常用时序逻辑电路及其应用
时序逻辑电路应用举例

时序逻辑电路应用举例1 时序逻辑电路应用举例1
设计串行比较器。串行比较器对两个位数 设计串行比较器。 相同的二进制数A 进行比较,如果A>B, 相同的二进制数A,B进行比较,如果A>B, 则输出Z1Z0=10,A<B则输出 则输出Z1Z0=01, 则输出Z1Z0=10,A<B则输出Z1Z0=01, A=B则输出 A=B则输出Z1Z0=00。 则输出Z1Z0=00。
《数字逻辑电路》 数字逻辑电路》
时序逻辑电路应用举例1 时序逻辑电路应用举例1
分析:根据题意, 分析:根据题意,电路的输入为两个位数相同的数 输出为Z1Z0,状态A>B用S1,A<B用S2, 据A,B;输出为Z1Z0,状态A>B用S1,A<B用S2, A=B用S0表示 画出状态转换图如下: A=B用S0表示。画出状态转换图如下: 表示。
AB=11 × × × ×
《数字逻辑电路》 数字逻辑电路》
时序逻辑电路应用举例4 时序逻辑电路应用举例4
设计售4分的邮票机。 设计售4分的邮票机。自动售邮票机能 出售一张4分邮票,并向顾客退回余款, 出售一张4分邮票,并向顾客退回余款,它 的投币口每次只能接受一个1 的投币口每次只能接受一个1分、2分、5分 的硬币。 的硬币。
00/00 11/10 S5 10/00 01,10/01 00,01, 10/00 S0 01,11/00 10/00 10,11/01 S4 00/00 01/00 S3 00/00 10,11/00 01/00 S2 00/00 X1X2/F1F2 00/00 11/00 S1
01,11/01
《数字逻辑电路》 数字逻辑电路》
时序逻辑电路应用举例3 时序逻辑电路应用举例3
时序逻辑电路 课件

1
工作特点:随CP的不断输入, 0 电路递减计数。(略)
0X 0X 1X 1X C Q3 Q2 Q1 Q0 CP RD 74LS161 EP LD D3 D2 D1 D0 ET
X0 X0 X1 X1
4、四位二进制可逆计数器74LS191
逻辑符号 C/B Q3 Q2 Q1 Q0 CPI S 74LS191 CPO LD D3 D2 D1 D0 U/D (二) 同步十进制计数器
1、写输出方程 2、写驱动方程 3、写状态方程 4、填状态转换表
5、画状态转换图 6、画时序波形图 7、分析其功能 8、检查自启动
二、举例
CP
试分析下图时序电路的逻辑功能。
1J Q1
1J Q2
1J Q3 &
1Y
C1
1K
Q1 &
C1 Q2 1K
C1 Q3 1K
解: 1)输出方程 Y = Q3Q2
2)驱动方程
一、同步计数器
(一) 同步二进制计数器
1、同步二进制加法计数器(四块T触发器组成)
C
Q3
Q2
Q1
Q0
&
C1 1N
C1 1N
C1 1N
C1 1N
CP
T3
T2
&
&
T1 T0=1
(1) 输出方程
C=Q3Q2Q1Q0
(2) 驱动方程
T0=1; T1=Q0; T2=Q1Q0; T3=Q2Q1Q0
(3)时序波形图
1
1110 1111
0111 1010
1000 1011
1001 0110
❖状态转换图(Q3Q2Q1Q0 / Y)
0000 /0 0001 /0 0010
时序逻辑电路的功能

