大学物理学力学的守恒定律
合集下载
大学物理-运动定律与力学中的守恒定律

二、质点系的动量定理
n1 第i个质点受到的合力为 Fi外 f ji j 1
Fi外
f ji
mi
mj f ij
F j外
对第i个质点 t f ji dt mi vi 2 i i1 运用动量定理有:t Fi外 j 1 n n n1 n n t t Fi外 dt t f ij dt mi vi 2 mi vi1 t i 1 i 1 i 1 i 1 j 1
2、惯性系与非惯性系 问 题 a=0时人和小球的状态符合牛顿定律 a≠0时人和小球的状态为什麽不符合牛顿定律? 结论:牛顿定律成立的参照系称为惯性系。相对惯性 系作加速运动的参照系是非惯性系。而相对惯性系作 匀速直线运动的参照系也是惯性系。 根据天文观察,以太阳系作为参照系研究行星运动时发现 行星运动遵守牛顿定律,所以太阳系是一个惯性系。
y
O
v2 30o
I F 6.14N t
6.14 10 2 Ns
45o x
v1
n
mv 2 F t sin sin 105
F
51.86 tsin 0.7866
v1 v1
v2
51.86 45 6.86
x
例:质量 m1 0.25kg 的小球,静止在光滑水平面上, 受到另一质量 m2 0.30kg ,速度 v20 0.5m / s 的小球斜碰。设碰后小球 m2 的速度v2 0.3m / s 运动方向与原方向成 30 ,求小球 m1 碰撞后 速度的大小和方向。 v 2 解:把两球看作一 v20 x m2 m2 个系统,系统 m1 v10 0 不受外力, 故动量守恒: v1
大学物理:2-2 动量守恒定律

y P
rP
F
O
地球
r
C
Q
rQ x
7
3、保守力 (conservation force)
物体在某种力的作用下, 沿任意闭合路径绕行一周所 作的功恒等于零,即
Q
CD
E
F
P
F dl 0
具有这种特性的力,称为保守力;不具有这种特 性的力称为非保守力。
8
四、 机械能守恒定律
1、功能原理 由 n 个相互作用着的质点所组成的质点系。系统中
Q
A
Q Q
AaPdFv,d
r
P
dr
ma d r
vdt
F
Q
m
d
vdtv
d
t
P dt
Q P
mv
d
v
1 2
mvQ2
1 2
P
mvP2
vdPr
质点的动能(kinetic energy)定义:质点的质量与
其运动速率平方的乘积的一半。
用Ek表示,即
Ek
1 2
mv2
5
所以有 A Ek Q Ek P 动能定理:作用于质点的合力所作的功,等于质点
0
mivi 恒矢量
i 1
在外力的矢量和为零的情况下,质点系的总动量
不随时间变化——动量守恒定律。
其分量式
n
mi vix 恒量
i 1 n
mi viy 恒量
i 1 n
mi viz 恒量
i 1
n
(当 Fix 0 时)
i 1
n
(当 Fiy 0 时)
i 1
n
(当 Fiz 0 时)
i 1
大学物理,力学中的守恒定律3

r m v1
r v2
θ
M
βr
v
粒子和氧原子核系统,碰撞过程中无外力作用, 对α粒子和氧原子核系统,碰撞过程中无外力作用, 系统总动量守恒。 系统总动量守恒。
第16页 共27页 页 页
r 碰前: 氧原子核动量为0 碰前:α粒子动量为 mv1 氧原子核动量为 r r 碰后: 碰后:α粒子动量为 mv2 氧原子核动量为Mv
