2017年电大电大___微积分初步形成性考核册答案
《微积分初步》形成性考核册

18.下列各函数对中,()中的两个函数相等.答案:D A .2)()(x x f =,x x g =)( B .2)(xx f =,x x g =)(C .2ln )(x x f =,x x g ln 2)(=D .3ln )(x x f =x x g ln 3)(= 提示:两个函数相等,必须是对应的规则相同,定义域相同。
上述答案中,A 定义域不同;B 对应的规则不同;C 定义域不同;D 对应的规则相同,定义域相同9.当0→x 时,下列变量中为无穷小量的是( )答案:C.A .x 1B .xx sin C .)1ln(x +D .2xx提示:以0为极限的变量称为无穷小量。
上述答案中,当0→x 时,A 趋向∞;B 的极限为1;C 的极限为0;D 趋向∞。
10.当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x处连续. 答案:BA .0B .1C .2D .1-提示:当)()(lim 00x f x f x x =→时,称函数)(x f 在0x 连续。
因1)1(lim )(lim20=+=→→x x f x x k f ==)0(,所以当=k 1时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续11.当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续 答案:DA .0B .1C .2D .3提示:当)()(lim 00x f x f x x =→时,称函数)(x f 在0x 连续。
因为3)2(lim )(lim=+=→→x x x e x f k f ==)0(,所以当=k 3时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x ,在0=x 处连续12.函数233)(2+--=x x x x f 的间断点是( )答案:A A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点提示:若)(x f 在0x 有下列三种情况之一,则)(x f 在0x 间断:①在0x 无定义;②在0x 极限不存在;③在0x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→。
《微积分初步》形成性考核册题修改正式版

《微积分初步》形成性考核册题修改正式版一、填空题(每小题2分,共20分)1.函数)2ln(1)(-=x x f 的定义域是 . 答案:),3()3,2[+∞Y 提示:关于)2ln(1-x ,要求分母不能为0,即0)2ln(≠-x ,也确实是3≠x ; 关于)2ln(-x ,要求02>-x ,即2>x ;因此函数)2ln(1)(-=x x f 的定义域是),3()3,2[+∞Y 2.函数xx f -=51)(的定义域是 . 答案:)5,(-∞ 提示:关于x-51,要求分母不能为0,即05≠-x ,也确实是5≠x ; 关于x -5,要求05≥-x ,即5≤x ;因此函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是 . 答案:]2,1()1,2(---Y 提示:关于)2ln(1+x ,要求分母不能为0,即0)2ln(≠+x ,也确实是1-≠x ; 关于)2ln(+x ,要求02>+x ,即2->x ; 关于24x -,要求042≥-x ,即2≤x 且2-≥x ;因此函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(---Y4.函数72)1(2+-=-x x x f ,则=)(x f. 答案:62+x 提示:因为6)1(72)1(22+-=+-=-x x x x f ,因此6)(2+=x x f5.函数⎩⎨⎧>≤+=0e02)(2x x x x f x,则=)0(f . 答案:2 提示:因为当0=x 是在0≤x 区间,应选择22+x 进行运算,即220)0(2=+=f6.函数x x x f 2)1(2-=-,则=)(x f . 答案: 12-x 提示:因为1)1(2)1(22--=-=-x x x x f ,因此1)(2-=x x f7.函数1322+--=x x x y 的间断点是 . 答案: 1-=x提示:若)(x f 在0x 有下列三种情形之一,则)(x f 在0x 间断:①在0x 无定义;②在0x 极限不存在;③在0x 处有定义,且)(lim 0x f xx → 存在,但)()(lim 00x f x f x x ≠→。
电大微积分初步平时作业形成性考核册答案

11.当 ()时,函数 在 处连续.答案:D
A.0B.1 C. D.
12.函数 的间断点是()答案:A
A. B. C. D.无间断点
1.函数 在区间 是(D)
A.单调增加B.单调减少C.先增后减D.先减后增
2.满足方程 的点一定是函数 的(C).
A.极值点B.最值点C.驻点D.间断点
3.若 ,则 =(C).
A.2B.1C.-1D.-2
4.设,则(B).
A.B.C.D.
5.设 是可微函数,则 (D).
A. B. C. D.
6.曲线 在 处切线的斜率是(C).
A. B. C. D.
7.若 ,则 (C).
A. B. C. D.
8.若 ,其中 是常数,则 (C).
A. B. C. D.
C.函数f (x)在点x0处连续D.函数f (x)在点x0处可微
11.下列函数在指定区间上单调增加的是(B).
A.sinxB.e xC.x 2D.3 - x
12.下列结论正确的有(A).
