ˆ2 ,L ˆ ] 0 , [L ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0, ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0 [L [ L [L z x z
化。因 完全描写态,知道 ( r , t ) 后,即可求得每一个时刻 t 各 dinger 方 程 , 故 o 力 学 量 的 变 化 。 而 态 ( r , t ) 的 变 化 遵 从 Schr
2 dinger 方程不仅可以直接描写 ( r , t ) 的变化,而且还能间 Schr o
二、守恒定律
ˆ 1 d F F ˆ 不显含时间 t ,即 ˆ,H ˆ ] 中,如果 F 1. 在运动方程 [F dt t i ˆ dF F ˆ ˆ =0,即 F 平均值不随 0 ,并且 [F, H] 0 (即对易),则有 dt t
力学量的平均值随时间的变化

m
m
则 rˆ(t)rˆ(0)pˆ t
m
例题2 一维谐振子 Hp2/2m1mω2x2
2
x ( t) e i H / x t i H e / ,tp ( t) e i H / p t i H / e t
而 ddtx(t)i1eiH/t[x,H]eiH/t p(t)/m
d dt
p(t)i1eiH/t[p,H]eiH/t
rp 1(rp p r) 2
这是否会影响位力定理得证明
答:从位力定理的证明可以看出;将r·p厄米化后并不能影响到 定理的证明
例题1 设Vx;y;z是x;y;z的n次齐次函数;即
V (c,c x,c y)z cn V (x,y,z)
证明 2T nV
8 FeynmanHellmann定理
设体系的束缚态能级和归一化的能量本征态为 En, n
p (t)p c o t s m xs itn
例题3 求一维谐振子在态Ψn下的动能和势能的平均值
解: 一维谐振子的能量本征值为
En
n
1ω
2
由位力定理知: T V
则 EnHTVn1 2ω
所以 TV1n1ω
2 2
例题4 判断下列说法的正误
(1)在非定态下;力学量的平均值随时间变化错 (2)2 设体系处在定态;则不含时力学量测值的概率不随时间变化对 (3)3设哈密顿量为守恒量;则体系处在定态错 (4)4 中心力场中的粒子处于定态;则角动量取确定的数值错 (5)5 自由粒子处于定态;则动量取确定值错 (6)能级是二重简并的 (7)6一维粒子的能量本征态无简并错 (8)一维束缚态粒子的能量本征态无简并
7 位力定理: 设粒子处于势场Vr;其哈密顿为
H p 2/2 m V (r )
量子力学_第三章3.8力学量期望值随时间的变化__守恒定律

dinger 方程 o 接地描写各力学量的变化。当然,我们也可以由 Schr
推出一个力学量随时间变化的一般方程,即量子力学运动方程或 海森堡运动方程,由它可以更直接的描述力学量的变化,并可得 出一些重要结论。
ˆ 的本征值 C 1 。 所以 P
ˆ (x, t) (x, t) ; P ˆ (x, t) (x, t) 即: P 1 1 2 2
ˆ 的本征函数中本征值为 1 的 为有偶宇称态,本征值为 1 称P 1
的 2 为有奇宇称态。
ˆ 在空间反演不变时的宇称守恒: c. H
ˆ F 1 ˆH ˆ H ˆF ˆ ) dx dx ( F t i
ˆ 1 d F F ˆ,H ˆ] 即: [F dt t i
(1)
ˆ 显含时间而引 此即为海森伯运动方程。 其中右边第一项是由于 F
起的,即使 不随 t 变化这一项也存在;第二项是由于 随 t 变 化而引起的,即使 F 不随 t 变化这一项也存在。
2 2 ˆ L 2 ˆ 2 , H] ˆ [L ˆ2 , ˆ2 , ˆ 2 , U(r)] 0 [L (r )] [L ] [L 2r 2 r r 2r 2 ˆ ,H ˆ ] 0; ˆ2 ,L ˆ ] 0 , [L ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0, ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0 [L [ L [L z x z
y
x
y
ˆ ˆ2 L L 0, x t t dL d L2 所以: 0; x dt dt
ˆ L y
