挑战2020年高考物理必须突破15个必考热点:热点(6)碰撞与动量守恒

挑战2020年高考物理必须突破15个必考热点:热点(6)碰撞与动量守恒
挑战2020年高考物理必须突破15个必考热点:热点(6)碰撞与动量守恒

挑战2020年高考物理必须突破15个必考热点

热点(6)碰撞与动量守恒

考向一:对动量定理的理解和应用

【真题引领】

(2019·全国卷Ⅰ)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生的推力约为4.8×106 N,则它在1 s时间内喷射的气体质量约为( )

A.1.6×102 kg

B.1.6×103 kg

C.1.6×105 kg

D.1.6×106 kg

【答案】B

题眼解读:

看到“推力、1 s时间”想到“用动量定理”。

解析:设某次实验中该发动机向后喷射的气体的质量为m,对该气体根据动量定理有:

Ft=mv-0,解得m== kg=1.6×103 kg,故选项B正确,A、C、D错误。

应用动量定理的解题流程:

考场练兵:

如图,光滑曲面轨道在O点与光滑水平地面平滑连接,地面上静止放置一各表面光滑、质量为3m的斜面体C。一质量为m的小物块A从高h处由静止开始沿轨道下滑,在O点与质量为m的静止小物块B发生碰撞,碰撞后A、B立即粘连在一起向右运动(碰撞时间极短),平滑地滑上斜面体,在斜面体上上升的高度小于斜面体高度。求:

(1)A和B碰撞过程中B受的合力的冲量大小;

(2)斜面体C获得的最大速度。

【答案】(1)(2)

解析:(1)A下落到O点过程:mgh=m

解得:v0=

A、B碰撞动量守恒:mv0=2mv1

解得:v1=v0

对B,由动量定理得:I=Δp

所以I B=mv1=

(2)AB一起冲上斜面体后又返回时,C获得的速度最大

AB与C水平方向动量守恒:2mv1=2mv B+m C v C

AB与C机械能守恒:2m=2m+m C

联立解得:v C=

代入数据得: v C==

考向二:动量守恒和能量相结合

【真题引领】

(2019·全国卷Ⅰ)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。t=0时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。物块A运动的v-t图象如图(b)所示,图中的v1和t1均为未知量。已知A的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力。

(1)求物块B的质量。

(2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功。

(3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B再次碰上。求改变前后动摩擦因数的比值。

【答案】(1)3m (2)mgH (3)

(1)题眼解读:

①看到“光滑的圆弧”想到“只改变速度方向,没有能量损失”。

②看到“与B发生弹性碰撞”想到“动量守恒、能量守恒”。

③看到“v-t图象”,想到“斜率、面积的含义”。

解析:(1)根据图(b),v1为物块A在碰撞前瞬间速度的大小,为其碰撞后瞬间速度的大小。设物块B的质量为m′,碰撞后瞬间的速度大小为v′,由动量守恒定律和机械能守恒定律有

mv1=m(-)+m′v′①

m=m(-)2+m′v′2②

联立①②式得m′=3m ③

(2)在图(b)所描述的运动中,设物块A与轨道间的滑动摩擦力大小为f,下滑过程中所走过的路程为s1,返回过程中所走过的路程为s2,P点的高度为h,整个过程中克服摩擦力所做的功为W。由动能定理有

mgH-fs1=m-0 ④

-(fs2+mgh)=0-m(-)2⑤

从图(b)所给的v-t图线可知

s1=v1t1⑥

s2=··(1.4t1-t1) ⑦

由几何关系=⑧

物块A在整个过程中克服摩擦力所做的功为

W=fs1+fs2⑨

联立④⑤⑥⑦⑧⑨式可得

W=mgH ⑩

(3)设倾斜轨道倾角为θ,物块与轨道间的动摩擦因数在改变前为μ,有

W=μmgcosθ·

设物块B在水平轨道上能够滑行的距离为s′,由动能定理有

-μm′gs′=0-m′v′2

设改变后的动摩擦因数为μ′,由动能定理有

mgh-μ′mgcosθ·-μ′mgs′=0

联立①③④⑤⑥⑦⑧⑩式可得

=

(2)易错警示:

警示1:若研究对象为一个系统(如题中A、B系统),应优先考虑用动量守恒定律和能量守恒定律(机械能守恒定律)。

(2)斜面体C获得的最大速度。

(2)易错警示:

警示1:若研究对象为一个系统(如题中A、B系统),应优先考虑用动量守恒定律和能量守恒定律(机械能守恒定律)。

警示2:若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理。

动量和能量综合问题的解题流程:

考场练兵:

(多选)一个质量为m1的人造地球卫星在高空做匀速圆周运动,轨道半径为r。某时刻和一个质量为m2的同轨道反向运动的太空碎片发生迎面正碰,碰后二者结合成一个整体,并开始沿椭圆轨道运动,轨道的远地点为碰撞时的点。若碰后卫星的内部装置仍能有效运转,当卫星与碎片的整体再次经过远地点时,通过极短时间喷气可使整体仍在卫星碰前的轨道上做圆周运动,绕行方向与碰前相同。已知地球的半径为R,地球表面的重力加速度大小为g,下列说法正确的

是()