A.x0是f (x)的极值点,且 (x0)存在,则必有 (x0) = 0
B.x0是f (x)的极值点,则x0必是f (x)的驻点
微积分初步
一、填空题(每小题2分,共20分)
1.函数 的定义域是 .答案:
2.函数 的定义域是 .答案:
3.函数 的定义域是 .答案:
4.函数 ,则 .答案:
5.函数 ,则 .答案:
6.函数 ,则 .答案:
7.函数 的间断点是.答案:
8. .答案:1
9.若 ,则 .答案:2
10.若 ,ห้องสมุดไป่ตู้ .答案:
1.曲线 在 点的斜率是 .
2017年电大2017河北电大高等数学基础形成性考核手册答案(含题目)

最新资料,word文档,可以自由编辑!!精品文档下载【本页是封面,下载后可以删除!】⒈下列各函数对中,(C )中的两个函数相等.A. 2)()(x x f =,x x g =)(B. 2)(x x f =,x x g =)( C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y =⒊下列函数中为奇函数是(B ).A. )1ln(2x y +=B. x x y cos =C. 2xx a a y -+= D. )1ln(x y += ⒋下列函数中为基本初等函数是(C ).A. 1+=x yB. x y -=C. 2x y =D. ⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是(D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim=∞→x x x D. 01sin lim =∞→xx x ⒍当0→x 时,变量(C )是无穷小量.A. xx sin B. x 1 C. x x 1sin D. 2)ln(+x ⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义 C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 00x f x f x x x x -+→→=(二)填空题 ⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3. 22⒊=+∞→x x x)211(lim 21e . ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是0=x . ⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的无穷小量0x x →。
电大微积分初步形成性考核作业原体答案

微积分初步形成性考核作业【原体+答案】一、填空题(每小题2分,共20分) 1.函数)2ln(1)(-=x x f 的定义域是.解:020)2ln({>-≠-x x , 23{>≠x x所以函数)2ln(1)(-=x x f 的定义域是),3()3,2(+∞⋃2.函数xx f -=51)(的定义域是.解:05>-x ,5<x所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是.解:⎪⎩⎪⎨⎧≥->+≠+04020)2ln(2x x x ,⎪⎩⎪⎨⎧≤≤-->-≠2221x x x 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- 4.函数72)1(2+-=-x x x f ,则=)(x f .解:72)1(2+-=-x x x f 6)1(61222+-=++-=x x x所以=)(x f 62+x5.函数⎩⎨⎧>≤+=0e02)(2x x x x f x ,则=)0(f .解:=)0(f 2202=+6.函数x x x f 2)1(2-=-,则=)(x f .解:x x x f 2)1(2-=-1)1(11222+-=-+-=x x x ,=)(x f 12+x7.函数1322+--=x x x y 的间断点是.解:因为当01=+x ,即1-=x 时函数无意义 所以函数1322+--=x x x y 的间断点是1-=x8.=∞→xx x 1sinlim . 解:=∞→x x x 1sinlim 111sinlim =∞→xx x9.若2sin 4sin lim0=→kxxx ,则=k .解: 因为24sin 44sin lim 4sin 4sin lim 00===→→kkxkx x xk kx x x x所以2=k10.若23sin lim0=→kxxx ,则=k . 解:因为2333lim 33lim00===→→kx x sim k kx x sim x x 所以23=k 二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数解:因为y e e e e x y x x x x =+=+=-----22)()( 所以函数2e e xx y +=-是偶函数。
最新中央电大《微积分初步》形成性考核册参考答案

