力学的守恒定律作业
练习册第2章《质点力学的运动定律守恒定律》答案(1)

练习册第2章《质点⼒学的运动定律守恒定律》答案(1)第2章质点⼒学的运动定律守恒定律⼀、选择题1(C),2(E),3(D),4(C),5(C),6(B),7(C),8(C),9(B),10(C),11(D),12(A),13(D)⼆、填空题(1). ω2=12rad/s ,A=0.027J (2). 290J (3). 3J (4). 18 N ·s(5). j t i t 2323+ (SI) (6). 16 N ·s , 176 J (7). 16 N ·s ,176 J (8). M k l /0,Mknm M Ml +0(9). j i5- (10).2m v ,指向正西南或南偏西45°三、计算题1. 已知⼀质量为m 的质点在x 轴上运动,质点只受到指向原点的引⼒的作⽤,引⼒⼤⼩与质点离原点的距离x 的平⽅成反⽐,即2/x k f -=,k 是⽐例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的⼤⼩.解:根据⽜顿第⼆定律x m t x x m t m xk f d d d d d d d d 2vv v v =?==-= ∴ ??-=-=4/202d d ,d d A Ax mx kmx x k v v v v vk mAA A m k 3)14(212=-=v ∴ )/(6mA k =v2. 质量为m 的⼦弹以速度v 0⽔平射⼊沙⼟中,设⼦弹所受阻⼒与速度反向,⼤⼩与速度成正⽐,⽐例系数为K,忽略⼦弹的重⼒,求:(1) ⼦弹射⼊沙⼟后,速度随时间变化的函数式; (2) ⼦弹进⼊沙⼟的最⼤深度.解:(1) ⼦弹进⼊沙⼟后受⼒为-Kv ,由⽜顿定律tmK d d vv =- ∴ ??=-=-v v v v vv 0d d ,d d 0t t m K t m K∴ mKt /0e -=v v(2) 求最⼤深度解法⼀: t xd d =vt x mKt d ed /0-=vt x m Kt txd e d /000-?=v∴ )e 1()/(/0mKt K m x --=vK m x /0m ax v =解法⼆: x m t x x m t m K d d )d d )(d d (d d vvv v v ===- ∴ v d K mdx -=v v d d 000m a x ??-=K mx x∴ K m x /0m ax v =3. ⼀物体按规律x =ct 3在流体媒质中作直线运动,式中c 为常量,t 为时间.设媒质对物体的阻⼒正⽐于速度的平⽅,阻⼒系数为k ,试求物体由x =0运动到x =l 时,阻⼒所作的功.解:由x =ct 3可求物体的速度: 23d d ct tx==v 物体受到的阻⼒⼤⼩为: 343242299x kc t kc k f ===v ⼒对物体所作的功为:=W W d =-lx x kc 03432d 9 =7273732l kc -4. ⼀质量为2 kg 的质点,在xy 平⾯上运动,受到外⼒j t i F 2244-= (SI)的作⽤,t = 0时,它的初速度为j i430+=v (SI),求t = 1 s 时质点的速度及受到的法向⼒n F .解: j t i m F a 2122/-==t a d /d v = ∴ t j t i d )122(d 2-=v=?vv vd ?-t t j t i 02d )122(∴ j t i t 3042-=-v vj t i t j t i t )44()23(42330-++=-+=v v当t = 1 s 时, i51=v 沿x 轴故这时, j a a y n12-==j a m F n n24-== (SI)5.⼀辆⽔平运动的装煤车,以速率v 0从煤⽃下⾯通过,每单位时间内有质量为m 0的煤卸⼊煤车.如果煤车的速率保持不变,煤车与钢轨间摩擦忽略不计,试求:(1) 牵引煤车的⼒的⼤⼩;(2) 牵引煤车所需功率的⼤⼩;(3) 牵引煤车所提供的能量中有多少转化为煤的动能?其余部分⽤于何处?解:(1) 以煤车和?t 时间内卸⼊车内的煤为研究对象,⽔平⽅向煤车受牵引⼒F 的作⽤,由动量定理: 000)(v v M t m M t F -+=?? 求出: 00v m F = (2) 2000v v m F P ==(3) 单位时间内煤获得的动能: 2021v m E K =单位时间内牵引煤车提供的能量为 P E ===21/E E K 50%即有50%的能量转变为煤的动能,其余部分⽤于在拖动煤时不可避免的滑动摩擦损耗.6.⼀链条总长为l ,质量为m ,放在桌⾯上,并使其部分下垂,下垂⼀段的长度为a .设链条与桌⾯之间的滑动摩擦系数为µ.令链条由静⽌开始运动,则(1)到链条刚离开桌⾯的过程中,摩擦⼒对链条作了多少功?(2)链条刚离开桌⾯时的速率是多少?解:(1)建⽴如图坐标.某⼀时刻桌⾯上全链条长为y ,则摩擦⼒⼤⼩为 g lym f µ=摩擦⼒的功 ??