ˆ L z =0 t t dL y dL z 0; 0 0; dt dt
3.8力学量期望值随时间的变化 守恒定律

§3.8力学量期望值随时间的变化 守恒定律一. 力学量的平均值随时间的变化关系力学量A 在ψ(x ,t)中的平均值为:*ˆ()(,)(,)A t x t Ax t dx ψψ=⎰ (3。
8.1) 因为ψ是时间的函数Â也可能显含时间,所以Ā通常是时间t 的函数。
为了求出Ā随时间的变化,(1)式两边对t 求导dA dt =***ˆˆˆA dx A dx A dx t t tψψψψψψ∂∂∂++∂∂∂⎰⎰⎰ (3.8.2) 由薛定谔方程ψψH t i ˆ=∂∂ ,⇒ ψψH i t ˆ1=∂∂ **)ˆ(1ψψH i t-=∂∂∴ ***ˆ11ˆˆˆˆ()()dA A dx H A dx A H dx dt t i i ψψψψψψ∂∴=-+∂⎰⎰⎰(3.8.3) ***ˆ1ˆˆˆˆ[]A dx AH dx HA dx t i ψψψψψψ∂=+-∂⎰⎰⎰ 因为Ĥ是厄密算符**ˆ1ˆˆˆˆ()A dx AH HA dx t i ψψψψ∂=+-∂⎰⎰ ˆ1ˆˆ[,]dA A A H dt t i ∂∴=+∂(3.8.6) 这就是力学量平均值随时间变化的公式。
若Â不显含t ,即ˆ0A t∂=∂,则有 1ˆˆ[,]dA A H dt i =(4) 如果Â既不显含时间,又与Ĥ对易([Â, Ĥ]=0),则由上式有0d A dt= (5) 即这种力学量在任何态ψ之下的平均值都不随时间改变。
证明:在任意态ψ下A 的概率分布也不随时间改变。
概括起来讲,对于Hamilton 量Ĥ不含时的量子体系,如果力学量A 与Ĥ对易,则无论体系处于什么状态(定态或非定态),A 的平均值及其测量的概率分布均不随时间改变。
所以把A 称为量子体系的一个守恒量。
即A 的平均值不随时间改变,我们称满足(5)式的力学量A 为运动恒量或守恒量。
守恒量有两个特点:(1). 在任何态ψ(t )之下的平均值都不随时间改变;(2). 在任意态ψ(t )下A 的概率分布不随时间改变。
第五章 力学量随时间的演化与守恒量详解

第五章 力学量随时间的演化与守恒量§1 力学量随时间的变化在经典力学中,处于一定状态下的体系的每一个力学量作为时间的函数,每一个时刻都有一个确定值;但是, 在量子力学中,只有力学量的平均值才可与实验相比较,力学量随时间的演化实质是平均值和测量值的几率分布随时间的演化。
一、守衡量力学量ˆA在任意态()t ψ上的平均值随时间演化的规律为 ˆˆ1ˆˆ,dA A A H dt t i ∂⎡⎤=+⎣⎦∂, 其中ˆH为体系的哈密顿量。
[证明] 力学量ˆA的平均值表示为()ˆ()(),()A t t A t ψψ=,()A t 对时间t 求导得 ()()ˆ()()()ˆˆ,()(),(),()ˆ11ˆˆˆˆ (),()(),()ˆ11ˆˆˆˆ (),()(),()1 d A t t t A A t t A t t dt t t t A H t A t t AH t i i t A t HA t t AH t i i tψψψψψψψψψψψψψ⎛⎫⎛⎫⎛⎫∂∂∂=++ ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫⎛⎫=++⎪ ⎪∂⎝⎭⎝⎭∂=-+ψ+∂=ˆˆˆ,AA H i t∂⎡⎤+⎣⎦∂1ˆˆ,A H i ⎡⎤+⎣⎦1、 守恒量的定义若ˆA不显含t , 即ˆ0A t ∂∂=, 当ˆˆ,0A H ⎡⎤=⎣⎦,那么力学量ˆA 称为守恒量。
2、守恒量的性质(1)、在任意态()t ψ上,守恒量的平均值都不随时间变化0dA dt =。
(2)、在任意态()t ψ上,守恒量的取值几率分布都不随时间变化。