中央电大《微积分初步》形成性考核册参考答案微积分初步作业1 参考答案1、函数、极限和连续一、填空题(每小题2分,共20分)1.()()3,+∞2,3 或填{}23x x x >≠且; 2.(),5-∞或填{}5x x <;3.()(]2,11,2--⋃-或填{}121x x x -<≤≠-且; 4.26x +; 5.2; 6.21x -; 7.1x =-; 8.1; 9.2; 10.32.二、单项选择题(每小题2分,共24分)1.B2.A3.D4.C5.D6.D7.C8.D9.C 10.B 11.D 12.A三、解答题(每小题7分,共56分) 1.解:原式=()()()()221211limlim .2224x x x x x x x x →→---==+-+ 2.解:原式=()()()()126167lim lim .1112x x x x x x x x →→+-+==+-+ 3.解:原式=()()()()323333limlim .1312x x x x x x x x →→+-+==+-+ 4.解:原式=()()()()422422lim lim .1413x x x x x x x x →→---==--- 5.解:原式=()()()()22244limlim 2.233x x x x x x x x →→---==--- 6.解:原式=111.2x x →→==-7.解:原式=111.8x x →→==-8.解:原式=()()0sin 4242lim16.x x x x x→→⋅⋅==微积分初步作业2 参考答案2、导数与微分3、导数的应用一、填空题(每小题2分,共20分)1.12; 2.10x y -+=; 3.230x y +-=; 41; 5.6-; 6.()271ln3+;7.21x-; 8.2-; 9.()1,+∞; 10. 0a >.二、单项选择题(每小题2分,共24分)1.D2.C3.C4.B5.D6.C7.C8.C9.A 10.B 11.B 12.A三、解答题(每小题7分,共56分)1.解:()111221221xxx y xe x e x e x ⎛⎫'=+-=- ⎪⎝⎭.2.解:24cos43sin cos y x x x '=-. 3.解:21y x '=-. 4.解:sin tan cos x y x x '==. 5.解:方程两边同时对x 求微分,得()()2202222xdx ydy xdy ydx x y dx x y dyx ydy dxx y+--=-=--∴=-6. 解: 原方程可化为()21x y +=1,1x y y x ∴+=±=-±1,y dy dx '∴=-=-7. 解:方程两边同时对x 求微分,得20x y y e dx e dy xe dx xdx +++=()2y x y xe dy e e x dx =-++2x y ye e xdy dx xe++∴=-. 8. 解:方程两边同时对x 求微分,得()()sin 0y x y dx dy e dy -+++=()()sin sin yx y dy dx e x y +∴=-+ 微积分初步作业3 参考答案4、不定积分、极值应用问题一、填空题(每小题2分,共20分)1.2ln 2x x x c -+; 2.24x e --; 3.()1x x e +; 4.2cos 2x ; 5.1x;6.4cos 2x -;7.2x e dx -; 8.sin x c +; 9.()1232F x c -+; 10. ()2112F x c--+.二、单项选择题(每小题2分,共16分) 1.A 3.A 4.A 5.A 6.A 7.C 8.B三、解答题(每小题7分,共35分)1.解:原式=32sin 3ln cos 3x dx x x c x⎛⎫=-+ ⎪⎝⎭⎰.2.解:原式=()()()()10111121212121221122x d x x c x c --=⨯-+=-+⎰.3.解:原式=111sin cos d c x x x⎛⎫-=+ ⎪⎝⎭⎰. 4.解:原式=11111cos 2cos 2cos 2cos 2sin 222224xd x x x xdx x x x c -=-+=-++⎰⎰. 5.解:原式=()1x x x x x x xde xe e dx xe e c x e c -------=-+=--+=-++⎰⎰.四、极值应用题(每小题12分,共24分)1.解: 设矩形ABCD 的一边AB x =厘米,则60BC x =-厘米, 当它沿直线AB 旋转一周后,得到圆柱的体积()()260,060V x x x π=-<<令()()2602600V x x x π⎡⎤'=---=⎣⎦得20x = 当()0,20x ∈时,0V '>;当()20,60x ∈时,0V '<.20x ∴=是函数V的极大值点,也是最大值点.此时6040x -=答:当矩形的边长分别为20厘米和40厘米时,才能使圆柱体的体积最大. 2. 解:设成矩形有土地的宽为x 米,则长为216x米, 于是围墙的长度为()4323,0L x x x=+> 令243230L x'=-=得()12x =取正易知,当12x =时,L 取得唯一的极小值即最小值,此时21618x= 答:这块土地的长和宽分别为18米和12米时,才能使所用的建筑材料最省. 五、证明题(本题5分)()()()()1 0, 01 0, 0,0.x x f x e x e x f x f x x e '=-<<<'∴<>=--∞证:当时当时从而函数在区间是单调增加的微积分初步作业4 参考答案5、定积分及应用一、填空题(每小题2分,共20分)1.23-; 2.2; 3.3221633y x =-; 4.4; 5.24a π; 6.0;7.12;8.x y e =; 9.3x y ce -=; 10. 4.二、单项选择题(每小题2分,共20分)1.A2.A3.A4.D5.D6.B7.B8.D9.C 10.B三、计算题(每小题7分,共56分)1.解:原式=()()()2ln 23ln 20011911133xx x ed e e ++=+=-⎰. 2.解:原式=()()()21111715ln 15ln 15ln 5102e ex d x x ++=+=⎰. 3.解:原式=()111100011x x x xxde xe e dx e e e e =-=-=--=⎰⎰.4.解:原式=02cos 2cos 4sin 4222x x x xd x ππ⎡⎤-=-+=⎢⎥⎣⎦⎰.5.