--==0d d al al f y gy lmy f W µ=22al y lmg-µ =2)(2a l lmg--µ(2)以链条为对象,应⽤质点的动能定理 ∑W =222121v v m m - 其中 ∑W = W P +W f ,v 0 = 0 W P =?la x P d =la l mg x x l mg la 2)(d 22-=? 由上问知 la l mg W f 2)(2--=µal -a-a1)(22)(v m a l l mg l a l mg =---µ得 []21222)()(a l a l lg ---=µv7. 如图所⽰,在中间有⼀⼩孔O 的⽔平光滑桌⾯上放置⼀个⽤绳⼦连结的、质量m = 4 kg 的⼩块物体.绳的另⼀端穿过⼩孔下垂且⽤⼿拉住.开始时物体以半径R 0 = 0.5 m 在桌⾯上转动,其线速度是4 m/s .现将绳缓慢地匀速下拉以缩短物体的转动半径.⽽绳最多只能承受 600 N 的拉⼒.求绳刚被拉断时,物体的转动半径R 等于多少?解:物体因受合外⼒矩为零,故⾓动量守恒.设开始时和绳被拉断时物体的切向速度、转动惯量、⾓速度分别为v 0、J 0、ω0和v 、J 、ω.则ωωJ J =00 ①因绳是缓慢地下拉,物体运动可始终视为圆周运动.①式可写成R mR R mR //20020v v =整理后得: v v /00R R =②物体作圆周运动的向⼼⼒由绳的张⼒提供 R m F /2v = 1分再由②式可得: 3/12020)/(F mR R v =当F = 600 N 时,绳刚好被拉断,此时物体的转动半径为R = 0.3 m8.设两个粒⼦之间相互作⽤⼒是排斥⼒,其⼤⼩与粒⼦间距离r 的函数关系为3r k f =,k 为正值常量,试求这两个粒⼦相距为r 时的势能.(设相互作⽤⼒为零的地⽅势能为零.)解:两个粒⼦的相互作⽤⼒ 3r k f =已知f =0即r =∞处为势能零点, 则势能∞∞∞=?==r r P P r r kW E d d 3r f)2(2r k =1. 汽车发动机内⽓体对活塞的推⼒以及各种传动部件之间的作⽤⼒能使汽车前进吗?使汽车前进的⼒是什么⼒?参考解答:汽车发动机内⽓体对活塞的推⼒以及各种传动部件之间的作⽤⼒都是汽车系统的内⼒,内⼒只会改变内部各质点的运动状态,不会改变系统的总动量,所以不能使汽车前进。
2020年高考回归复习—力学实验之验证动量守恒定律 含答案

高考回归复习—力学实验之验证动量守恒定律1.如图所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系。
(1)实验中,直接测定小球碰撞前后的速度是不容易的。
但是,可以通过仅测量________(选填选项前的符号),间接地解决这个问题。
A.小球开始释放高度hB.利用秒表精确测量小球从抛出点到落地的时间tC.小球做平抛运动的射程(2)图中O点是小球抛出点在地面上的垂直投影。
实验时,先让球1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP。
然后,把被碰小球2静置于轨道的水平部分末端,再将入射球1从斜轨上S位置静止释放,与小球2相碰,并多次重复。
接下来要完成的必要步骤是________(填选项前的符号)。
A.用天平测量两个小球的质量1m、2mB.测量球1开始释放高度hC.测量抛出点距地面的高度HD.分别找到球1、球2相碰后平均落地点的位置M、NE.测量平抛射程OM、ON(3)若两球相碰前后的动量守恒,其表达式可表示为______________________(用(2)中测量的量表示)若碰撞是弹性碰撞,那么还应满足的表达式为______________________(用(2)中测量的量表示)。
2.国庆同学在做“探究碰撞中的不变量”实验中,所用装置如图甲所示,已知槽口末端在白纸上的投影位置为O点。
回答以下问题:(1)为了完成本实验,下列必须具备的实验条件或操作步骤是___________;A .斜槽轨道末端的切线必须水平B .入射球和被碰球半径必须相同C .入射球和被碰球的质量必须相等D .必须测出桌面离地的高度HE.斜槽轨道必须光滑(2)国庆同学在实验中正确操作,认真测量,得出的落点情况如图乙所示,则入射小球质量和被碰小球质量之比为____________;(3)为了完成本实验,测得入射小球质量m 1,被碰小球质量m 2,O 点到M 、P 、N 三点的距离分别为y 1、y 2、y 3,若两球间的碰撞是弹性碰撞,应该有等式_______成立。
大学物理第二章习题质点力学的基本规律 守恒定律

基本要求
掌握经典力学的基本原理及会应用其分析和处理质点动力学问题,理 解力学量的单位和量纲。掌握动量、冲量、动量定理,动量守恒定律。并 能分析和计算二维平面简单力学问题。理解惯性系概念及经典力学的基本 原理的适用范围。掌握功与功率、动能、势能(重力势能、弹性势能、引 力势能)概念,动能定理、功能原理、机械能守恒定律。
教学基本内容、基本公式
1.牛顿定律
解牛顿定律的问题可分为两类: 第一类是已知质点的运动,求作用于质点的力; 第二类是已知作用于质点的力,求质点的运动.