h
A
r v
第8页 共27页 页 页
大学物理
解:煤粉对A的作用力即单位时间内落下的煤粉给 煤粉对 的作用力即单位时间内落下的煤粉给 冲力大小等于煤粉 A的平均冲力。这个冲力大小等于煤粉单位时间内的 的平均冲力。 的平均冲力 这个冲力大小等于煤粉单位时间内的 动量改变量,方向与煤粉动量改变量的方向相反。 动量改变量,方向与煤粉动量改变量的方向相反。 如何求煤粉动量的改变量? 如何求煤粉动量的改变量? 设 ∆t 时间内落下的煤 粉质量为 ∆m 则有
煤粉给传送带的平均冲力为 F ′ = 149 N
Fy
与x轴的夹角为 β = 180o − 57.4o = 122.6o
第10页 共27页 页 页
火箭的运动: 火箭的运动:火箭依靠排出其内部燃烧室中 产生的气体来获得向前的推力。 产生的气体来获得向前的推力。设火箭发射时 的质量为m 速率为v 的质量为 0,速率为 0,燃料烧尽时的质量为 m′,气体相对于火箭排出的速率为 e。不计空 ′ 气体相对于火箭排出的速率为v 气阻力,求火箭所能达到的最大速率。 气阻力,求火箭所能达到的最大速率。 解:火箭和燃气组成一个质点系。 火箭和燃气组成一个质点系。 t时刻: 系统总质量为 m 时刻: r r 系统总动量为 p 1 = m v 时刻: t + dt 时刻: 火箭质量为 m + dm (dm < 0) 排出的燃气质量为 − dm
大学物理学第3章 力学的守恒定律

t1 t1
00:03
t2 I F (t )dt
t1
注意
•力的冲量是矢量,计算 冲量要考虑 方向 性。
•冲量是过程量。 •冲量决定于力和时间两个因素。
•F-t图上曲线下的面积与冲量大小 的关系。
00:03
(三)用冲量概念表述动量定理
质点动量定理的微分形式 dp
F
m v Fdp Fdt d
00:03
(3)矢量性质: 系统各质点的动量的矢量和不变;
若某一方向合外力为零, 则此方向动量守恒 .
ex x
F
0, 0,
px mi vix C x p y mi viy C y pz mi viz Cz
Fyex 0 , F
ex z
(4)瞬时特征: 任意两个瞬时,动量的大小和方向都相同。
m1 v' 则 v2 v m1 m2
v2 2. 10 m s 17
3 1
(m1 m2 )v m1v1 m2 v2
v1 3. 103 m s 1 17
• 力 F=12ti(SI)作用在质量m=2kg的物体上, 使物体由原点从静止开始运动,则它在3秒末的动量 为: (A)-54 i kg.m/s (B)54i kg.m/s (C)-108 i kg.m/s (D)108 i kg.m/s (B)
y
s
v
z'
y'
s'
v'
x x'
o
00:03
z
o'
已知
v 2.5 10 m s 3 1 v' 1.0 10 m s
00:03
t2 I F (t )dt
t1
注意
•力的冲量是矢量,计算 冲量要考虑 方向 性。
•冲量是过程量。 •冲量决定于力和时间两个因素。
•F-t图上曲线下的面积与冲量大小 的关系。
00:03
(三)用冲量概念表述动量定理
质点动量定理的微分形式 dp
F
m v Fdp Fdt d
00:03
(3)矢量性质: 系统各质点的动量的矢量和不变;
若某一方向合外力为零, 则此方向动量守恒 .