解:原式=22220000cos cos cos 0sin 1xd x x x xdx x ππππ-=-+=+=⎰⎰.6. 解:()()21,1P x Q x x x==+()()()()()()112ln 2ln 342 1 11 111 42P x dx P x dx dx dx x x x xy e Q x e dx c e x e dx c e x e dx c x x dx c x x x c x ---⎡⎤⎰⎰=+⎢⎥⎣⎦⎡⎤⎰⎰=++⎢⎥⎣⎦⎡⎤=++⎣⎦⎡⎤=++⎣⎦⎡⎤=++⎢⎥⎣⎦⎰⎰⎰⎰通解即通解31142c y x x x=++ 7. 解:()()1,2sin 2P x Q x x x x=-=()()()()11ln ln 2sin 2 2sin 21 2sin 2 cos 2P x dx P x dx dx dx x xx x y e Q x e dx c e x xedx c e x xe dx c x x x dx c x x x c ---⎡⎤⎰⎰∴=+⎢⎥⎣⎦⎡⎤⎰⎰=+⎢⎥⎣⎦⎡⎤=+⎣⎦⎡⎤=⋅+⎢⎥⎣⎦=-+⎰⎰⎰⎰通解即通解为()cos2y x x c =-+.四、证明题(本题4分)()()()()()()()()()()()000000aaaaaaaa af x dx f x dxf x dx f x dxf x d x f x dx f x dx f x dxf x f x dx ----+=-+=---+=-+=-+=⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰证:左边=右边。
2017年电大专科微积分初步复习题及答案

电大资料整理电大微积分初步考试小抄一、填空题 ⒈函数xx f -=51)(的定义域是→x <5⒉∞→xx x sin lim1sin lim =∞→x x ,01→∞→x 时, ⒊已知xx f 2)(=,则)(x f ''⒋若⎰+=c x F x xf )(d )(,则⎰-x x f d )32(⒌微分方程x y y x =+'''e sin )(y '''6.函数)2ln(1)(+=x x f }{}{}122-1ln )2(ln 2-x 02ln 0≠+⇒≠+⇒≠+x x x x ,>,>,>∴{}1- 2-x |≠且>x7.→xx x 2sin lim 0 211212lim 2sin lim 00=⋅=→→x x x x x x 21:222sin lim0==→x x x 8.若y = x (x – 1)(x – 2)(x – 3),则y '(0) y=x(x-1)(x-2)(x-3)=(x 2-x)(x 2-5x+6)=x 4-5x 3+6x x 2-6x=x 4-6x 3+11x 2-6x , 622184y 23x -+-='x x⇐(把0带入X ),6)0(-='∴y9.⎰-x x d ed 2)()(x f dx x f ='⎰)(或dx x f dx xf d )())((=⎰ 10.微分方程1)0(,=='y y y y y ='y dxdy= ⎰⎰==∴dx dy dx y dy y 两边积分 ec x y +=∴又y(0)=1 (x=0 , y=1) c x y +=∴ln 010==∴+c e c,11.函数24)2ln(1)(x x x f -++=的定义域是⎩⎨⎧-≠≤-⇒⎩⎨⎧≠+≤-⇒⎪⎩⎪⎨⎧≠+≤≤⇒⎪⎪⎩⎪⎪⎨⎧≠++≥-122122x 21ln )2ln(2-2x 2-0)2(ln 02042x x x x x x x x <<>>12.若函数⎪⎩⎪⎨⎧=≠+=0,0,13sin )(x k x xx x f ,在0=x 处连续,则k )()(lim00x x f x f x =→ ()(x f 在x 0处连续) ∵k f =)0( 113sin 0lim )13sin (0lim =+⋅→=+→∴x x x x x x (无穷小量x 有界函数)13.曲线x y =在点)1,1(处的切线方程是x x y 2== , x y 2121-=' 切k y ==='∴211x | 2121y )1(11y +=⇒-=-∴∴x x 方程 14.'⎰x x s d )in (15.微分方程y y x y sin 4)(5=+''16.函数)2ln()(-=x xx f {}3x 2x |122)2ln(20)2ln(02≠⇒⎩⎨⎧≠-⇒⎩⎨⎧≠-⇒⎩⎨⎧≠--且>>>>x xx nx x x x17.∞→xxx 2sin lim 18.已知x x f 3)(+=,则)3(f '3ln 3)(2xx f +=' 3ln 2727)3(+='∴f19.⎰2de x 20.微分方程x y xyy sin 4)(7)4(=+ 二、单项选择题⒈设函数2e e xx y +=-,则该函数是(偶函数).∵所以是偶函数)(2e e )(x f x f xx =+=--⒉函数233)(2+--=x x x x f 的间断点是(2,1==x x )分母无意义的点是间断点∴2,1,0232===+-x x x x电大资料整理⒊下列结论中()(x f 在0x x =处不连续,则一定在0x 处不可导)正确.可导必连续,伹连续并一定可导;极值点可能在驻点上,也可能在使导数无意义的点上⒋如果等式+-=c x x f xx 11ed e )(,则=)(x f )()1()()(,1u )(),()(,)()(111'-∙='-∙'='∴=-=='∴='∴+=⎰---x e xe e e y xe xf x F C x F dx x f u u x u x,令22112121)()()(x x f x e ex f x e x e xxxu =∴=∴=∙=----⒌下列微分方程中,(x yx y y sin =+' )是线性微分方程.6.