A.卫星与碎片碰撞前的线速度大小为

B.卫星与碎片碰撞前运行的周期大小为

C.喷气装置对卫星和碎片整体所做的功为

D.喷气装置对卫星和碎片整体所做的功为

【答案】B、C

解析:碰撞前,卫星做圆周运动的向心力由万有引力提供,可得G=m1,又mg=,可得v==,故A错误;据万有引力提供卫星做圆周运动的向心力,有

G=m1r,解得卫星运行的周期为T==,故B正确;碰撞过程,根据动量守恒定律可得:m1v-m2v=(m1+m2)v1,由动能定理可得W=(m1+m2)v2-(m1+m2),喷气装置对卫星和碎片整体所做的功为W′=W=,故C正确,D错误。

考向三:弹性碰撞和非弹性碰撞

【真题引领】

(2018·全国卷Ⅱ)汽车A在水平冰雪路面上行驶,驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B。两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m。已知A和B的质量分别为2.0×103 kg和1.5×103 kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g=10 m/s2。求:

(1)碰撞后的瞬间B车速度的大小。

(2)碰撞前的瞬间A车速度的大小。

【答案】(1)3 m/s (2)4.25 m/s

(1)题眼解读:

看到“碰撞时间极短”想到“动量守恒”。

解析:(1)设B车的质量为m B,碰后加速度大小为a B。根据牛顿第二定律有

μm B g=m B a B①

式中μ是汽车与路面间的动摩擦因数。

设碰撞后瞬间B车速度的大小为v′B,碰撞后滑行的距离为x B。由运动学公式有

v=2a B x B②

联立①②式并利用题给数据得

v′B=3 m/s ③

(2)设A车的质量为m A,碰后加速度大小为a A。根据牛顿第二定律有

μm A g=m A a A④

设碰撞后瞬间A车速度大小为v′A,碰撞后滑行的距离为x A。由运动学公式有

v=2a A x A⑤

设碰撞前的瞬间A车的速度大小为v A。两车在碰撞过程中动量守恒,有

m A v A=m A v′A+m B v′B⑥

联立③④⑤⑥式并利用题给数据得

v A=4.25 m/s ⑦

(2)错因警示:

警示1:没有明确研究对象和物理过程。

警示2:对象在运动过程中的受力情况分析不清。

警示3:没有注意矢量运算的方向性问题。

警示4:计算造成的失误。

碰撞三原,两结论:

1.碰撞遵从的三个原则:

(1)动量守恒,即p1+p2=p′1+p′2;

(2)系统动能不增加,即E k1+E k2≥E′k1+E′k2;

(3)速度合理,两球同向,后球速度不能大于前球速度。

2.熟记两个结论:

(1)“一动一静”两物体发生弹性正碰后的速度满足v1=v0,v2=v0,质量相等的两物体发生弹性碰撞后交换速度;

(2)发生完全非弹性碰撞后两物体共速,动能损失最多。

考场练兵:

1.(多选)如图所示,光滑的水平面上有P、Q两个固定挡板,A、B是两挡板连线的三等分点,A点处有一质量为m2的静止小球,紧贴P挡板的右侧有一质量为m1的等大小球以速度v0向右运动并与m2相碰。小球与小球、小球与挡板间的碰撞均为弹性正碰,两小球均可视为质点。已知两小球之间的第二次碰撞恰好发生在B点处,则两小球的质量关系可能为( )

A.m1=3m2

B.m2=m1

C.m2=5m1

D.m2=7m1

【答案】A、D

解析:若碰后球1的速度方向与原来的方向相同,可知1球的速度小于2球的速度,两球在B点相遇,是球2反弹后在B点相遇,有:v2t=3v1t

即:v2=3v1。

取向右为正方向,根据动量守恒定律得:m1v0=m1v1+m2v2。

根据机械能守恒定律得:

m1=m1+m2

联立解得:m1=3m2;

碰撞后球1的速度方向与原来的方向相反,与挡板碰后反弹在B点追上球2,则有:v1t=3v2t,即:v1=3v2

同理解得:m2=7m1;

若碰撞后球1的速度方向与原来的方向相反,与挡板碰后反弹、球2与挡板碰后反弹在B

点相遇,则有:v1t=v2t

即:v1=v2

同理解得:m2=3m1;

故选A、D。

2.(多选)质量为M和m0的滑块用轻弹簧连接,一起以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图所示,碰撞时间极短。在此过程中,下列情况可能发生的是( )

A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=Mv1+m0v2+mv3

B.m0的速度不变,M和m的速度变为v1和v2,而且满足Mv=Mv1+mv2

C.m0的速度不变,M和m的速度都变为v′,且满足Mv=(M+m)v′

D.M、m0、m速度均发生变化,M、m0速度都变为v1,m的速度变为v2,且满足(M+m0)v0=(M+m0)v1+mv2 【答案】B、C

解析:碰撞的瞬间M和m组成的系统动量守恒,m0的速度在瞬间不变,以M的初速度方向为正方向,若碰后M和m的速度变为v1和v2,由动量守恒定律得Mv=Mv1+mv2;若碰后M和m速度相同,由动量守恒定律得Mv=(M+m)v′,故B、C正确,A、D错误。

经典验证动量守恒定律实验练习题(附答案)