2.基本定理 动量定理
动能定理
I
t2 t1
F (t )dt
mv
mv0
A12
2
F
(r)
dr
1
1 2
mv
2 2
1 2
解:根据牛顿第二定律
f
k x2
m dv dt
m dv d x dx dt
mv
dv dx
k x2
mv
dv dx
v
dv
k
dx mx2
v
v
0
dv
A/4
A
k mx2
d
x
1v2 k (4 1) 3 k 2 m A A mA
另解:根据动能定理
v 6k /(mA)
(2)写出初末态系统的动量
t 时刻水平方向动量
dm m
t+dt时刻水平方向动量
O
x
(3)求出系统水平方向动量的增量
第三章 动量定理 动量守恒定律(习题)

第三章 动量定理及动量守恒定律(习题)3.5.1质量为2kg 的质点的运动学方程为 j ˆ)1t 3t 3(i ˆ)1t 6(r 22+++-=(t 为时间,单位为s ;长度单位为m).求证质点受恒力而运动,并求力的方向大小。
解,j ˆ)3t 6(i ˆt 12v ++= j ˆ6i ˆ12a +=jˆ12i ˆ24a m F +==(恒量)12257.262412tg )N (83.261224F ==θ=+=-3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为ωω+ω=b,a, ,j ˆt sin b i ˆt cos a r为正常数,证明作用于质点的合力总指向原点。
解, ,j ˆt cos b i ˆt sin a v ωω+ωω-= r,j ˆt sin b i ˆt cos a a 22 ω-=ωω-ωω-= r m a m F ω-==3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。
解答,以谷筛为参照系,发生相对运动的条件是,g a ,mg f a m 000μ≥'μ=≥'a ' 最小值为)s /m (92.38.94.0g a 20=⨯=μ='以地面为参照系:解答,静摩擦力使谷粒产生最大加速度为,mg ma 0max μ= ,g a 0max μ=发生相对运动的条件是筛的加速度g a a0max μ=≥',a '最小值为)s /m (92.38.94.0g a20=⨯=μ='3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。
2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。
牛顿力学中的能量守恒练习题及

牛顿力学中的能量守恒练习题及解答在牛顿力学中,能量守恒是一个重要的概念。
本文将为您介绍一些与能量守恒相关的练习题,并给出详细的解答过程。
练习题一:一个小车以40 km/h的速度行驶,在行驶过程中突然失去动力。
小车在经过30米之后停了下来,求小车受到的摩擦力大小。
解答:根据能量守恒定律,小车失去动力后,其机械能将保持不变。
在失去动力前的机械能主要来自其动能,即1/2mv^2,其中m为小车质量,v为速度。
在停下后,小车的机械能主要来自其势能,即mgh,其中h为停下的高度,即0。
因此可以得到以下方程:1/2mv^2 = mgh根据题目给出的数据,速度v为40 km/h,转化为m/s得:v = 40 km/h = 40 * 1000 / 3600 m/s ≈ 11.11 m/s代入方程中,可以解得:1/2 * m * (11.11)^2 = m * g * 30化简后得:g ≈ (11.11)^2 / (2 * 30)计算得:g ≈ 20.79 m/s^2因此,小车受到的摩擦力大小为20.79 N。
练习题二:一个小球从高处自由落体,其下落的高度为20米。
小球在落地之后弹起,最高弹起的高度为原高度的一半。
求小球在弹起过程中失去的机械能。
解答:在自由落体过程中,小球的机械能主要来自其势能,即mgh,其中m为小球质量,g为重力加速度,h为下落的高度。
在弹起过程中,小球的机械能主要来自其动能,即1/2mv^2,其中v为弹起的速度,根据题目给出的信息,最高弹起的高度为原高度的一半,即10米。
因此,可以得到以下方程:mgh = 1/2mv^2根据题目给出的数据,下落高度h为20米,最高弹起高度为10米。
代入方程中,可以解得:m * 9.8 * 20 = 1/2 * m * v^2化简后得:v ≈ √(2 * 9.8 * 20)计算得:v ≈ √(392) ≈ 19.8 m/s因此,在弹起过程中,小球失去的机械能为:1/2 * m * (19.8)^2 - 1/2 * m * (0)^2 = 1/2 * m * (19.8)^2计算得:1/2 * m * (19.8)^2 ≈ 195.02 J因此,小球在弹起过程中失去的机械能约为195.02焦耳。
高中力学中的机械能守恒定律有哪些典型例题

高中力学中的机械能守恒定律有哪些典型例题在高中力学的学习中,机械能守恒定律是一个非常重要的知识点。
它不仅在解决物理问题时经常用到,也是理解能量转化和守恒的关键。
下面,我们就来一起探讨一些机械能守恒定律的典型例题。
例题一:自由落体运动一个质量为 m 的物体从高度为 h 的地方自由下落,忽略空气阻力,求物体下落至地面时的速度 v。
解析:在自由落体运动中,物体只受到重力的作用,重力势能逐渐转化为动能。
初始时刻,物体的机械能为重力势能 mgh,下落至地面时,物体的机械能为动能 1/2mv²。
因为机械能守恒,所以有 mgh =1/2mv²,解得 v =√2gh 。
这个例题是机械能守恒定律的最基本应用之一,它清晰地展示了重力势能如何转化为动能。
例题二:竖直上抛运动一个质量为 m 的物体以初速度 v₀竖直上抛,忽略空气阻力,求物体上升的最大高度 h。
解析:物体竖直上抛时,动能逐渐转化为重力势能。
在初始时刻,物体的机械能为动能 1/2mv₀²,当物体上升到最大高度时,速度为 0,机械能为重力势能 mgh。
由于机械能守恒,所以 1/2mv₀²= mgh,解得 h = v₀²/ 2g 。
这个例题与自由落体运动相反,是动能转化为重力势能的过程。