时序逻辑电路的功能时序逻辑电路是数字电子电路中一种重要的电路类型,它的功能主要用于处理和控制时序信号。
时序信号是指按照一定的时间顺序变化的信号,如时钟信号、计数信号等。
时序逻辑电路能够对这些时序信号进行处理和控制,实现各种复杂的功能。
时序逻辑电路主要由触发器、计数器、移位寄存器等组成,通过这些元件的组合和连接,可以实现各种不同的功能需求。
下面将介绍几种常见的时序逻辑电路及其功能。
1. 时钟发生器时钟发生器是时序逻辑电路中最基本的电路之一。
它的功能是产生稳定的时钟信号,用于同步整个数字系统中的各个部件。
时钟信号的频率和占空比可以通过时钟发生器进行调节,以满足不同的应用需求。
2. 触发器触发器是一种存储器件,它的功能是在时钟信号的作用下,根据输入信号的变化产生相应的输出信号。
触发器有多种类型,如D触发器、JK触发器、T触发器等。
它们可以用于存储和传输数据,实现数据的暂存和延迟等功能。
3. 计数器计数器是一种能够对输入的时序信号进行计数操作的电路。
它的功能是将输入的时序信号进行计数,并输出相应的计数值。
计数器可以实现简单的计数功能,也可以根据特定的计数模式,实现复杂的计数功能,如循环计数、递减计数等。
4. 移位寄存器移位寄存器是一种具有移位功能的存储器件。
它的功能是将输入信号按照一定的规律进行移位操作,并输出相应的移位结果。
移位寄存器可以实现数据的串行输入和串行输出,还可以实现数据的并行输入和并行输出,广泛应用于数据通信和数字信号处理等领域。
5. 状态机状态机是一种能够根据输入信号的变化,自动改变状态和执行相应操作的电路。
它的功能是根据特定的状态转移规则,实现复杂的控制逻辑。
状态机可以分为Moore型和Mealy型,它们在输出信号的计算方式上有所不同,但都能实现复杂的状态和控制逻辑。
时序逻辑电路的功能多种多样,它们在数字系统中起到了至关重要的作用。
无论是计算机、通信设备还是数字家电,都离不开时序逻辑电路的支持。
时序逻辑电路

时序逻辑电路时序逻辑电路是一种在电子数字电路领域中应用广泛的重要概念,它主要用于解决电路中的时序问题,如时钟同步问题、时序逻辑分析等。
本文将详细介绍时序逻辑电路的基础概念、工作原理以及应用。
一、时序逻辑电路的基础概念1、时序逻辑和组合逻辑的区别组合逻辑电路是一类基于组合逻辑门的电路,其输出仅取决于输入信号的当前状态,不受先前的输入状态所影响。
而时序逻辑电路的输出则受到先前输入信号状态的影响。
2、时序逻辑电路的组成时序逻辑电路通常由时钟、触发器、寄存器等组成。
时钟信号被用于同步电路中的各个部分,触发器将输入信号存储在内部状态中,并在时钟信号的作用下用来更新输出状态。
寄存器则是一种特殊类型的触发器,它能够存储多个位的数据。
3、时序逻辑电路的分类根据时序逻辑电路的时序模型,可将其分为同步和异步电路。
同步电路按照时钟信号的周期性工作,这意味着电路通过提供时钟信号来同步所有操作,而操作仅在时钟上升沿或下降沿时才能发生。
异步电路不同,它不依赖时钟信号或时钟信号的上升和下降沿,所以在一次操作完成之前,下一次操作可能已经开始了。
二、时序逻辑电路的工作原理时序逻辑电路的主要工作原理基于触发器的行为和时钟电路的同步机制。
在时序逻辑电路中使用了一些触发器来存储电路状态,待时钟信号到达时更新输出。
时钟信号提供了同步的机制,确保电路中所有部分在时钟信号到达时同时工作。
触发器的基本工作原理是将输入信号存储到内部状态中,并在时钟信号的作用下,用来更新输出状态。
时钟信号的边沿触发触发器,即在上升沿或下降沿时触发触发器状态的更新。
这意味着在更新之前,电路的状态保持不变。
三、时序逻辑电路的应用1、时序电路在计算机系统中的应用时序逻辑电路在计算机系统中有着广泛的应用。
例如,计算机中的时钟信号可用来同步处理器、主存储器和其他外设间的工作。
此外,电路中的寄存器和触发器也被用于存储和更新信息,这些信息可以是计算机程序中的指令、运算结果或其他数据。
时序电路和逻辑电路