设函数2e e xx y --=,则该函数是(奇函数).7.当=k (2 )时,函数⎩⎨⎧=≠+=0,,2)(2x k x xx f 在0=x 处连续.8.下列函数在指定区间(,)-∞+∞上单调减少的是(x -3).9.10.11.设1)1(2-=+x xf ,则(x f 12.若函数f (x )在点x 0处可导,但)(0x f A ≠)是错误的.13.函数2)1(+=x y 在区间)2,2(-是(先减后增) 14.=''⎰x x f x d )((c x f x f x +-')()() 16.17.当=k (2)时,函数⎩⎨⎧=≠+=0,0,1e )(x k x x f x 在0=x 处连续.18.函数12+=x y 在区间)2,2(-是(先单调下降再单调上升)19.在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为(y = x 2+ 3).20.微分方程1)0(,=='y y y 的特解为(xy e =).三、计算题⒈计算极限423lim 222-+-→x x x x .解:41)2()1(lim 2)2(1(lim22=+-=---→→x x x x x x x ) ⒉设x x y x+=-2e ,求y d .解:xe x exx 23221x2-+=⨯+-e y x21-=e y u=1,u= -2x)(11e y u =′·(-2x)′=e u·(-2)= -2·e-2x∴y ′= -2e -2x+x 2123∴dy=(-2·e -2x+x 2123)dx⒊计算不定积分x x xd sin ⎰解:令u=x 21x =,u ′=xx 212121=-∴dx xd u 21=∴u sin ·2du=⎰udu sin 2=2(-cos)+cc x x xde 210x∴⎰1u v ′dx=uv x vd u -110|'⎰1)(0111110|||=-'-=-=-⋅=∴⎰⎰e eee e e e e x dxx dx x x x xx x∴原式=25.计算极限9152lim 223--+→x x x x34353lim )3)(3()3)(5(3lim =++→=+--+→x x x x x x x x电大资料整理6.设x x x y cos ln +=,求y d 解:x x x y xxcos ln cos ln 2321+=+⋅=y 1=lncosxy 1=lnu1,u=cosx ∴xx x u x u ycos sin )sin (1)(cos )(ln 11-=-⋅='⋅'=y 1=xx x cos sin 2321-∴dy=(xx x cos sin 2321-)dx7.计算不定积分x x d )21(9⎰-解:dx x ⎰-)21(9令u=1-2x , u ′= -2 ∴du dx x du 212-=⇒-=c c dudu x u u u+-=++⋅-=-=-⋅-⎰⎰20192121)21()21(1010998.计算定积分x x xd e 10⎰-解:u=x,e e xxv v ---==', )()(11111|x d dxx dx x e e e e e x xx x--=--⋅-=⋅⎰⎰⎰-----=1)11(1|11=--=---ee e e x9.计算极限4586lim 224+-+-→x x x x x3212lim )4)(1()4)(2(lim44=--=----→→x x x x x x x x10.设x y x3sin 2+=,求y d y 1=sin3x y 1=sinu , u=3x ,x y3cos 3x 3sinu 1='⋅'=')()(∴y ′=2xln2+3cos3x ∴dy=(2xln2+3cos3x)dx 11.计算不定积分x x x d cos ⎰⎰xdx x cos u=x , v ′=cosx , v=sinx ⎰⎰+--=-⋅=cx x x xdx x x xdx x )cos (sin sin sin cos12.计算定积分x x x d ln 51e1⎰+⎰⎰⎰⎰+=+=+e e eedxxx dxx x x dxx x dx x 11e111ln 51ln 5ln ln 51|令u=lnx, u ′=x1, du=x 1dx , 1≤x ≤e 0≤lnx ≤1 ∴2121ln |102101===⎰⎰u udu dx x x e ∴原式=1+5·21=2713.计算极限623lim 222-++-→x x x x x解:5131lim )2)(3x ()1)(2(lim22=+-=-+--→→x x x x x x x14.设xx y 12e =,求y '解:ex xy 12⋅=(e yx11=) , e y u=1, xu 1=, xe x e e y xuux 21211)1()1()(-=-⋅='⋅'=)ee xe x e e x e x x1x12x 12x1x12x122)(2)()(y -=-⋅+='⋅+⋅'='∴x x15.计算不定积分x x d )12(10⎰-解:dx x ⎰-)12(10u=2x-1 ,d '=2 du=2dx∴c du dudx u uu x +⋅=⋅=⋅=⎰⎰⎰-1121212111101010)12(c x +=-)(121121 16.计算定积分⎰1d e x x x解:dx x e x⎰⋅1u=x , e xv =' , e xv =1)1(1110|=--=-⋅=⎰⎰e e dx x dx x e e e xx x四、应用题(本题16分)电大资料整理用钢板焊接一个容积为43m 的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少? 解:设水箱的底边长为x ,高为h,表面积为s ,且有h=x24所以S(x)=x 2+4xh=x 2+x16'xx S 2162-='令S '(x )=0,得x=2因为本问题存在最小值,且函数的驻点唯一,所以x=2,h=1时水箱的表面积最小。