验证动量守恒定律 由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单 位,那么小球的水平射程的数值就等于它们的水平速度。 在右图中分别用OP、OM和O/N表示。因此只需验证: m1?OP=m1?OM+m2?(O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为:m1?OP=m1?OM+m2?ON,两个小球的直径也不需测量 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得小l车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得:碰前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,记录纸上的垂直投影点。B球落点痕迹如图2所示,其中米尺水平放置。且平行于G.R.Or所在的平面,米尺的零点与O 点对齐。 (1)碰撞后B球的水平射程应取为______cm. (2)在以下选项中,哪些是本次实验必须进行的测量?答:

高中物理动量守恒专题训练

1.在如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向 射入木块后留在其中,将弹簧压缩到最短.若将子弹、木块和弹簧合在一起作为系统, 则此系统在从子弹开始射入到弹簧被压缩至最短的整个过程中() A. 动量守恒,机械能守恒 B. 动量守恒,机械能不守恒 C. 动量不守恒,机械能不守恒 D. 动量不守恒,机械能守恒 2.车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。设子弹质量为m,出口速度v,车厢和人的质量为M,则子弹陷入前车壁后,车厢的速度为() A. mv/M,向前 B. mv/M,向后 C. mv/(m M),向前 D. 0 3.质量为m、速度为v的A球与质量为3m的静止B球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值.碰撞后B球的速度大小可能是( ). A. 0.6v B. 0.4v C. 0.3v D. v 4.两个质量相等的小球在光滑水平面上沿同一直线同向运动,A球的动量是8kg·m/s,B球的动量是6kg·m/s,A球追上B球时发生碰撞,则碰撞后A、B两球的动量可能为 A. p A=0,p B=l4kg·m/s B. p A=4kg·m/s,p B=10kg·m/s C. p A=6kg·m/s,p B=8kg·m/s D. p A=7kg·m/s,p B=8kg·m/s 5.如图所示,在光滑水平面上停放质量为m装有弧形槽的小车.现有一质量也为m的小 球以v0的水平速度沿切线水平的槽口向小车滑去,不计一切摩擦,则() A. 在相互作用的过程中,小车和小球组成的系统总动量守恒 B. 小球离车后,可能做竖直上抛运动 C. 小球离车后,可能做自由落体运动 D. 小球离车后,小车的速度有可能大于v0 6.如图甲所示,光滑水平面上放着长木板B,质量为m=2kg的木块A以速度v0=2m/s滑上原来静止的长木板B的上表面,由于A、B之间存在有摩擦,之后,A、B的速度随时间变化情况如乙图所示,重力加速度g=10m/s2。则下列说法正确的是() A. A、B之间动摩擦因数为0.1 B. 长木板的质量M=2kg C. 长木板长度至少为2m D. A、B组成系统损失机械能为4J 7.长为L、质量为M的木块在粗糙的水平面上处于静止状态,有 一质量为m的子弹(可视为质点)以水平速度v0击中木块并恰好未穿出。设子弹射入木块过程时间极短,子弹受到木块的阻力恒定,木块运动的最大距离为s,重力加速度为g,(其中M=3m)求: (1)木块与水平面间的动摩擦因数μ; (2)子弹受到的阻力大小f。(结果用m ,v0,L表示) 8.如图所示,A、B两点分别为四分之一光滑圆弧轨道的最高点和最低点,O为圆心,OA连线水平,OB连线竖直,圆弧轨道半径R=1.8m,圆弧轨道与水平地面BC平滑连接。质量m1=1kg的物体P由A点无初速度下滑后,与静止在B点的质量m2=2kg的物体Q发生弹性碰撞。已知P、Q两物体与水平地面间的动摩擦因数均为0.4,P、Q两物体均可视为质点,当地重力加速度g=10m/s2。求P、Q两物体都停止运动时二者之间的距离。

高考物理重点专题突破 (57)

第3节洛伦兹力的应用 1.带电粒子在匀强磁场中做匀速圆周运动时,轨道 半径与粒子的运动速度成正比,与粒子质量成正 比,与电荷量和磁感应强度成反比,即r=m v Bq。 2.带电粒子在匀强磁场中做匀速圆周运动时,运 动周期与质量成正比,与电荷量和磁感应强度 成反比,与轨道半径和运动速率无关,即T= 2πm Bq。 3.回旋加速器的电场周期和粒子运动周期相同。 4.质谱仪把比荷不相等的粒子分开,并按比荷顺 序的大小排列,故称之为“质谱”。 一、带电粒子在磁场中的运动 1.用洛伦兹力演示仪显示电子的运动轨迹 (1)当没有磁场作用时,电子的运动轨迹为直线。 (2)当电子垂直射入匀强磁场中时,电子的运动轨迹为一个圆,所需要的向心力是由洛伦兹力提供的。 (3)当电子斜射入匀强磁场中时,电子的运动轨迹是一条螺旋线。 2.带电粒子在洛伦兹力作用下的圆周运动 (1)运动性质:匀速圆周运动。