时序电路和逻辑电路时序电路和逻辑电路是数字电路中两个重要的概念。
它们在数字系统中起着至关重要的作用,用于处理和控制数字信号的传输和处理。
本文将介绍时序电路和逻辑电路的基本概念、特点和应用。
一、时序电路时序电路是指根据时钟信号来控制电路的工作状态和输出的电路。
时序电路中的各个组件按照时钟信号的脉冲来进行同步操作,从而实现对数据的处理和控制。
时序电路的关键是时钟信号的稳定性和精确性,它决定了电路的工作速度和可靠性。
时序电路一般由触发器、计数器、锁存器等组成。
触发器是最基本的时序电路元件,它能够根据时钟信号的触发来改变其输出状态。
计数器可以对时钟信号进行计数,实现对计数值的控制和输出。
锁存器可以将输入数据保存在内部,直到时钟信号到来时才将数据输出。
时序电路在数字系统中有着广泛的应用。
例如,计算机中的时序电路用于控制指令的执行和数据的读写,以及各种外设的访问和控制。
时序电路还可以用于数字通信系统中的时分多路复用和解调等。
此外,时序电路还常用于各种测量和控制系统中,如自动化生产线和机器人控制系统等。
二、逻辑电路逻辑电路是指根据输入信号的逻辑关系来进行逻辑运算和转换的电路。
逻辑电路中的逻辑门是最基本的逻辑元件,它可以实现逻辑运算的功能,如与门、或门、非门等。
逻辑电路还可以通过多个逻辑门的组合来实现复杂的逻辑运算,如加法器、减法器、多路选择器等。
逻辑电路的输入和输出信号只有两个取值,通常表示为0和1。
0表示低电平或逻辑假,1表示高电平或逻辑真。
逻辑电路根据输入信号的取值进行逻辑运算,然后将结果输出。
逻辑电路的基本特点是具有确定的逻辑关系和固定的逻辑功能。
逻辑电路在数字系统中有着广泛的应用。
例如,计算机中的逻辑电路用于实现算术运算、逻辑运算和控制运算等。
逻辑电路还可以用于数字信号处理系统中的滤波、编码和解码等。
此外,逻辑电路还常用于各种数字显示和计数器等。
三、时序电路与逻辑电路的关系时序电路和逻辑电路在数字系统中密切相关,二者相互依赖、相互作用。
6.1-6.2 时序逻辑电路分析

Y
二、状态转换图: 将状态转换表以图形的方式 直观表示出来,即为状态转换图
0 1 2 3 4 5 6 7 0 1
0 0 0 0 1 1 1 0 1 0
0 0 1 1 0 0 1 0 1 0
0 1 0 1 0 1 0 0 1 0
0 0 0 0 0 0 1 0 1 0
循环状态之外的状态在时钟信号的作用下, 都能进入状态转换图中的循环状态之中,具有 这种特点的时序电路叫做能自启动的时序电路。 电路为七进制计数器,能自启动。
0 1 1 0 0 1 0 0
1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1
状态转换表的另一种形式
CLK Q3 Q2 Q1 Y
Q3 Q2 Q1
* * Q3 Q2 Q1* Y
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 1Q1 Q2 * Q1Q2 Q1Q3Q2 Q * Q Q Q Q Q 1 2 3 2 3 3
(3)输出方程:
Y Q2Q3
6.2.2 时序逻辑电路的状态转换表、状态转换图、和时 序图 从逻辑电路的三个方程还不能一目了然看出电路 的功能。
例 试分析图示的时序逻辑电路的逻辑功能,写出它的 驱动方程、状态方程和输出方程,写出电路的状态转 换表,画出状态转换图和时序图。输入端悬空时等效 为逻辑1。
解:(1) 驱动方程: J1 (Q2Q3 ), K1 1 K 2 (Q1Q3 ) J 2 Q1 , J QQ , K 3 Q2 1 2 3
同步时序电路
异步时序电路
米利(Mealy)型时序电路
按输出信号的特点 穆尔(Moore)型时序电路 米利(Mealy)型电路:输出信号取决于存储电路 的状态和输入变量。 穆尔(Moore)型电路:输出信号仅取决于存储电路 的状态。 穆尔(Moore)型电路是米利(Mealy)型电路的一 种特例。
常用时序逻辑电路及其应用