例题三:光滑斜面运动一个质量为 m 的物体从光滑斜面的顶端由静止开始下滑,斜面的高度为 h,斜面的长度为 L,求物体滑到底端时的速度 v。
解析:物体在斜面上运动时,重力势能转化为动能。
初始时刻,物体的机械能为重力势能 mgh,滑到底端时,物体的机械能为动能1/2mv²。
因为斜面光滑,没有摩擦力做功,机械能守恒。
根据几何关系,物体下落的高度 h 与斜面长度 L 和斜面倾角θ 有关,h =Lsinθ。
所以mgh = 1/2mv²,解得 v =√2gh =√2gLsinθ 。
这个例题展示了在斜面这种常见的情境中机械能守恒定律的应用。
力学应用动量守恒定律解题
力学应用动量守恒定律解题力学是物理学的一个重要分支,研究物体在运动过程中所受的力及其变化规律。
动量守恒定律是力学中的一条基本定律,表明在一个封闭系统中,当没有外力作用时,系统的总动量保持不变。
应用动量守恒定律可以解决许多实际问题,下面我将以几个例子来说明。
例题一:弹性碰撞假设有两个质量相同的小球,在光滑的水平面上碰撞。
初始时,小球A以速度va向右运动,小球B以速度vb向左运动。
碰撞后,小球A以速度va'向左运动,小球B以速度vb'向右运动。
我们可以利用动量守恒定律来求解碰撞后的速度。
根据动量守恒定律,碰撞前的总动量等于碰撞后的总动量。
设小球A和小球B的质量都为m,速度va为正值,速度vb为负值,则可以写出以下方程:mva + mvb = mva' + mvb'根据题意,可以得到小球A碰撞前的速度va和小球B碰撞前的速度vb都已知,碰撞后的速度va'和vb'是未知的,通过解方程可以求解出碰撞后的速度。
例题二:炮弹问题假设有一个炮弹以速度v0发射出去,形成一个抛物线轨迹。
我们可以利用动量守恒定律来解决炮弹问题。
在潜射前和潜射后,系统的总动量保持不变。
当炮弹发射前,炮弹和大炮的总动量为零;当炮弹发射后,炮弹和大炮的总动量仍为零,只是动量的方向相反。
利用动量守恒定律,我们可以得到以下方程:m0v0 = (m+m0) v其中,m0是炮弹的质量,v0是炮弹的初速度,m是大炮的质量,v是大炮的速度。
通过解方程,我们可以求解出炮弹的速度v和射程等相关参数。
这样,我们就可以用动量守恒定律解答炮弹问题。
例题三:汽车追尾问题假设有两辆质量分别为m1和m2的汽车,汽车1以速度v1追尾汽车2,两车发生完全弹性碰撞。
求解碰撞后两车的速度。
根据动量守恒定律,我们可以得到以下方程:m1v1 + m2v2 = m1v1' + m2v2'其中,v1和v2是碰撞前两车的速度,v1'和v2'是碰撞后两车的速度。
高中物理力学中角动量守恒问题的解题技巧
高中物理力学中角动量守恒问题的解题技巧在高中物理力学学习中,角动量守恒是一个非常重要的概念。
它在解决一些与旋转运动有关的问题时起着至关重要的作用。
本文将通过具体题目的举例,来说明角动量守恒问题的解题技巧,并且尝试给出一些一般性的指导。
例题1:一质点质量为m,在水平光滑桌面上以速度v做匀速圆周运动,半径为r。
一个质量为M的物体以速度V撞击该质点,并与其发生完全弹性碰撞。
碰撞后,质点的圆周运动半径变为R。
求M与m的质量比。
解析:这道题目涉及到了角动量守恒和动量守恒两个重要的物理定律。
我们可以首先分析碰撞前后的角动量和动量是否守恒。
碰撞前,质点的角动量为L1 = mvr,物体的角动量为L2 = MRV。
由于碰撞是完全弹性碰撞,所以碰撞后质点和物体的速度方向不变,仅仅改变了大小。
因此,碰撞后质点的角动量为L3 = mVR,物体的角动量为L4 = MRv。
根据角动量守恒定律,碰撞前后的总角动量应该相等,即L1 + L2 = L3 + L4。
代入数值,得到mvr + MRV = mVR + MRv。
同样地,根据动量守恒定律,碰撞前后的总动量也应该相等,即mv + MV = mV + Mv。
通过以上两个方程,我们可以解得M与m的质量比。
这道题目的解题关键在于正确运用角动量守恒和动量守恒的定律,并将它们转化为数学方程进行求解。
在解题过程中,需要注意将碰撞前后的角动量和动量分别表示出来,并且注意角动量的正负方向。
例题2:一个物体以速度v绕一个半径为r的固定点做匀速圆周运动。
现在将该物体的速度加倍,求此时物体的角动量相对于原来增加了多少倍。
解析:这道题目考察的是角动量与动量的关系。
根据角动量的定义,L = mvr,其中m为物体的质量,v为物体的速度,r为物体到固定点的距离。
当物体的速度加倍时,新的角动量为L' = 2mv(r/2) = 2L。
可以看出,物体的角动量相对于原来增加了2倍。
这道题目的解题关键在于理解角动量与动量的关系,即角动量正比于动量。
2月22日物理作业 动量守恒定律
2月22日物理作业《优化》大本9----13页动量守恒定律一、系统内力和外力1.系统:的两个(或多个)物体组成一个整体.2.内力:系统物体间的相互作用力.3.外力:系统的物体对系统的物体的作用力.二、动量守恒定律1.内容:如果一个系统,或者所受外力的矢量和为,这个系统的总动量,这就是动量守恒定律.2.表达式:(系统相互作用前后总动量p、p′相等).3.成立条件(1)系统不受;(2)系统所受外力之和为零.4.适用范围(1)相互作用的物体无论是还是运动;无论是还是,动量守恒定律都适用.(2)动量守恒定律是一个独立的实验定律,它适用于目前为止物理学研究的一切领域.判一判(1)一个系统初、末状态动量大小相等,即动量守恒.()(2)两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒.()(3)系统动量守恒也就是系统的动量变化量为零.()(4)只有重力做功或弹力做功的系统内动量守恒.()(5)若系统动量守恒,则系统机械能也守恒.()(6)靠摩擦力相互作用的两个物体,系统动量守恒,但机械能不守恒.()做一做如图所示,小车与木箱紧挨着静止放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推木箱.关于上述过程,下列说法中正确的是()A.男孩与木箱组成的系统动量定恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量相同如图所示,公路上三辆汽车发生了追尾事故.