《微积分初步》形成性考核册题解秋

微积分初步形成性考核作业题解作业(一)————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2ln(1)(-=x x f 的定义域是.答案:),3()3,2[+∞提示:对于)2ln(1-x ,要求分母不能为0,即0)2ln(≠-x ,也就是3≠x ;对于)2ln(-x ,要求02>-x ,即2>x ; 所以函数)2ln(1)(-=x x f 的定义域是),3()3,2[+∞2.函数xx f -=51)(的定义域是.答案:)5,(-∞提示:对于x-51,要求分母不能为0,即05≠-x ,也就是5≠x ;对于x -5,要求05≥-x ,即5≤x ; 所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是.答案:]2,1()1,2(---提示:对于)2ln(1+x ,要求分母不能为0,即0)2ln(≠+x ,也就是1-≠x ;对于)2ln(+x ,要求02>+x ,即2->x ; 对于24x -,要求042≥-x ,即2≤x 且2-≥x ;所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(---4.函数72)1(2+-=-x x x f ,则=)(x f . 答案:62+x提示:因为6)1(72)1(22+-=+-=-x x x x f ,所以6)(2+=x x f5.函数⎩⎨⎧>≤+=0e2)(2x x x x f x ,则=)0(f .答案:2提示:因为当0=x 是在0≤x 区间,应选择22+x 进行计算,即220)0(2=+=f6.函数x x x f 2)1(2-=-,则=)(x f . 答案:12-x提示:因为1)1(2)1(22--=-=-x x x x f ,所以1)(2-=x x f7.函数1322+--=x x x y 的间断点是.答案:1-=x提示:若)(x f 在0x 有下列三种情况之一,则)(x f 在0x 间断:①在0x 无定义;②在0x 极限不存在;③在0x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分初步形成性考核作业(一)解答————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2ln(1)(-=x x f 的定义域是 .解:020)2ln({>-≠-x x , 23{>≠x x所以函数)2ln(1)(-=x x f 的定义域是),3()3,2(+∞⋃2.函数xx f -=51)(的定义域是 .解:05>-x ,5<x 所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是 .解:⎪⎩⎪⎨⎧≥->+≠+04020)2ln(2x x x ,⎪⎩⎪⎨⎧≤≤-->-≠2221x x x 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- 4.函数72)1(2+-=-x x x f ,则=)(x f.解:72)1(2+-=-x x x f 6)1(61222+-=++-=x x x 所以=)(x f 62+x5.函数⎩⎨⎧>≤+=0e2)(2x x x x f x ,则=)0(f .解:=)0(f 2202=+6.函数x x x f 2)1(2-=-,则=)(x f .解:x x x f 2)1(2-=-1)1(11222+-=-+-=x x x ,=)(x f 12+x7.函数1322+--=x x x y 的间断点是 .解:因为当01=+x ,即1-=x 时函数无意义所以函数1322+--=x x x y 的间断点是1-=x8.=∞→xx x 1sinlim .解:=∞→x x x 1sinlim 111sinlim =∞→xx x9.若2sin 4sin lim0=→kxxx ,则=k .解: 因为24sin 44sin lim 4sin 4sin lim00===→→kkxkx x xk kx x x x 所以2=k10.若23sin lim 0=→kxxx ,则=k .解:因为2333lim 33lim 00===→→kx x sim k kx x sim x x所以23=k 二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数解:因为y e e e e x y xx x x =+=+=-----22)()( 所以函数2e e xx y +=-是偶函数。
故应选B2.设函数x x y sin 2=,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 解:因为y x x x x x y -=-=--=-sin )sin()()(22所以函数x x y sin 2=是奇函数。