(2)向心力:由洛伦兹力提供。 (3)半径:r =m v Bq 。 (4)周期:T =2πm Bq ,由周期公式可知带电粒子的运动周期与粒子的质量成正比,与电荷量和磁感应强度成反比,而与运动半径和运动速率无关。 二、回旋加速器和质谱仪 1.回旋加速器 (1)主要构造:两个金属半圆空盒,两个大型电磁铁。 (2)工作原理(如图所示) ①磁场作用:带电粒子垂直磁场方向射入磁场时,只在洛伦兹力作用下做匀速圆周运动,其周期与半径和速率无关。 ②交变电压的作用:在两D 形盒狭缝间产生周期性变化的电场,使带电粒子每经过一次狭缝加速一次。 ③交变电压的周期(或频率):与带电粒子在磁场中做圆周运动的周期(或频率)相同。 2.质谱仪 (1)功能:分析各化学元素的同位素并测量其质量、含量。 (2)工作原理(如图所示) 带电粒子在电场中加速:Uq =1 2m v 2① 带电粒子在磁场中偏转:x 2=r ② Bq v =m v 2 r ③ 由①②③得带电粒子的比荷:q m =8U B 2x 2。 由此可知,带电离子的比荷与偏转距离x 的平方成反比,凡是比荷不相等的离子都被分

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

高考物理动量守恒定律试题经典

高考物理动量守恒定律试题经典 一、动量守恒定律 选择题 1.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是 A .最终小物块和木箱都将静止 B .最终小物块和木箱组成的系统损失机械能为20 3 Mv C .木箱速度水平向左、大小为0 2v 时,小物块的速度大小为04 v D .木箱速度水平向右、大小为 03v . 时,小物块的速度大小为023 v 2.如图所示,小车的上面是由中间凸起的两个对称曲面组成,整个小车的质量为m ,原来静止在光滑的水平面上。今有一个可以看做质点的小球质量也为m ,以水平速度v 从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。关于这个过程,下列说法正确的是( ) A .小球滑离小车时,小车又回到了原来的位置 B .小球滑到小车最高点时,小球和小车的动量不相等 C .小球和小车相互作用的过程中,小车和小球系统动量始终守恒 D .车上曲面的竖直高度若高于2 4v g ,则小球一定从小车左端滑下 3.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。下列说法正确的是( )

A .a 棒开始运动时的加速度大小为220 3B L v Rm B .b 棒匀速运动的速度大小为 3 v C .整个过程中通过b 棒的电荷量为 23mv BL D .整个过程中b 棒产生的热量为20 3 mv 4.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则 A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒 B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒 C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒 D .小球离开弹簧后能追上圆弧槽 5.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( ) A .在A 离开竖直墙前,A 、 B 与弹簧组成的系统机械能守恒,之后不守恒 B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒 C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为 3 E 6.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是 A .A B 组成的系统机械能守恒

挑战动量中的“碰撞次数” 问题

挑战动量中的“碰撞次数”问题 河南省信阳高级中学 陈庆威 2016.11.04 2017年的高考的考试范围没有出来之前,我们可以回避、可以假装看不见、还可以不理会动量问题中的“碰撞次数”问题。可是,自从高中物理3-5纳入了必修行列之后,我们似乎已经变的没了选择。这里我整理了动量问题中的9道经典 的“碰撞次数”问题,有的是求碰一次的情况,有的是求碰N次的情况,题目能提升能力,更能激发思维。还等什么,快来挑战吧。 题目1:如图所示,质量为3kg的木箱静止在光滑的水平面上,木箱内粗糙的底板正中央放着一个质量为1kg的小木块,小木块可视为质点.现使木箱和小木块同时获得大小为2m/s的方向相反的水平速度,小木块与木箱每次碰撞过程中机械能损失0.4J,小木块最终停在木箱正中央.已知小木块与木箱底板间的动摩擦因数为0.3,木箱内底板长为0.2m.求: ①木箱的最终速度的大小; ②小木块与木箱碰撞的次数.

分析: ①由动量守恒定律可以求出木箱的最终速度; ②应用能量守恒定律与功的计算公式可以求出碰撞次数. 解析:①设最终速度为v,木箱与木块组成的系统动量守恒,以木箱的初速度方向为正方向,由动量守恒定律得: Mv-mv=(M+m)v′, 代入数据得:v′=1m/s; ②对整个过程,由能量守恒定律可得: 设碰撞次数为n,木箱底板长度为L, 则有:n(μmgL+0.4)=△E, 代入数据得:n=6; 答:①木箱的最终速度的大小为1m/s; ②小木块与木箱碰撞的次数为6次. 点评:本题考查了求木箱的速度、木块与木箱碰撞次数,分析清楚运动过程、应用动量守恒动量与能量守恒定律即可正确解题. 题目2:如图,长为L=0.5m、质量为m=1.0kg的薄壁箱子,放在水平地面上,箱子与水平地面间的动摩擦因数μ=0.3.箱内有一质量也为 m=1.0kg的小滑块,滑块与箱底间无摩擦.开始时箱子静止不动,小滑块以v0=4m/s的恒定速度从箱子的A壁处向B壁处运动,之后与B壁碰撞.滑块与箱壁每次碰撞的时间极短,可忽略不计.滑块与箱壁每次碰撞过程中,系统的机械能没有损失.g=10m/s2.求: (1)要使滑块与箱子这一系统损耗的总动能不超过其初始动能的50%,滑块与箱壁最多可碰撞几次? (2)从滑块开始运动到滑块与箱壁刚完成第三次碰撞的期间,箱子克服摩擦力做功的平均功率是多少? 分析: (1)根据题意可知,摩擦力做功导致系统的动能损失,从而即可求;(2)根据做功表达式,结合牛顿第二定律与运动学公式,从而可确定做功的平均功率. 解析:

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

2015高考物理动量、动量守恒定律及应用复习试题及答案

专题十二 动量、动量守恒定律及应用 一、选择题 1. 如图所示,在光滑绝缘的水平直轨道上有两个带电小球a 和b ,a 球质量为2m 、带电量 为+q ,b 球质量为m 、带电量为+2q ,两球相距较远且相向运动.某时刻a 、b 球的速度大小 依次为v 和1.5v ,由于静电斥力的作用,它们不会相碰.则下列叙述正确的是 ( ) A .两球相距最近时,速度大小相等、方向相反 B .a 球和b 球所受的静电斥力对两球始终做负功 C .a 球一直沿原方向运动,b 球要反向运动 D .a 、b 两球都要反向运动,但b 球先反向 2. 如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d 点垂直与磁场方向射入,沿曲线dpa 打到屏MN 上的a 点,通过pa 段用时为t 若该微粒经过p 点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN 上。两个微粒所受重力均忽略。新微粒运动的 ( ) A .轨迹为pb ,至屏幕的时间将小于t B .轨迹为pc ,至屏幕的时间将大于t C .轨迹为pb ,至屏幕的时间将等于t D .轨迹为pa ,至屏幕的时间将大于t 3. 图6(a )表示光滑平台上,物体A 以初速度0v 滑到上表面粗糙的水平小车上,车与水平面间的动摩擦因数不计,图6(b )为物体A 与小车B 的v-t 图像,由此可知( ) A .小车上表面长度 B .物体A 与小车B 的质量之比 C .A 与小车B 上表面的动摩擦因数 D .小车B 获得的动能 a b v 1.5v 图 6

4. 如图所示,长2m ,质量为1kg 的木板静止在光滑水平面上, 一木块质量也为1kg (可视为质点),与木板之间的动摩擦因 数为0.2。要使木块在木板上从左端滑向右端而不至滑落,则木块初速度的最大值为( ) A .1m/s B .2 m/s C .3 m/s D .4 m/s 5. 如图所示,V 2>V 1,V 2与V 1都是相对于地面的速度。物块与平板车间的动摩擦因数为μ,平板车与地面之间无摩擦,则在运动过程中( ) A .车的动量增加,物块的动量减少 B .车的动量减少,物块的动量增加 C .两物体总动量增加,总机械能不变 D .两物体总动量不变,总机械能不变 6. 如图所示,水平放置的两根足够长的平行滑杆AB 和CD , 各穿有质量分别为M 和m 的小球,两杆之间的距离为d ,两球用自由长度为d 的轻质弹簧连接,现从左侧用挡板将M 挡住,用力把m 向左拉一段距离(在弹性限度内),由静止释放后( ) A .从释放m 到弹簧第一次恢复原长的过程中,两球和弹簧组成的系统动量守恒、机械能守恒 B .弹簧第二次恢复原长时,M 的速度达到最大 C .弹簧第一次恢复原长后继续运动的过程中,系统的动量守恒、机械能守恒 D .释放m 后的过程中,弹簧的最大伸长量总小于释放m 时弹簧的伸长量 7. A 、B 两物体质量分别为m A =5㎏和m B =4㎏,与水平地面之间的动摩擦因数分别为5.04.0==B A μμ和,开始时两物 体之间有一压缩的轻弹簧(不栓接),并用细线将两物体栓接在一起放在水平地面上现将细线剪断,则两物体将被弹簧弹开,最后两物体都停在水平地面上。下列判断正确的是( ) A .在弹簧弹开两物体以及脱离弹簧后两物体的运动过程中,两物体组成的系统动量守恒 B .在弹簧弹开两物体以及脱离弹簧后两物体的运动过程中,整个系统的机械能守恒