功耗优化
通过优化电路结构和降低工作电压, 减小电路功耗,延长电池寿命。
THANKS FOR WATCHING
感谢您的观看
集成电路
FPGA和CPLD
现场可编程门阵列和复杂可编程逻辑 器件,可以通过编程实现时序逻辑电 路,具有灵活性高、可重复编程等优 点。
通过集成电路工艺实现时序逻辑电路, 具有高速、低功耗等优点,但成本较 高。
时序逻辑电路的性能优化
面积优化
在满足功能和性能要求的前提下, 尽量减小电路规模,降低成本。
速度优化
寄存器
总结词
寄存器是一种能够存储二进制数据的电路,它可以保存数据并按照时钟信号的节 拍进行数据的读写操作。
详细描述
寄存器由多个触发器组成,每个触发器存储一位二进制数。在时钟信号的上升沿 或下降沿时,寄存器会将输入的数据保存到触发器中,并在下一个时钟信号的上 升沿或下降沿时将数据输出。寄存器常用于数据的串行传输和并行传输。
02 常用时序逻辑电路
触发器
总结词
触发器是一种具有记忆功能的电路,它能够存储二进制数据,并在特定条件下改变状态。
详细描述
触发器有两个稳定状态,分别表示二进制数的0和1。当触发器的输入信号满足一定条 件时,触发器会从一个状态跳变到另一个状态,并保持该状态直到外部信号改变其状态。
常见的触发器有RS触发器、D触发器和JK触发器等。
常用时序逻辑电路及其应用
目录
• 时序逻辑电路概述 • 常用时序逻辑电路 • 时序逻辑电路的应用 • 时序逻辑电路的设计与实现
01 时序逻辑电路概述
时序逻辑电路的定义
总结词
时序逻辑电路是一种能够存储二进制状态,并按照一定的逻辑关系进行输入和输出的电路。
第六章时序逻辑电路

CLK异0为步计计数数输器入与端、同Q步0为计输数出器端比,二,进具制有计如数下器 特点: CLK* 1电为计路数简输单入;端、Q3为输出端,五进制计数器 CLK* 1速与Q度0慢相连;、CLK0为输入端、Q3为输出端,十进制计数器
四、任意进制计数器的构成方法 设已知计数器的进制为N,要构成的任意进制计数
圆圈表示电路的各个状态,箭头表示状态表示的方向, 箭头旁注明转换前的输入变量取值和输出值
三、状态机流程图(SM图) 采用类似于编写计算机程序时使用的程序流程图的形
式,表示在一系列时钟脉冲作用下时序电路状态的流程以及 每个状态下的输入和输出。
四、时序图 在输入信号和时钟脉冲序列作用下,电路状态、
输出状态随时间变化的波形图。
电路在某一给定时刻的输出
取决于该时刻电路由的触输发入器保存 还取决于前一时刻电路的状态
时序电路: 组合电路 + 触发器
电路的状态与时间顺序有关
例:串行加法器电路
利用D触发器 把本位相加后 的进位结果保 存下来
时序电路在结构上的特点:
(1)包含组合电路和存储电路两个组成部分
(2)存储输出状态必须反馈到组合电路的输入端,与输入 信号共同决定组合逻辑电路的输出
串行进位方式以低位片的进位输出信号作为高位片的时 钟输入信号;
并行进位方式以低位片的进位输出信号作为高位片的 工作状态控制信号(计数的使能信号),两片的CLK同时接 计数输入信号。
二、异步计数器
B、减法计数器
二、异步计数器
B、减法计数器
根据T触发器的翻转规律即可画出在一系列CLK0脉冲信号 作用下输出的电压波形。
2、异步十进制计数器
J K端悬空相当于接逻辑1电平 将4位二进制计数器在计数过程中跳过从1010到1111这6个状态。