ex x
F
0, 0,
px mi vix C x p y mi viy C y pz mi viz Cz
Fyex 0 , F
ex z
(4)瞬时特征: 任意两个瞬时,动量的大小和方向都相同。
m1 v' 则 v2 v m1 m2
v2 2. 10 m s 17
3 1
(m1 m2 )v m1v1 m2 v2
v1 3. 103 m s 1 17
• 力 F=12ti(SI)作用在质量m=2kg的物体上, 使物体由原点从静止开始运动,则它在3秒末的动量 为: (A)-54 i kg.m/s (B)54i kg.m/s (C)-108 i kg.m/s (D)108 i kg.m/s (B)
y
s
v
z'
y'
s'
v'
x x'
o
00:03
z
o'
已知
v 2.5 10 m s 3 1 v' 1.0 10 m s
大学物理动量守恒定律和能量守恒定律

04
动量守恒定律和能量守恒定 律的意义与影响
在物理学中的地位
基础定律
动量守恒定律和能量守恒定律是物理学中的两个基础定律,它们 在理论物理学和实验物理学中都占据着重要的地位。
理论基石
这两个定律为物理学理论体系提供了基石,许多物理理论和公式都 是基于这两个定律推导出来的。
验证实验
许多实验通过验证动量守恒定律和能量守恒定律的正确性,来检验 实验的准确性和可靠性。
适用条件
系统不受外力或外力合力为零
动量守恒定律只有在系统不受外力或外力合力为零的情况下才成立。如果系统受到外力作 用,则总动量将发生变化。
系统内力的作用相互抵消
系统内力的作用只会改变系统内各物体的速度,而不会改变系统的总动量。如果系统内力 的作用相互抵消,则总动量保持不变。
理想气体和刚体的动量守恒
未来能源利用的发展需要解决环 境问题和能源短缺问题,动量守 恒定律和能量守恒定律将在新能 源技术、节能技术等领域发挥关
键作用。
感谢您的观看
THANKS
在理想气体和刚体的研究中,由于气体分子之间的相互作用力和刚体之间的碰撞力都可以 忽略不计,因此它们的动量守恒。
实例分析
弹性碰撞
当两个小球发生弹性碰撞时,根据动量守恒定律,它们碰撞后 的速度满足m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'。由于弹性碰撞中能 量没有损失,因此碰撞前后两小球的速度变化量相等。
动量与能量的关系
动量是质量与速度的乘积,表 示物体的运动状态;能量是物 体运动状态的度量,包括动能
和势能。
动量和能量都是矢量,具有 方向性,遵循矢量合成法则。
动量和能量可以相互转化,但 总量保持不变,这是动量守恒 和能量守恒定律的内在联系。
大学物理之3-2动量守恒定律

实验器材与步骤
• 实验器材:滑块、气垫导轨、挡光板、光电门、天平、砝 码、小车等。
实验器材与步骤
实验步骤 1. 将滑块放置在气垫导轨上,调整挡光板的位置,使滑块能够顺利通过光电门。
2. 使用天平测量滑块和小车的质量,并记录下来。
实验器材与步骤
01
3. 将小车从静止状态释放,使其与滑块发生碰撞。
04 动量守恒定律的推导与证 明
推导过程
01
牛顿第二定律:物体受到的合外 力等于其质量与加速度的乘积。
02
定义动量为物体的质量与速度的 乘积,即$p=mv$。
根据牛顿第二定律,物体受到的 合外力等于其动量的变化率,即 $frac{dp}{dt}=ma$。
03
当合外力为零时,动量守恒,即 $frac{dp}{dt}=0$。
02
4. 使用光电门测量小车和滑块碰撞前后的速度,并记录下来。
5. 根据测量数据计算系统在碰撞前后的动量变化,验证动量守
03
恒定律。
实验结果与结论
实验结果
通过测量和计算,发现系统在碰撞前后的动量变化符合动量守恒定律。
实验结论
实验验证了动量守恒定律的正确性,加深了对动量守恒定律的理解。同时,实验过程中需要注意控制 实验条件,保证测量数据的准确性和可靠性。
能量守恒定律
在某些条件下,动量守恒定律和能量守恒定律可以 结合起来使用,如碰撞过程中动能和动量的关系。
角动量守恒定律
当系统受到的力矩为零时,系统的角动量保 持不变,与动量守恒定律一起描述了机械运 动的守恒规律。
在现代物理学中的应用
01
基本粒子
在研究基本粒子的相互作用和演 化过程中,动量守恒定律是重要 的理论基础。
力学量守恒的条件

力学量守恒的条件
力学中的三大能量守恒定律包括动能定理、机械能守恒定律及功能原理,它们各自有不同的条件。
1. 动能定理的条件是外力对物体所做的合功,等于物体的动能增长量。
这个定理研究的对象是单位物体或者物体系,使用的条件是在同一个惯性参照系中有速度和位移变化。
2. 机械能守恒定律的条件是在只有重力和弹力做功的物体系内,动能和势能可以相互转化,而总的机械能则保持不变。
这个定律研究的对象是物体系统,使用条件是物体重力和弹力做功。
3. 功能原理的条件是除了重力和弹力之外,其他外力做的功和内力做的代数和等于系统机械能增加量。
这个原理研究的对象是单个物体或物体系,使用条件是不计重力和弹力做的功,只计系统内其他外力和内力做的功。
以上内容仅供参考,如需更专业的解释,可查阅相关力学书籍或咨询专业物理学家。
(大学物理)第二章守恒定律

这并不是空谈……..今天条件不具备,明天就会创造出来;今天还没有,明天
一定会有!