物体碰撞中的动量守恒

物体碰撞中的动量守恒 碰撞 1.碰撞指的是物体间相互作用持续时间很短,而物体间相互作用力很大的现象. 在碰撞现象中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.按碰撞前后物体的动量是否在一条直线上有正碰和斜碰之分,中学物理只研究正碰的情况. 2.一般的碰撞过程中,系统的总动能要有所减少,若总动能的损失很小,可以略去不计,这种碰憧叫做弹性碰撞.其特点是物体在碰撞过程中发生的形变完全恢复,不存在势能的储存,物体系统碰撞前后的总动能相等。若两物体碰后粘合在一起,这种碰撞动能损失最多,叫做完全非弹性碰撞.其特点是发生的形变不恢复,相碰后两物体不分开,且以同一速度运动,机械能损失显著。在碰撞的一般情况下系统动能都不会增加(有其他形式的能转化为机械能的除外,如爆炸过程),这也常是判断一些结论是否成立的依据. 3.弹性碰撞 题目中出现:“碰撞过程中机械能不损失”.这实际就是弹性碰撞. 设两小球质量分别为m 1、m 2,碰撞前后速度为v 1、v 2、v 1/、v 2/,碰撞过程无机械能损失,求碰后二者的速度. 根据动量守恒 m 1 v 1+m 2 v 2=m 1 v 1/+m 2 v 2/ ……① 根据机械能守恒 ?m 1 v 12十?m 2v 22= ?m 1 v 1/2十?m 2 v 2/2 ……② 由①②得v 1/= ()212 21212m m v m v m m ++-,v 2/= ()21112122m m v m v m m ++- 仔细观察v 1/、v 2/结果很容易记忆, 当v 2=0时v 1/= () 21121m m v m m +-,v 2/= 2 1112m m v m + ①当v 2=0时;m 1=m 2 时v 1/=0,v 2/=v 1 这就是我们经常说的交换速度、动量和能量. ②m 1>>m 2,v /1=v 1,v 2/=2v 1.碰后m 1几乎未变,仍按原来速度运动,质量小的物体将以m 1的速度的两倍向前运动。 ③m 1《m 2,v /l =一v 1,v 2/=0. 碰后m 1被按原来速率弹回,m 2几乎未动。 【例1】试说明完全非弹性碰撞中机械能损失最多. 解析:前面已经说过,碰后二者一起以共同速度运动的碰撞为完全非弹性碰撞. 设两物体质量分别为m 1、m 2,速度碰前v 1、v 2,碰后v 1/、v 2/ 由动量守恒:m 1v 1+m 2v 2=m 1v 1/十m 2v 2/……① 损失机械能:Q=?m 1v 12+?m 2v 22-? m 1 v 1/2-? m 2 v 2/2 ……② 由①得 m 1v 1+m 2v 1-m 2v 1+m 2v 2=m 1v 1/十m 2v 1/-m 2v 1/+m 2v 2/ 写成(m 1+m 2)v 1-m 2(v 1-v 2)=(m 1十m 2)v 1/-m 2(v 1/-v 2/) 即(m 1+m 2)(v 1 -v 1/)= m 2[(v 1-v 2)-(v 1/-v 2/)] 于是(v 1 -v 1/)= m 2[(v 1-v 2)-(v 1/-v 2/)]/ (m 1+m 2) 同理由①得m 1v 1+m 1v 2-m 1v 2+m 2v 2=m 1v 1/十m 1v 2/-m 1v 2/+m 2v 2/ 写成(m 1+m 2)v 2+m 1(v 1-v 2)=(m 1十m 2)v 2/+m 1(v 1/-v 2/) (m 1+m 2)(v 2 -v 2/)= m 1[(v 1/-v 2/)-(v 1-v 2)] (v 2 -v 2/)= m 1[(v 1/-v 2/)-(v 1-v 2)]/ (m 1+m 2) 代入②得Q=?m 1v 12+?m 2v 22-? m 1v 1/2-? m 2v 2/2=?m 1(v 12-v 1/2)+?m 2(v 22-v 2/2) =?m 1(v 1-v 1/) (v 1+v 1/)+?m 2(v 2-v 2/)(v 2+v 2/) =?m 1(v 1+v 1/) m 2[(v 1-v 2)-(v 1/-v 2/)]/(m 1+m 2)+?m 2(v 2+v 2/)m 1[(v 1/-v 2/)-(v 1-v 2)]/(m 1+m 2) =[?m 1 m 2/(m 1+m 2)][ v 12-v 1v 2+v 1v 1/-v 2v 1/-v 1v 1/+v 1v 2/-v 1/2+v 1/v 2/+v 2v 1/-v 2v 2/-v 1v 2+v 22+v 1/v 2/-v 2/2-v 1v 2/+v 2v 2/]=[?m 1 m 2/(m 1+m 2)][ v 12-v 1v 2-v 1v 2+v 22-v 1/2+v 1/v 2/+v 1/v 2/-v 2/2]= [?m 1 m 2/(m 1+m 2)][(v 1-v 2)2-(v 1/-v 2/)2]()()()22//121212122m m v v v v m m ??=---? ?+……③ 由③式可以看出:当v 1/= v 2/时,损失的机械能最多.

高考物理选择题专题突破--第三套(共五套)

选择题突破—专项训练(三) 训练重点:利用牛顿运动定律或功能关系分析实际问题 1.某学校物理兴趣小组用 空心透明塑料管制作了如图所示的竖直“60”造型。两个“0”字型的半径均为R 。让一质量为m 、直径略小于管径的光滑小从入口A 处射入,依次经过图中的B 、C 、D 三点,最后从E 点飞出。已知BC 是“0”字型的一条直径,D 点是该造型最左侧的一点,当地的重力加速度为g ,不 计一切阻力,则小球在整个运动过程中:( ) A.在B 、C 、D 三点中,距A 点位移最大的是B 点,路程最大的是D 点 B.若小球在C 点对管壁的作用力恰好为零,则在B 点小球对管壁的压力大小为6mg C.在B 、C 、D 三点中,瞬时速率最大的是D 点,最小的是C 点 D.小球从E 点飞出后将做匀变速运动 2.静止在地面上的一小物体,在竖直向上的拉力作用下开始运动,在向上运动的过程中,物体的机械能与位移的关系图象如图所示,其中0~s 1,过程的图线是曲线,s 1~s 2:过程的图线为平行于横轴的直线.关于物体上升过程(不计空气阻力)的下列说法正确的是( ) A .0~s 1过程中物体所受的拉力是变力,且不断减小 B .s 1~s 2过程中物体做匀速直线运动 C .0~s 2过程中物体的动能先增大后减小 D .0~s 2过程中物体的加速度先减小再反向增大,最后 保持不变且等于重力加速度 3.如图所示,重1 0N 的滑块在倾角为30 o 的斜面上,从a 点由静止开始下滑,到b 点开始压缩轻弹簧,到c 点时达到最大速度,到d 点(图中未画出)开始弹回,返回b 点离开弹簧,恰能再回到口点.若bc=0.1 m ,弹簧弹性势能的最大值为8J ,则 A .轻弹簧的劲度系数是50N /m B .从d 到c 滑块克服重力做功8J C .滑块动能的最大值为8J D .从d 到c 弹簧的弹力做功8J 4.DIS 是由传感器、数据采集器、计算机组成的信息采集处理系统.某课外实验小组利用DIS 系统研究电梯的运动规律,他们在电梯内做实验,在电梯天花板上固定一个力传感器,传感器的测量挂钩向下,在挂钩上悬挂一个质量为1.0kg 的钩码.在电梯由静止开始上升的过程中,计算机屏上显示如图所示的图象, 则 (g 取10m /s 2) ( ) A .t 1到t 2时间内,电梯匀速上升 B .t 2到t 3时间内,电梯处于静止状态 C .t 3到t 4时间内,电梯处于失重状态 D .t 1到t 2时间内,电梯的加速度大小为5m /S 2 8.有关超重和失重的说法,正确的是( ) A .物体处于超重状态时,所受重力增大;处于失重状态时,所受重力减少 B .竖直上抛运动的物体处于完全失重状态 C .在沿竖直方向运动的升降机中出现失重现象时,升降机一定处于上升过程 D .在沿竖直方向运动的升降机中出现失重现象时,升降机一定处于下降过程