[证明] 由于ˆˆ[,]0A H =知,存在正交归一的共同本征函数组{}nψ(n 是一组完备的量子数),即 ˆˆn n nn n nH E A A ψψψψ⎧=⎪⎨=⎪⎩ 正交归一化条件(),n m mn ψψδ=对于体系的任意状态()t ψ可展开为: ()()n nnt a t ψψ=∑, 展开系数为()(),()n n a t t ψψ=在体系的任意态()t ψ上测量力学量ˆA 时,得到本征值nA 的几率为2|()|n a t , 而 ()()()()()()*2*()()()()()()(),,()(),,1()1() ,,()(),,11ˆ (),,()n n n n n n n n n n n n n n n da t da t d a t a t a t dt dt dtt t t t t t t t i t t i i t i t H t t i i ψψψψψψψψψψψψψψψψψψψψ=+∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭∂∂⎛⎫⎛⎫=-+ ⎪ ⎪∂∂⎝⎭⎝⎭=-+()()()()()()()()()()ˆ(),,()11ˆˆ (),,()(),,() (),,()(),,()0n n n n n n n n n n n n t H t t H t t H t i i E Et t t t i i ψψψψψψψψψψψψψψψψψψψψ=-+=-+= 这表明2|()|n a t 是与时间无关的量。
38力学量平均值随时间的变化

1
[F, H ]
dt t ih
如果算符不显含时间,
F t
0
则
dF
1
[F, H ]
dt ih
若
[F, H] 0
则
dF 0
dt
(3.8-4) (3.8-5)
(3.8-6) (3.8-7)
(3.8-8)
满足上式的力学量,称为体系的运动恒量。
守恒量的特点
守恒量具有如下特点,即体系在任何状态下:
(1)其平均值不随时间而变化;
§3.8力学量平均值随时间的变化 守恒定律
在波函数 描写的状态中,力学量的平均值为
F *(x,t) F (x,t)dx
因波函数是时间的函数,所以
(3.8-1)
d F d
*(x,t) F (x,t)dx
dt dt
* F dx
*
F
dx
*
F
dx
t
t
t
(3.8-2)
由 Schro&&dinger 方程
t
)
(rv,
t
)
(rv,
t
)
对应 P的本征值 1的态,称寄宇称
得出另一态,称其无确定宇称来自称守恒若体系哈密顿量具有空间反演不变性
H
(rv)
H
(rv)
则
PH
H
P
即
[P, H ]
0,亦即 P
是一个守恒量,或者说
H
描写的系统的宇称是不变的,称为宇称守恒定律。
(2)其概率分布不随时间而变化。
证明特点(2):
因为 [F, H ] 0
,故
F
,
H
具有共同本征函数系n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[ x,pˆ x ] i [Lˆ x,Lˆ y ] iLˆz
(x)2
•(px
)2
2 4
(Lx )2
•(Ly )2
2 4
2
Lz
一、力学量的平均值随时间的变化
量子力学中,处于一定状态下的体系,在每一 时刻,不是所有的力学量都具有确定的值,而只是 具有确定的平均值及几率分布。
力学量F的平均值
F *Fˆ d *(x,t)Fˆ (x,t)dx
经典力学中守恒量:体系取确定值! ①
量子力学守恒量:不一定确定值! 但测量值几率不随时间变化!
② 量子力学定态特点:测量值几率不随时间变化!
守恒量:1、是体系特殊的力学量。
——与H对易!
VS
2、在一切状态(不管是否是定态)
——平均值、测量几率分布不随时间变化!
定态:1、是体系特殊的状态。 ——能量本征态!
Hˆ ]
[Lˆx ,
1
2r2
Lˆ2 ]
1
2r2
[Lˆx ,
Lˆ2 ]
0
同理 [Ly , L2] [Lz , L2] 0
所以
d Lˆ2 1 [Lˆ2 , Hˆ ] 0 dt i
d Lˆx dt
1 i
[Lˆx , Hˆ ] 0
d Lˆy dt
1 i
[Lˆy , Hˆ ] 0
d Lˆz dt
②力学量的可能测值的几率分布不随时间变化
如:(i)自由粒子动量
Hˆ 1 pˆ 2
2
d p 1 [ pˆ Hˆ ] 0 dt i
动量守恒 (ii)粒子在中心力场中运动的角动量
Hˆ
2
2r2
r
(r 2
) r
Lˆ2
2r2
U (r)
[L2 , H ]
[L2 ,
1
2r 2
L2 ]
0
[Lˆx ,
例 2: 氢原子,完全确定其状态也 需要三个两两对易的力学量:
Hˆ , Lˆ2 , Lˆz .
nlm RnlYlm
Hˆ nlm En nlm
lˆ2 nlm (l 1)l
2 nlm
lˆz nlm m nlm
En
es4 2 2n2
L2 l(l 1) 2
lz m
不对易的意义:不确定关系!