8
原子城——金银滩草原
9
金银滩草原
10
例 作用
在
质F点(的 2yi力 4x2j)
( N)
,质
点
从
原
点运动
到x坐 ( 2标 m) 为, y( 1 m) 的
点(如图
计算F力 分别沿下列路径 功所 :y作 ( j) 的
3.在所有惯性系中,动能定理形式保持不变。
A1212m2v2 12m1v2
动能定理的量值相对不同惯性系值不相同, 即
(V22-V21)的值不相同。
14
[例]质点m=0.5Kg,运动方程x=5t,y=0.5t2 (SI) , 求从t=2s到t=4s这段时间内外力所作的功.
解法
1:
用功的定义式
r aA f 5 ddmtt2iar2f d0 01r..55 jtj2 j
m1
f1 f2
dr2
m2
F2
m2
A B 2 2 F 2f2d r21 2m 2 v2 2 B 21 2m 2 v2 2 A 2 A1
A2
B1
B2
B1
B2
F1dr1 F2dr2 f1dr1 f2dr2
A1
A2
A1
A2
12m1v12B1
12m2v22B2
12m1v12A1
12m2v22A2
第二章 守恒定律
牛顿运动三定律
动能定理
动量定理
三定理
角动量定理
能量守恒定律 动量守恒定律 角动量守恒定律
三守恒定律
1
Fma ——力与运动状态变化间的瞬时关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)用冲量概念表述动量定理
质F点F动d量pd定dd理mptF的vd微t分形d式p
dt dt
质点动量定理的积分形式
I
t2 Fdt mv mv0 p
t1
在给定的时间内,外力作用在质点上的冲量,
等于质点在此时间内动量的增量 .
07:05
质点动量定理的分量式
在直角坐标系中
分量形式
I Ixi Iy j Izk
F
t2
Fdt
t1
t2 t1
I F t2 t1
合力的冲量
I
t2
t1
Fi dt
t2 t1
Fi dt
Ii
07:05
注意
07:05
I
t2
F(t
)dt
t1
•力的冲量是矢量,计算 冲量要考虑 方向性。
•冲量是过程量。
•冲量决定于力和时间两个因素。 •F-t图上曲线下的面积与冲量大小 的关系。
07:05
二 质点系的动量定理
t2
t1
(F1
F12 )dt
m1v1
m1v10
t2
t1
(F2
F21 )dt
m2v2
m2 v20
因为内力 F12 F21 0 ,故
质点系
F1
F12
m1
F2
F21
m2
t2
t1
(F1
F2 )dt
(m1v1
m2 v2
)
(m1v10
m2v20 )
t2 Fexdt t1
dtdt
表明:质点动量对时间的变化率等于质点所受的合力。
质点的动量 定理
注意:质点动量定理仅适用于惯性系
07:05
(二)力的冲量
引入:作用力在一段时间间隔的作用效果
定义:力与其作用时间的乘积叫力的冲量
恒力的冲量 I Ft
变力的冲量
I Ft
力F 在t 时间内的
元冲量
t表 示 极 短 的 时 间 间 隔
mv2
F
F
Fm
F
o t1
t
t2
运用动量定理解题时的步骤
确定研究对象 进行受力分析 建立坐标系或规定正方向 确定冲量的方向、初动量和末动量 根据动量定理列方程求解
07:05
例 1 一质量为0.05kg、速率为10m·s-1的刚球,以与
钢板法线呈45º角的方向撞击在钢板上,并以相同的速率
和角度弹回来 .设碰撞时间为0.05s.求在此时间内钢板所
推开前后系统动量不变
07:05
且方向p相反p0则
p0 0 p 0
动量定理常应用于碰撞问题
F
t2
Fdt
t1
mv2 mv1
t2 t1
t2 t1
注意 在 p一定时
t 越小,则 F 越大 .