高中物理_复习:《验证动量守恒定律实验》教学设计学情分析教材分析课后反思

复习:《实验:验证动量守恒定律》教学设计 一、教学目标: 【知识与技能】 1、明确验证动量守恒定律的基本思路; 2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法; 3、掌握实验数据处理的方法; 【过程与方法】 1、学习根据实验要求,设计实验,完成气垫导轨实验和斜槽小球碰撞实验的设计方法; 2、学习根据实验数据进行处理、归纳、总结的方法。 【情感态度与价值观】 1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。 2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。 3、在对实验数据处理、误差处理的过程中合作探究、头脑风暴,提高学生合作探究能力。 4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。 【教学重难点】 教学重点:验证动量守恒定律的实验探究 教学难点:速度的测量方法、实验数据的处理. 【教学过程】 (一)复习导入:问题1、动量守恒定律的内容是什么? 2、动量守恒的条件是什么? (二)讲授新课 实验方案一:气垫导轨以为碰撞实验 1、实验器材 气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2、实验步骤

(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨. (3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量;②改变滑块的初速度大小和方向③通过放置橡皮泥、振针、胶布等改变能量损失). (4)验证:一维碰撞中的动量守恒. (5)数据处理 1.滑块速度的测量:v =Δx Δt ,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. 2.验证的表达式:m 1v 1+m 2v 2=m 1v′1+m 2v′2。 (6)注意事项 气垫导轨应水平 [典例1] 现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. (b) 若实验允许的相对误差绝对值× 100%最大为5%,本实验是否在误差范围内验证了动量守恒

动量守恒弹性碰撞知识点

动量守恒弹性碰撞知识点 一、不同类型的碰撞 (1)非弹性碰撞:碰撞过程中物体往往会发生形变、发热、发声,一般会有动能损失.(2)完全非弹性碰撞:碰撞后物体结合在一起,动能损失最大. (3)弹性碰撞:碰撞过程中形变能够完全恢复,不发热、发声,没有动能损失. 二、弹性碰撞的实验研究和规律 质量m1的小球以速度v1与质量m2的静止小球发生弹性碰撞.根据动量守恒和动能守恒, 得m1v1=m1v1′+m2v2′,1 2 m1v21= 1 2 m1v′21+ 1 2 m2v′22 碰后两球的速度分别为:v′1=m1-m2v1 m1+m2, v′2= 2m1v1 m1+m2 ①若m1>m2,v1′和v2′都是正值,表示v1′和v2′都与v1方向相同.(若m1?m2,v1′=v1,v2′=2v1,表示m1的速度不变,m2以2v1的速度被撞出去) ②若m1

4.对于弹性碰撞,碰撞前后无动能损失;对非弹性碰撞,碰撞前后有动能损失;对于完全非弹性碰撞,碰撞前后动能损失最大. 四、碰撞过程的分析 1.判断依据 在所给条件不足的情况下,碰撞结果有各种可能,但不管哪种结果必须同时满足以下三条:(1)系统动量守恒,即p1+p2=p′1+p′2. (2)系统动能不增加,即E kl+E k2≥E′kl+E′k2或p21 2m1+ p22 2m2 ≥ p′21 2m1 + p′22 2m2 . (3)符合实际情况,如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞.碰撞后,原来在前的物体的速度一定增大,且原来在前的物体速度大于或等于原来在后的物体的速度,即v′前≥v′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.爆炸与碰撞的异同 (1)共同点:相互作用的力为变力,作用力很大,作用时间极短,均可认为系统满足动量守恒. (2)不同点:爆炸有其他形式的能转化为动能,所以动能增加;弹性碰撞时动能不变,而非弹性碰撞时通常动能要损失,动能转化为内能,动能减小.