故应选A3.函数222)(xx x x f -+=的图形是关于( )对称.A .x y =B .x 轴C .y 轴D .坐标原点解:因为)(222222)()()(x f x x x f x x x x -=+-=+⋅-=----- 所以函数222)(xx x x f -+=是奇函数从而函数222)(xx x x f -+=的图形是关于坐标原点对称的 因此应选D4.下列函数中为奇函数是().A .x x sinB .x lnC .)1ln(2x x ++D .2x x + 解:应选C5.函数)5ln(41+++=x x y 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x解:⎩⎨⎧>+≠+0504x x ,⎩⎨⎧->-≠54x x ,所以应选D6.函数)1ln(1)(-=x x f 的定义域是( ).A . ),1(+∞B .),1()1,0(+∞⋃C .),2()2,0(+∞⋃D .),2()2,1(+∞⋃解:⎩⎨⎧>-≠-010)1ln(x x ,⎩⎨⎧>≠12x x ,函数)1ln(1)(-=x x f 的定义域是),2()2,1(+∞⋃,故应选D7.设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 解:1)1(2-=+x x f ]2)1)[(1()1)(1(-++=-+=x x x x )2()(-=x x x f ,故应选C8.下列各函数对中,()中的两个函数相等.A .2)()(x x f =,x x g =)( B .2)(x x f =,x x g =)(C .2ln )(x x f =,x x g ln 2)(= D .3ln )(x x f =,x x g ln 3)(= 解:两个函数相等必须满足①定义域相同②函数表达式相同,所以应选D9.当0→x 时,下列变量中为无穷小量的是( ). A .x 1 B .x x sin C .)1ln(x + D .2xx 解:因为0)1ln(lim 0=+→x x ,所以当0→x 时,)1ln(x +为无穷小量,所以应选C10.当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 解:因为1)1(lim )(lim 2=+=→→x x f x x ,k f =)0(若函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则)(lim )0(0x f f x →=,因此1=k 。
故应选B11.当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 解:3)2(lim )(lim )0(0=+===→→xx x e x f f k ,所以应选D12.函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点解:当2,1==x x 时分母为零,因此2,1==x x 是间断点,故应选A 三、解答题(每小题7分,共56分)⒈计算极限423lim 222-+-→x x x x .解:423lim222-+-→x x x x 4121lim )2)(2()2)(1(lim 22=+-=-+--=→→x x x x x x x x 2.计算极限165lim 221--+→x x x x解:165lim221--+→x x x x 2716lim )1)(1()6)(1(lim 11=++=-++-=→→x x x x x x x x 3.329lim 223---→x x x x解:329lim 223---→x x x x 234613lim )3)(1()3)(3(lim 33==++=-+-+=→→x x x x x x x x 4.计算极限4586lim 224+-+-→x x x x x解:4586lim 224+-+-→x x x x x 3212lim )4)(1()4)(2(lim 44=--=----=→→x x x x x x x x 5.计算极限6586lim 222+-+-→x x x x x .解:6586lim 222+-+-→x x x x x 234lim )3)(2()4)(2(lim 22=--=----=→→x x x x x x x x 6.计算极限xx x 11lim--→. 解:x x x 11lim--→)11(lim )11()11)(11(lim 00+--=+-+---=→→x x xx x x x x x 21111lim-=+--=→x x7.计算极限xx x 4sin 11lim--→解:x x x 4sin 11lim--→)11(4sin )11)(11(lim 0+-+---=→x x x x x 81)11(44sin 1lim 41)11(4sin lim00-=+--=+--=→→x xx x x xx x8.计算极限244sin lim-+→x x x .解:244sin lim-+→x x x )24)(24()24(4sin lim++-+++=→x x x x x16)24(44[lim 4)24(4sin lim 00=++=++=→→x xxsim x x x x x微积分初步形成性考核作业(二)解答(除选择题)————导数、微分及应用一、填空题(每小题2分,共20分) 1.曲线1)(+=x x f 在)2,1(点的斜率是 .解:xx f 21)(=',斜率21)1(='=f k 2.曲线xx f e )(=在)1,0(点的切线方程是 . 解:xe xf =')( ,斜率1)0(0=='=e f k所以曲线xx f e )(=在)1,0(点的切线方程是:1+=x y 3.曲线21-=xy 在点)1,1(处的切线方程是.解:2321--='x y ,斜率21211231-=-='==-=x x x y k所以曲线21-=xy 在点)1,1(处的切线方程是:)1(211--=-x y ,即:032=-+y x 4.=')2(x. 解:=')2(x xxxx22ln 22ln 212=⋅5.