如果将前面两辆汽车看做一个系统,最后面一辆汽车对中间汽车的作用力是内力还是外力?如果将后面两辆汽车看做一个系统呢?对动量守恒定律的理解1.研究对象:相互作用的物体组成的力学系统.2.动量守恒定律的成立条件(1)系统不受外力或所受合外力为零.(2)系统受外力作用,但内力远远大于合外力.此时动量近似守恒.(3)系统所受到的合外力不为零,但在某一方向上合外力为零(或某一方向上内力远远大于外力),则系统在该方向上动量守恒.3.动量守恒定律的性质关于系统动量守恒的条件,下列说法正确的是()A.只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统中有一个物体具有加速度,系统动量就不守恒C.只要系统所受的合外力为零,系统动量就守恒D.系统中所有物体的加速度为零时,系统的总动量不一定守恒系统动量守恒的判定方法(1)分析动量守恒时研究对象是系统,分清外力与内力.(2)研究系统受到的外力矢量和.(3)外力矢量和为零,则系统动量守恒;若外力在某一方向上合力为零,则在该方向上系统动量守恒.(4)系统动量严格守恒的情况很少,在分析具体问题时要注意把实际过程理想化.(多选)在光滑水平面上,A、B两小车中间有一弹簧,如图所示.用手抓住小车并将弹簧压缩后使小车处于静止状态,将两小车及弹簧看做一个系统,下列说法中正确的是()A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手后,动量不守恒C.先放开左手,再放开右手后,总动量向左D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零动量守恒定律的应用1.动量守恒定律的常用表达式(1)p=p′或m1v1+m2v2=m1v1′+m2v2′(系统相互作用前的总动量p等于相互作用后的总动量p′,大小相等,方向相同).(2)Δp1=-Δp2或m1Δv1=-m2Δv2(系统内一个物体的动量变化量与另一物体的动量变化量等大反向).(3)Δp=p′-p=0(系统总动量的变化量为零).2.解题步骤命题视角1运用动量守恒定律分析求解问题(2019·吉林松原高二期中)在橄榄球比赛中,一个95 kg的橄榄球前锋以5 m/s的速度跑动,想穿越防守队员到底线触地得分.就在他刚要到底线时,迎面撞上了对方两名均为75 kg的队员,一个速度为2 m/s,另一个为4 m/s,然后他们就扭在了一起.(1)他们碰撞后的共同速率是____________;(2)在方框中标出碰撞后他们动量的方向,并说明这名前锋能否得分:____________(选填“能”或“不能”).命题视角2某一方向上的动量守恒光滑水平面上放着一质量为M的槽,槽与水平面相切且光滑,如图所示,一质量为m的小球以速度v0向槽运动,若开始时槽固定不动,求小球上升的高度(槽足够高);若槽不固定,则小球又上升多高?命题视角3动量近似守恒的问题如图所示,游乐场上,两位同学各驾着一辆碰碰车迎面相撞,此后,两车以共同的速度运动.设甲同学和他的车的总质量为150 kg,碰撞前向右运动,速度的大小为4.5 m/s;乙同学和他的车的总质量为200 kg,碰撞前向左运动,速度的大小为3.7 m/s.求碰撞后两车共同的运动速度.碰碰车的碰撞示意图应用动量守恒定律注意的事项在应用动量守恒定律时,一定要注意守恒的条件,不要盲目使用,注意选好研究对象及其作用的方向,也许整个系统动量不守恒,但在某一个方向上动量是守恒的.【通关练习】1.如图所示,两辆质量相同的小车置于光滑的水平面上,有一人静止站在A车上,两车静止,若这个人自A车跳到B车上,接着又跳回A车,静止于A车上,则A车的速率()A .等于零B .小于B 车的速率C .大于B 车的速率D .等于B 车的速率2.光滑水平桌面上有P 、Q 两个物块,Q 的质量是P 的n 倍.将一轻弹簧置于P 、Q 之间,用外力缓慢压P 、Q .撤去外力后,P 、Q 开始运动,P 和Q 的动量大小的比值为( )A .n 2B .n C.1nD .13.(2019·河北衡水高二月考)如图所示,质量为m 的人立于平板车上,人与车的总质量为M ,人与车以速度v 1在光滑水平面上向东运动.当此人相对于车以速度v 2竖直跳起时,车向东的速度大小为( )A.Mv 1-Mv 2M -mB.Mv 1M -mC.Mv 1+Mv 2M -mD .v 14.质量m 1=10 g 的小球在光滑的水平桌面上以v 1=30 cm/s 的速率向右运动,恰遇上质量为m 2=50 g 的小球以v 2=10 cm/s 的速率向左运动,碰撞后,小球m 2恰好停止,则碰后小球m 1的速度大小和方向如何?多物体系统中的动量守恒一个系统如果满足动量守恒条件,并且由两个以上的物体构成,在对问题进行分析时,既要注意系统总动量守恒,又要注意系统内部分物体动量守恒.注重系统内部分物体动量守恒分析,又可以使求解突破关键的未知量,增加方程个数,为问题的最终解答铺平道路.解决问题时应注意:(1)正确分析作用过程中各物体状态的变化情况,建立运动模型. (2)分清作用过程中各个阶段和联系阶段的状态量.(3)合理地选取研究对象,既要符合动量守恒的条件,又要方便解题.命题视角1 多物体多过程问题的求解如图所示,水平光滑地面上依次放置着质量m=0.08 kg的10块完全相同的长直木板.一质量M=1.0 kg、大小可忽略的小铜块以初速度v0=6.0 m/s从长木板左侧滑上木板,当铜块滑离第一块木板时,速度大小为v1=4.0 m/s.铜块最终停在第二块木板上.(取g=10 m/s2,结果保留两位有效数字)求:(1)第一块木板的最终速度;(2)铜块的最终速度.命题视角2动量守恒中的临界极值问题如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)动量守恒定律应用中的常见临界情形【通关练习】1.(2019·西藏山南高二期末)如图所示,质量为M的盒子放在光滑的水平面上,盒子内表面不光滑,盒内放有一块质量为m的物体,某时刻给物体一个水平向右的初速度v0,那么在物体与盒子前后壁多次往复碰撞后()A.两者的速度均为零B.两者的速度总不会相等C .盒子的最终速度为mv 0M ,方向水平向右D .