高考物理重点专题突破 (50)

第1节光的干涉 1.杨氏双缝干涉实验证明光是一种波。 2.要使两列光波相遇时产生干涉现象,两光源必须具有相同的频率和振动方向。 3.在双缝干涉实验中,相邻两条亮纹或暗纹间的距离Δy=l d λ,可利用λ= d l Δy测定 光的波长。 4.由薄膜两个面反射的光波相遇而产生的干涉现象叫薄膜干涉。 [自读教材·抓基础] 1.实验现象 在屏上出现明暗相间的条纹。相邻两条亮纹或暗纹间的距离Δy=l dλ,式中的d表示两缝间距,l表示两缝到光屏的距离,λ为光波的波长。 2.实验结论 证明光是一种波。 3.光的相干条件 相同的频率和振动方向。 [跟随名师·解疑难] 1.杨氏双缝干涉实验原理透析 (1)双缝干涉的装置示意图:实验装置如图所示,有光源、单缝、双缝和光屏。

(2)单缝的作用:获得一个线光源,使光源有唯一的频率和振动情况,如果用激光直接照射双缝,可省去单缝,杨氏那时没有激光,因此他用强光照亮一条狭缝,通过这条狭缝的光再通过双缝发生干涉。 (3)双缝的作用:平行光照射到单缝S 上,又照到双缝S 1、S 2上,这样一束光被分成两束频率相同和振动情况完全一致的相干光。 2.光屏上某处出现亮、暗条纹的条件 频率相同的两列波在同一点引起的振动发生叠加,如亮条纹处某点同时参与的两个振动步调总是一致,即振动方向总是相同,总是同时过最高点、最低点、平衡位置;暗条纹处振动步调总相反,具体产生亮、暗条纹的条件为: (1)亮条纹的条件:光屏上某点P 到两缝S 1和S 2的路程差正好是波长的整数倍或半波长的偶数倍。 即|PS 1-PS 2|=kλ=2k ·λ2 (k =0,1,2,3,…) (2)暗条纹的条件:光屏上某点P 到两缝S 1和S 2的路程差正好是半波长的奇数倍。 即|PS 1-PS 2|=(2k +1)λ2 (k =0,1,2,3,…) 3.双缝干涉图样的特点 (1)单色光的干涉图样:若用单色光作光源,则干涉条纹是明暗相间的 条纹,且条纹间距相等。如图所示中央为亮条纹,两相邻亮纹(或暗纹)间 距离与光的波长有关,波长越大,条纹间距越大。 (2)白光的干涉图样:若用白光作光源,则干涉条纹是彩色条纹,且中 央条纹是白色的,这是因为: ①从双缝射出的两列光波中,各种色光都能形成明暗相间的条纹,各种色光都在中央条纹处形成亮条纹,从而复合成白色条纹。 ②两相邻亮(或暗)条纹间距与各色光的波长成正比,即红光的亮条纹间距宽度最大,紫光的亮条纹间距宽度最小,即除中央条纹以外的其他条纹不能完全重合,这样便形成了彩色干涉条纹。 [特别提醒] (1)双缝干涉实验的双缝必须很窄,且双缝间的距离必须很小。 (2)双缝干涉中,双缝的作用主要就是用双缝获得相干光源。 [学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

高考物理动量守恒定律解题技巧(超强)及练习题(含答案)

高考物理动量守恒定律解题技巧(超强)及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求 (1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少? 【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316 m 【解析】 试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N 由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2 代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s 从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s 此过程中A 相对小车的位移为L 1,则 2211211222mgL mv mv μ=-?解得:L 1=94 m 物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2

碰撞与动量守恒单元测试题含答案

碰 撞 与 动 量 守 恒 单 元 测 试 题 命题人:官桥中学高二物理备课组 一、单项选择题(共4小题,每小题4分,共16分,在每小题给出的四个选项 中,只有一个选项正确) 1、篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以( ) A.减小球对手作用力的冲量 B.减小球的动量变化率 C.减小球的动量变化量 D.减小球的动能变化量 2、在空间某一点以大小相等的速度分别竖直上抛、竖直下抛、水平抛出质量相等的小球,不计空气阻力,当小球落地时( ) A.做上抛运动的小球动量变化最大 B.三个小球动量变化大小相等 C. 做平抛运动的小球动量变化最小 D.三个小球动量变化相等 3、把一支枪水平固定在小车上,小车放在光滑的水平地面上。当枪发射子弹时,关于枪、子弹、车,下列说法中正确的是( ) A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.若不计子弹和枪筒之间的摩擦,枪、车、子弹组成的系统动量近似守恒 D.枪、子弹、车组成的系统动量守恒 4、自行火炮车连同炮弹的总质量为M,火炮车在·水平路面上以1V 的速度向右匀速行驶,炮管水平发射一枚质量为m 的炮弹后,自行火炮的速度变为2V ,仍向右行驶,则炮弹相对炮筒的发射速度0V 为( ) A. m mV V V m 2 21)(+- B.m V V M )(21- C. m m V V V m 2212)(+- D.m V V m V V m ) ()(2121--- 二、双项选择(共5小题,每小题5分,共25分) 5、质量为m 的物体在倾角为θ的光滑斜面顶端由静止释放,斜面高h,物体从斜面顶端滑到斜面底端过程中( ) A.物体所受支持力的冲量为零 B.物体所受支持力的冲量方向垂直于斜面向上 C.物体所受重力的冲量方向沿斜面向下 D.物体所受重力的冲量大小为 θsin 2gh m

相关文档
最新文档