若y = x (x – 1)(x – 2)(x – 3),则y '(0) =.解:6)3)(2)(1()0(-=---='y6.已知x x x f 3)(3+=,则)3(f '=.解:3ln 33)(2xx x f +=',)3(f '3ln 2727+=7.已知x x f ln )(=,则)(x f ''= .解:x x f 1)(=',21)(xx f -='' 8.若xx x f -=e )(,则='')0(f .解:x xxe ex f ---=')(,x x x x x xe e xe e e x f -----+-=---=''2)()(, ='')0(f 2-9.函数y x =-312()的单调增加区间是 .解:0)1(6≥-='x y ,1≥x ,所以函数y x =-312()的单调增加区间是),1[+∞ 10.函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 .解:02)(≥='ax x f ,而0>x ,所以0≥a 二、单项选择题(每小题2分,共24分) 1.函数2)1(+=x y 在区间)2,2(-是( D ) A .单调增加 B .单调减少C .先增后减D .先减后增2.满足方程0)(='x f 的点一定是函数)(x f y =的( C ). A .极值点 B .最值点 C .驻点 D . 间断点 3.若x x f xcos e)(-=,则)0(f '=( C ).A . 2B . 1C . -1D . -2 4.设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 5..设)(x f y =是可微函数,则=)2(cos d x f ( D ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 6.曲线1e2+=xy 在2=x 处切线的斜率是( C ).A .4e B .2e C .42e D .2 7.若x x x f cos )(=,则='')(x f ( C ).A .x x x sin cos +B .x x x sin cos -C .x x x cos sin 2--D .x x x cos sin 2+ 8.若3sin )(a x x f +=,其中a 是常数,则='')(x f ( C ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos9.下列结论中( B )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .若)(x f 在[a ,b ]内恒有0)(<'x f ,则在[a ,b ]内函数是单调下降的. 10.若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微11.下列函数在指定区间(,)-∞+∞上单调增加的是( B ). A .sin x B .e x C .x 2 D .3 - x 12.下列结论正确的有( A ).A .x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0B .x 0是f (x )的极值点,则x 0必是f (x )的驻点C .若f '(x 0) = 0,则x 0必是f (x )的极值点D .使)(x f '不存在的点x 0,一定是f (x )的极值点三、解答题(每小题7分,共56分)⒈设xx y 12e =,求y '.解:x x xx e xe xe x xe y 1121212)1(2-=-+='x e x 1)12(-=2.设x x y 3cos 4sin +=,求y '. 解:x x x y sin cos 34cos 42-=' 3.设xy x 1e 1+=+,求y '. 解:211121x ex y x -+='+ 4.设x x x y cos ln +=,求y '. 解:x x x x x y tan 23cos sin 23-=-+=' 5.设)(x y y =是由方程422=-+xy y x 确定的隐函数,求y d . 解:两边微分:0)(22=+-+xdy ydx ydy xdx xdx ydx xdy ydy 22-=- dx xy xy dy --=226.设)(x y y =是由方程1222=++xy y x 确定的隐函数,求y d . 解:两边对1222=++xy y x 求导,得:0)(222='++'+y x y y y x 0='++'+y x y y y x ,)()(y x y y x +-='+,1-='y dx dx y dy -='=7.设)(x y y =是由方程4e e 2=++x x y x 确定的隐函数,求y d . 解:两边微分,得:02=+++xdx dy xe dx e dx e yyxdx x e e dy xe yxy)2(++-=,dx xexe e dy yy x 2++-= 8.设1e )cos(=++yy x ,求y d . 解:两边对1e )cos(=++yy x 求导,得: 0)sin()1(='++'+-y e y y x y 0)sin()sin(='++'-+-ye y y x y y x )sin()]sin([y x y y x e y+='+- )sin()sin(y x e y x y y+-+=' dx y x e y x dx y dy y)sin()sin(+-+='=微积分初步形成性考核作业(三)解答(填空题除外)———不定积分,极值应用问题一、填空题(每小题2分,共20分)1.若)(x f 的一个原函数为2ln x ,则=)(x f 2ln 2x x x c -+ 。