例如人从高处跳下、飞 机与鸟相撞、打桩等碰 撞事件中,作用时间很 07:短05 ,冲力很大 .
mv
mv1
n i1
mi vi
n mi vi0
i1
I
p
p0
07:05
质点系动量定理 作用于系统的合外力的冲量等
于系统动量的增量.
Fdt dP
微分形式
t2
F exdt=
P2
dP
ΔP
积分形式
t1
P1
07:05
注意
内力不改变质点系的动量
初始速度 vg0 vb0 0 mb 2mg 则
推开后速度 vg 2vb
07:05
t1 t2的一段较长时间内 力通常非恒矢量。
lim
i t 0
Fiit t2 Fdt t1
力F在 t1 t2 时间间隔
内对时间变量t的积分
定义:
I
t
2
F(t
)dt
I
x
t1
I
y
t2 t1
Fx
dt
t2 t1
F
y
dt
07:05
I与F同向吗 ? I与F不一定同向
平均力的概念
动量是矢量,它的方向为速度的方向
动量具有瞬时性(某一时刻的动量)
动量的计算
p
mv
m
dr
dt
07:05
动量的分量式
px
m
dx dt
m vx
py
m
dy dt
m vy
dz
pz m dt m vz
cos
ppx
cos
py p
cos
ppz
p p px2 p2y pz2
07:05
F
d pmv
Ix
t2 t1
Fxdt
mv2 x
mv1x
I y
t2 t1
Fydt
mv2 y
mv1y
Iz
t2 t1
Fz dt
mv2 z
mv1z
07:05
对质点动量定理的理解
动量定理为矢量式,可由动量增量的方向 来确定冲量和力的方向 物体在某方向上获得冲量,则只能改变该 方向上的动量 冲量为过程量,动量为状态量 在实际计算时,常用分量式
07:05
质点和质点系的动量定理
F ma : 力的瞬时作用效应
力的累积效应
F(t)对 t
积累
p
,
I
F
对
r 积累
A
,E
07:05
质点的动量定理
(一)质点的动量定理
牛顿第二定律: F ma
FF
md dmvv
ddtt
ddmddtpvt
定义:质点动量
p mv
07:05
对动量的说明
动量是描述物体机械运动状态的物理量, 是运动状态的单值函数
解 以竖直悬挂的链条 和桌面上的链条为一系统, 建立如图坐标
则 F ex m1g yg
由质点系动量定理得
m2
O
m1
y
F exdt dp
y
07:05
F exdt dp 又 dp d(yv)
ygdt d(yv)
则
yg dyv
dt
两边同乘以 yd y 则
y2gdy ydy dyv yv dyv
教学基本要求
一 理解动量、冲量,角动量,冲量矩概 念, 掌握(角)动量定理和(角)动量守恒定 律 . 二 掌握功的概念, 能计算变力的功, 理解 保守力作功的特点及势能的概念, 会计算万有 引力、重力和弹性力的势能 .
三 掌握动能定理 、功能原理和机械能守 恒定律, 掌握运用守恒定律分析问题的思想和方 法.
dt
g y y 2 d y yv yv dyv
0
0
07:05
m2
O
m1
y
y
1 gy3 1 yຫໍສະໝຸດ 232v2
gy
1 2
3
一质量均匀分布的柔软细
绳铅直地悬挂着, 绳的下
端刚好触到水平桌面上,
如果把绳的上端放开,绳
将落在桌面上。试证明:在
o
绳下落的过程中,任意时
刻作用于桌面的压力,等
于已落到桌面上的绳重量
受到的平均冲力 F.
解 建立如图坐标系, 由动量定理得
Fxt mv2x mv1x
mvcos (mvcos)
x
2mv cos
mv1
m v2
Fyt mv2y mv1y
mvsinα mvsin 0
y
F
07:05
Fx
2mv cos
t
14.1N
方向沿
x
轴反向
例 2 一柔软链条长为l,单位长度的质量为.链条放 在桌上,桌上有一小孔,链条一端由小孔稍伸下,其余部分 堆在小孔周围.由于某种扰动,链条因自身重量开始落下 . 求链条下落速度与落下距离之间的关系 . 设链与各处的 摩擦均略去不计,且认为链条软得可以自由伸开 .