盒子的最终速度为mv 0M +m,方向水平向右2.(2019·宁夏六盘山高二期末)一个人在地面上立定跳远最好成绩是s .假设他站在静止于地面的小车的A 端(车与地面的摩擦不计),如图所示,他欲从A 端跳上L 远处的站台上,则( )A .只要L <s ,他一定能跳上站台B .只要L <s ,他有可能跳上站台C .只要L =s ,他一定能跳上站台D .只要L =s ,他有可能跳上站台3.如图所示,在光滑的水平面上有两个并排放置的木块A 和B ,已知木块A 、B 的质量分别为m A =500 g 、m B =300 g .有一个质量为80 g 的小铁块C 以25 m/s 的水平初速度开始在A表面滑动.由于C与A、B之间有摩擦,铁块最后停在B上,B和C一起以2.5 m/s的速度共同前进.求:(1)木块A的最后速度大小v A′;(2)C在离开A时的速度大小v C′.[随堂检测] [学生用书P13]1.(2019·辽宁营口高二月考)一人静止于完全光滑的冰面上,现欲远离冰面,下列可行的方法是()A.向后踢腿B.手臂向上摆C.在冰面上滚动D.脱下外衣水平抛出2.如图所示,甲、乙两人各站在静止小车的左、右两端,当他俩同时相向行走时,发现小车向右运动.下列说法不正确的是(车与地面之间无摩擦)()A.乙的速度必定大于甲的速度B.乙对小车的冲量必定大于甲对小车的冲量C.乙的动量必定大于甲的动量D.甲、乙动量总和必定不为零3.(多选)如图所示,木块A静置于光滑的水平面上,其曲面部分MN光滑,水平部分NP粗糙.现有一物体B自M点由静止下滑,设NP足够长,则以下叙述正确的是() A.A、B最终以同一不为零的速度运动B.A、B最终速度均为零C.A物体先做加速运动,后做减速运动第 21 页 共 21 页 D .A 物体先做加速运动,后做匀速运动4.(2019·湖北武汉高二期中)下面是一个物理演示实验,它显示:图中自由下落的物体A 和B 经反弹后,B 能上升到比初始位置高得多的地方.A 是某种材料做成的实心球,质量m 1=0.28 kg ,在其顶部的凹坑中插着质量m 2=0.10 kg 的木棍B .B 只是松松地插在凹坑中,其下端与坑底之间有小空隙.将此装置从A 下端离地板的高度H =1.25 m 处由静止释放.实验中,A 触地后在极短时间内反弹,且其速度大小不变;接着木棍B 脱离球A 开始上升,而球A 恰好停留在地板上.求木棍B 上升的高度,重力加速度g =10 m/s 2.5.结冰的湖面上有甲、乙两个小孩分别乘冰车在一条直线上相向滑行,速度大小均为v 1=2 m/s ,甲与车、乙与车的质量和均为M =50 kg.为了使两车不会相碰,甲将冰面上一质量为5 kg 的静止冰块以v 2=6 m/s(相对于冰面)的速率传给乙,乙接到冰块后又立即以同样的速率将冰块传给甲,如此反复,在甲、乙之间至少传递几次,才能保证两车不相碰?(设开始时两车间距足够远)。
大学物理A 练习题 第2章《质点力学的运动定律 守恒定律》
《第2章 质点力学的运动定律 守恒定律》一 选择题1. 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ.[ ]2. 一质点在力F = 5m (5 - 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为(A) 50 m ·s -1. (B) 25 m ·s -1.(C) 0. (D) -50 m ·s -1.[ ]3. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A) 甲先到达. (B) 乙先到达.(C) 同时到达. (D) 谁先到达不能确定.[ ]4.一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上.在该质点从坐标原点运动到(0,2R )位置过程中,力F 对它所作的功为(A) 20R F . (B) 202R F . (C) 203R F . (D) 204R F .[ ]5. 对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关. (2) 质点组总动能的改变与内力无关. (3) 质点组机械能的改变与保守内力无关.在上述说法中: (A) 只有(1)是正确的. (B) (1)、(3)是正确的.(C) (1)、(2)是正确的. (D) (2)、(3)是正确的.[ ] 6. 一火箭初质量为M 0,每秒喷出的质量(-d M /d t )恒定,喷气相对火箭的速率恒定为u.设火箭竖直向上发射,不计空气阻力,重力加速度g 恒定,则t = 0时火箭加速度a在竖直方向(向上为正)的投影式为 (A) g t M M u a --=)d d (0. (B) g tM M u a +=)d d (0.(C) d d (0t M M u a -=. (D) g tM M u a -=d d (0 [ ]7. 一竖直向上发射之火箭,原来静止时的初质量为m 0经时间t 燃料耗尽时的末质量为m ,喷气相对火箭的速率恒定为u ,不计空气阻力,重力加速度g 恒定.则燃料耗尽时火箭速率为(A) 2/ln0gt m m u -=v . (B) gt m m u -=0ln v . (C) gt m m u +=0ln v . (D) gt mmu -=0ln v .[ ]二 填空题 1. 某质点在力F =(4+5x )i(SI)的作用下沿x 轴作直线运动,在从x =0移动到x =10 m的过程中,力F所做的功为__________.2.质量为m =0.5kg 的质点,在Oxy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2(SI),从t =2s 到t =4s 这段时间内,外力对质点作的功为_____________.3. 设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________.4. 质量m =1 kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为F =3+2x (SI),那么,物体在开始运动的3 m 内,合力所作的功W =_________;且x =3 m 时,其速率v =_________.5. 