若 [Fˆ,Gˆ ] ikˆ,则:(Fˆ )2 • (Gˆ )2 (k )2 4
[1 i Fˆ , Hˆ ] i[Fˆ , Hˆ ] 0
就F^是体系的一个守恒量,是与变换Q相联 系的可观测量。
1.空间平移不变性
设体系具有平移不变性,
Dˆ (a) (x) (x a)
其中平移变换: D(a) e i pˆxa
显然
[Dˆ , Hˆ ] 0
[1 i apˆ x , Hˆ ] 0
F平均值随时间的变化率
dF dt
*
Fˆ d
t
*
t
Fˆ d
*Fˆ
t
d
注意到 则有
1 Hˆ
t i
* 1 (Hˆ )*
t i
dF dt
*
Fˆ d
t
1 i
*FˆHˆ d
1 i
(Hˆ )* Fˆ d
*
Fˆ
t
d
1 i
*FˆHˆ
d
1 i
*HˆFˆ
d
ห้องสมุดไป่ตู้
*
Fˆ
t
d
1 i
* ( FˆHˆ
HˆFˆ )
1 i
[Lˆz , Hˆ ] 0
角动量守恒定律
(iii)哈密顿不显含时间的体系的能量
Hˆ 0 t
能量守恒
d Hˆ 1 [Hˆ , Hˆ ] 0 dt i
二、守恒量与对称性的关系
设体系状态为 , 满足
i Hˆ
t
设线性变换Q (存在逆变换 Q,1 不依赖于时间) QQ
若与 满足同样形式的运动方程,即
[ pˆx, Hˆ ] 0
即具有空间平移不变性的体系动量守恒。
2.空间旋转不变性 设体系具有空间旋转不变性
Rˆ( ) () ( )
其中转动变换: Rˆ ( ) e i Lˆz
显 然 [R, H ] 0
[lˆz , Hˆ ] 0
具有空间旋转不变性的体系角动量守恒。
两个易混淆的问题!
§3.8 力学量平均值随时间的 变化 守恒定律
Dr. Xia
力学量算符的平均值:
| cn |2 n
F n
| cn |2
n
基本对易关系:
x , p i
lˆ lˆ i lˆ 或
对易的意义:
F *(x)Fˆ (x)dx *(x) (x)dx
1 0
( ) ( )
lˆ ,lˆ i lˆ
2、对一切力学量(不显含时间,不管是不是守恒量) ——平均值、测量几率分布不随时间变化!
Fˆ ,Gˆ 0
有共同本征函数,且 组成完备系!
意义:存在共同本征函数,在本征态下同时具有确定值
对易的算符可以同时具有确定值。
为完全确定状态所需要的一组两两对易的力学量算符的 最小(数目)集合称为力学量完全集合。
例 1: 三维空间中自由粒子,完全确定其 状态需要三个两两对易的力学量:
pˆ x , pˆ y , pˆ z .
i Hˆ
t
称体系具有Q变换不变性。
i Q HˆQ
t
左乘 Q 1 则
i Q1HˆQ Hˆ
t
Hˆ Q1HˆQ
即 QHˆ 或HˆQ
[Q, Hˆ ] 0
即体系在Q变换不具有不变性,则要求 [Q, H^]。 0
考虑到几率守恒
( , ) (Q ,Q ) ( ,QQ ) ( , )
d
即 d F Fˆ 1 (FˆHˆ HˆFˆ ) Fˆ 1 [Fˆ , Hˆ ]
dt t i
t i
力学量平均值随时间的变化率
dF dt
Fˆ t
1 i
[Fˆ
,
Hˆ
]
注: 若 不F^显含t,且 [F^,,则H^] 称0为体F^系的守恒量。
守恒量的特点: ①力学量平均值不随变化,ddFt 。0
QQ QQ I
变换Q应为么正变换。
对于有限变换,可通过无穷小的变换来实现。 令 Qˆ I i Fˆ
( ,0 是刻画无穷小变换的参量),因为
QQ (1 i Fˆ )(1 i Fˆ ) 1 i(F F ) O( 2 ) I
则有 Fˆ Fˆ
F^为厄米算符,称变换Q的无穷小变换算符。