质量为0.05 kg 的小块物体,置于一光滑水平桌面上.有一绳一端连接此物,另一端穿过桌面中心的小孔(如图所示).该物体原以3 rad/s 的角速度在距孔0.2 m 的圆周上转动.今将绳从小孔缓慢往下拉,使该物体之转动半径减为0.1 m .则拉力所做的功为____________________.6. 粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度j i43+=0A v ,粒子B 的速度j i72-=0B v ;在无外力作用的情况下两者发生碰撞,碰后粒子A 的速度变为j i 47-=A v ,则此时粒子B 的速度B v=____________________.7. 一维保守力的势能曲线如图所示,有一粒子自右向左运动,通过此保守力场区域时,在 _________________ 区间粒子所受的力F x > 0; 在 _________________ 区间粒子所受的力F x < 0; 在x = _______________ 时粒子所受的力F x = 0.三 计算题1. 一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =2+6 x 2 (SI),如果质点在原点处的速度为零,试求其在任意位置处的速度.2. 质点沿曲线 j t i t r22+= (SI) 运动,其所受摩擦力为 v 2-=f (SI).求摩擦力在t = 1 s 到t = 2 s 时间内对质点所做的功.3. 一辆水平运动的装煤车,以速率v 0从煤斗下面通过,每单位时间内有质量为m 0的煤卸入煤车.如果煤车的速率保持不变,煤车与钢轨间摩擦忽略不计,试求: (1) 牵引煤车的力的大小; (2) 牵引煤车所需功率的大小;(3) 牵引煤车所提供的能量中有多少转化为煤的动能?其余部分用于何处?4. 一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为 .令链条由静止开始运动,则(1)到链条刚离开桌面的过程中,(2)链条刚离开桌面时的速率是多少?a5. 如图所示,在中间有一小孔O 的水平光滑桌面上放置一个用绳子连结的、质量m = 4 kg 的小块物体.绳的另一端穿过小孔下垂且用手拉住.开始时物体以半径R 0 = 0.5 m 在桌面上转动,其线速度是4 m/s .现将绳缓慢地匀速下拉以缩短物体的转动半径.而绳最多只能承受 600 N 的拉力.求绳刚被拉断时,物体的转动半径R 等于多少?6. 小球A ,自地球的北极点以速度0v 在质量为M 、半径为R 的地球表面水平切向向右飞出,如图所示,地心参考系中轴OO '与0v 平行,小球A 的运动轨道与轴OO '相交于距O 为3R 的C 点.不考虑空气阻力,求小球A 在C点的速度v 与0v 之间的夹角θ.7. 一个具有单位质量的质点在随时间 t 变化的力j t i t t F)612()43(2-+-= (SI) 作用下运动.设该质点在t = 0时位于原点,且速度为零.求t = 2秒时,该质点受到对原点的力矩和该质点对原点的角动量.四研讨题1. 汽车发动机内气体对活塞的推力以及各种传动部件之间的作用力能使汽车前进吗?使汽车前进的力是什么力?2. 在经典力学范围内,若某物体系对某一惯性系满足机械能守恒条件,则在相对于上述惯性系作匀速直线运动的其它参照系中,该物体系是否一定也满足机械能守恒条件?请举例说明.3. 在车窗都关好的行驶的汽车内,漂浮着一个氢气球,当汽车向左转弯时,氢气球在车内将向左运动还是向右运动?4. 为了避免门与墙壁的撞击,常常在门和墙上安装制动器,目前不少制动器安装在靠近地面的位置上(如图),在开关门的过程中,门与制动器发生碰撞,从而门受到撞击力的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ek
1 2
Jw 2
lmg 2
1.0J
3.20 如图所示,质量为 2m ,长 l 的均匀细杆可绕通过其上端 的水平光滑固定轴 O 转动,另一质量为 m 的小球,用长也为 l 的轻绳系于O 轴上。开始时杆静止在竖直位置,现将小球在垂 直于轴的平面内拉开一角度θ,然后使其自由摆下与杆端相碰撞 (设为弹性碰撞),结果使杆的最大偏角为π/ 3,求小球最初被 拉开的角度θ。
Jw Rmv0 L
( J 1 MR2 ) 2
所以: L 1 M mR2w
2
3.7 一水平均质圆台的质量为200kg,半径为2m,可绕通过其 中心的铅直轴自由旋转(即轴摩擦忽略不计).今有一质量为
60kg的人站在圆台边缘.开始时,人和转台都静止,如果人在 台上以1.2m·s-1的速率沿台边缘逆时针方向奔跑,求此圆台转动 的角速度.
x20
C
•
O
m1 x10 x
系统水平方向不受外力,此方向动量守恒,他们在任意时刻
的速度分别 v1 为 v2 ,则
m1v1 m2v2 0
v2
-
m1 m2
v1
设开始时质量为 m1 的运动员坐标为 x10 ,质量为 m2 的运动 员坐标为 x20 ,在 t 时刻,两人在坐标 x 处相遇,则
t
x - x10 0 v1dt
O
2
2 2
l
J 1 ml 2 3
1.0 m
棒的下端点上升的距离为
F
h
h
Jw 2
mg
J 2w 2
1 ml 2mg
3 Jw 2 0.196
g ml
m
3
3.10 在一光滑水平面上固定半圆形滑槽,质量为m的滑块以初速
度v0沿切线方向进入滑槽端,滑块与滑槽的摩擦系数为 ,滑
快运动情况及受力分析如图所示.试求当滑块从滑槽另一端滑出
O 解 (1) 根据动量矩定理,力 F 作用于棒的
冲量矩等于棒角动量的增量,则
Jw 0 0.02 Fldt 10010.02 0
l
2 kg m2 / s
F (2) 力撞击后,棒运动过程中,机械能守恒,
棒悬垂时自由端所在平面为零势能面,
1.0 m
设棒的下端点上升的距离为 h ,则
1 Jw 2 mg l mg h l h
平轴转动.若将此杆放在水平位置,然后从静止开始释放,如
图所示,试求杆转动到铅直位置时的动能和角速度.
解 M 1 mglcos
J 1 ml2 O •
C
x
2
3
由动能定理
•C
A
2 Md
2 l mgcosd
0
02
mg
lmg 0 1 Jw 2 0
2
2
w ( 3g )1/ 2 8.66rad/s
相对传送带静止的饲料质量)
解 以 t~t+dt 内落到传递带上的饲
H
v
料为研究对象,它的质量为 dm
= rdt ,在与传递带接触之前的
速度大小为:
则初动量为:
v1 p1
2gH
dm
v1
与传递带接触之后的末动量为: p2 dm v
该研究根对据象动受量到定传理递F带dt的弹d力p和自身重f力,d分m别为g:dtf, pd2m
3.1 某喷气式飞机以200m·s-1的速率在空中飞行,引擎中吸入 50kg·s-1的空气与飞机内2kg·h-1的燃料混合燃烧,燃烧后的气 体相对于飞机以400m·s-1的速度向后喷出.试求此喷气式飞机 引擎的推力.。 解:以每秒燃烧的气体为研究对象,飞行方向为正方向,根
据动量定理:
Ft p末 p初 m空 m燃 v m空v1 m燃v2
t
x - x20 0 v2dt
t
x - x10 0 v1dt
x
-
x20
m1 m2
t
0 v1dt
联立以上两式得:
(x
x10 )
(x - x20 )m2 m1
0
m2 x20
C
•
O
m1 x10 x
x m1x10 m2 x20 m1 m2
3.6 一质量为 M 、半径 R 的均匀圆盘通过其中心且与盘面垂 直的水平轴以角速度 w 转动。若在某时刻,一质量为 m 的小
解:设转台相对轴的角速度为 w0,人相对转台的角速度为 w1 ,
则人对轴的角速度为
w
w0 w1
w0
v R
系统角动量守恒 J0w0 J1 w0 w1 0
其中
J0
1 2
m0R2 ,
J1 m1R2
w0 0.2rad/s
3.8 长为 1 m 、质量为 2.5 kg 的一均质棒,垂直悬挂在转轴 O 上,用 F = 100 N 的水平力撞击棒的下端,该力的作用时间为 0.02 s 。试求:(1) 棒所获得的角动量;(2) 棒的下端点上升的 距离。
S
SH
H 3v2 3m 2g
3.22 水以5.0m·s-1的速率在横截面积为4.0cm2的管道中流动,当 管道的横截面积增大到8.0 cm2时,管道逐渐下降10m.求:(1) 低处管道内的水流速率;(2)如果高处管道内的压强是 1.5×105Pa,求低处管内压强.
解: (1)由连续性原理,得
S1v1 S2v2
v2 S1v1 / S2 2.5m/s
(2)由伯努利方程,得
P1
1 2
rv12
rgh1
P2
1 2
rv22
rgh2
P1
1 2
rv12
rgh1
P2
1 2
rv
2 2
P2
P1
1 2
rv12
rgh1
1 2
rv22
2.57 105 Pa
其中 v1 0, v2 200m/s , v 200 400 200m/s
m空 50kg, m燃 2 3600kg
可求得
F 10000.2N
3.3 如图所示,传递带以恒定的速度 v 水平运动,传递带上方高 为H 处有一盛饲料的漏斗,它向下释放饲料,若单位时间的落
料量为 r ,试求传递带受到饲料的作用力的大小和方向(不计
解 设小球与杆端碰前的速度为 v , 对小球由机械能守恒得:
mgl1 cos 1 mv2
2
O
l
l
小球与杆端碰撞瞬间,受转轴的作用力在 水平方向上有分力,水平方向上系统的动 量不守恒,但系统的角动量守恒,得
mvl mvl Jw (J 1 2ml2 ) 3
O
小球与杆端碰撞是完全弹性碰撞,碰撞过
解:(1)选桶底为参考平面,由伯努利方程
P1
rgh1
1 2
rv12
P2
rgh2
1 2
rv22
rgh
1 2
rv2
v 2gh 1.4 10m/s
水的流量 Q Sv 0.21.4 10 0.885m3/s
(2)设距离H处。由连续性原理和伯努利方程
Байду номын сангаас
Sv SHvH
1 2
rv2
rgH
1 2
rvH2
1 2
时,摩擦力所做的功.
解: f m dv N N m v2
dt
R
dv dv d v dv dt d dt R d
v
dv
d
v0 v
0
v v0e
由动能定理有: Af
1 mv2 2
1 2
mv0
2
1 2
mv02
(e2
1)
3.13 某均质细杆,质量为0.50kg,长为0.40m,可绕杆一端的水
g p1
f忽略ddm微t 小v 量v1dm dgmg
r
v
v1
dmg
得:f r v v1
由矢量三角形可知:
f
dmg
dt
p2
p1
v
v1
v v1
f r v2 v12 r v2 2gH
f
与传递带的夹角为:
arctan v1
arctan
2 gH
v
v
所以,传递带受到饲料的作用力 f 与 f 互为作用力和反作用力
程中动能守恒,得:
l
l
1 mv2 1 mv2 1 Jw 2
2
2
2
碰后,杆上升,只有重力做功,对杆, 机械能守恒,得:
1 Jw 2 1 2mgl1 cos
2
2
3
联立以上各式,解得: cos 23
48
61.37。
3.21 有一水桶,截面积很大,桶内水深1m,在桶底开一0.2m2截 面积的小孔,使水能连续流出.求:(1)水的流量;(2)在水 桶下方多少距离处,水流截面积变为孔口面积的一半?
碎块从盘边缘裂开,且洽好沿铅直方向上抛,问它可达到多大
高度?破裂后圆盘的角动量为多大?
解 碎块抛出时的初速度为: v0 Rw
碎块从盘边缘裂开,且洽好沿铅直方向
抛出,对碎块,由机械能守恒得:
1 2
mv02
mgh
h v02 R2w 2
2g 2g
R v0
mw
M
碎块从盘边缘裂开过程中,只受重力,重力对转轴的力矩为 零,满足动量矩守恒定律,则:
f 的大小:与 f 的大小相同;方向:与 f 的方向相反。
3.4 质量分别为 m1 和 m2的两个运动员,在光滑的水平冰面 上用绳彼此拉对方。开始时双方静止,相距为 l 。问:他们将 在何处相遇?
解 把两个运动员和绳看作一个 系统,建立如图坐标系,以 m2
两个运动员的中点为原点,
向右为 x 轴为正方向。