立体几何同步训练15球.

合集下载

立体几何之外接球问题含答案

立体几何之外接球问题含答案

立体几何之外接球问题一讲评课1课时总第课时月日1、已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,,,则球的表面积为( ? )A. B. C. D.2、设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为(??)A.B. C.D.3、已知是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为( ? ?)A. B. C. D.4、如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为(?)A.B. C.D.5、已知都在半径为的球面上,且,,球心到平面的距离为1,点是线段的中点,过点作球的截面,则截面面积的最小值为()A. B.C. D.6、某几何体的三视图如图所示,这个几何体的内切球的体积为(? )A.B.C. D.7、四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当此四棱锥的体积取得最大值时,它的表面积等于,则球的体积等于(?)A. B. C. D.8、一个三条侧棱两两互相垂直并且侧棱长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为( ? )A.B. C.D.9、一个棱长都为的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( ?)A.B.C. D.10、一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为( ? )A. B. C. D.立体几何之外接球问题二讲评课1课时总第课时月日11、若圆锥的内切球与外接球的球心重合,且内切球的半径为,则圆锥的体积为__________.12、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则半径为的球的内接正三棱柱的体积的最大值为__________.13、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则棱长均为的正三棱柱外接球的表面积为__________.14、若一个正四面体的表面积为,其内切球的表面积为,则__________. 15、若一个正方体的表面积为,其外接球的表面积为,则__________. 16.已知边长为的正的三个顶点都在球的表面上,且与平面所成的角为,则球的表面积为__________. 16、在三棱锥中,平面,,,,则此三棱锥外接球的体积为__________18、底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为__________.17、三棱柱的底面是直角三角形,侧棱垂直于底面,面积最大的侧面是正方形,且正方形的中心是该三棱柱的外接球的球心,若外接球的表面积为,则三棱柱的最大体积为__________.20、一长方体的各顶点均在同一个球面上,且一个顶点上的三条棱长分别为,则这个球的表面积为__________.立体几何之三视图问题1讲评课 1课时 总第 课时 月 日3、一个几何体的三视图如下图所示,则这个几何体的体积是( ) A. B. C. D.4、如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则它的体积为(??? ) A.B.C.D.5、某几何体的三视图如图所示,则它的表面积为( ? ?)A.B.C.D.6、某几何体三视图如图所示,则该几何体的体积为(?? ) A. B. C.D.7、多面体的底面矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为( ???) A.B.C.D.8、某一简单几何体的三视图如图所示,该几何体的外接球的表面积是(?? ) A.B.C.D.9、如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积的最大值是(?? ) A. B.C. D. 10、一个几何体的三视图如图,则这个几何体的表面积是(?? )A.B.C.D.11、若某空间几何体的三视图如图所示,根据图中数据,可得该几何体的表面积是(?? ) A.B.C.D.12、某几何体三视图如下图所示,则该几何体的体积是(?? )D.A. B. C.13、一个三棱锥的三视图如图所示,则该棱锥的外接球的体积为(?)A. B.C. D.14、已知一空间几何体的三视图如图所示,其中正视图与左视图都是等腰梯形,则该几何体的体积为(?)A.D.B. C.15、如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的的体积为(?)C. D.A. B.立体几何之三视图问题2讲评课1课时总第课时月日16、某长方体的三视图如右图,长度为的体对角线在正视图中的长度为,在侧视图中的长度为,则该长方体的全面积为__________.17、一个空间几何体的三视图如下图所示,则该几何体外接球的表面积为__________.18、一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积__________.19、已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:),则该四棱锥的体积为__________.20、一个几何体的三视图如图所示(单位:),则该几何体的体积为__________.21、已知一个几何体的三视图如图所示(单位:),则该几何体的体积为__________.22、某三棱锥的三视图如图所示,其中俯视图是正方形,则该三棱锥最长棱的长是__________.23、一个多面体的三视图如图所示,则该多面体的表面积为____.24、2016年11月18日13时59分,神舟十一号飞船返回舱在内蒙古中部预定区域成功着陆. 神舟十一号载人飞行,是我国迄今为止时间最长的一次载人航天飞行,在轨33天飞行中,航天员景海鹏、陈冬参与的实验和实验多达38项. “跑台束缚系统”是未来空间站长期飞行的关键锻炼设备,本次任务是国产跑台首次太空验证. 如图所示是“跑台束缚系统”中某机械部件的三视图(单位:),则此机械部件的表面积为__________.25、一个几何体的三视图如图所示,则该几何体的表面积为__________.立体几何之外接球问题答案解析第1题答案C第1题解析如图所示,∵,∴为直角,即过的小圆面的圆心为的中点,和所在的平面互相垂直,则圆心在过的圆面上,即的外接圆为球的大圆,由等边三角形的重心和外心重合易得球半径,球的表面积为,故选.第2题答案B第2题解析设球心为,设正三棱柱上底面为,中心为,因为三棱柱所有棱的长都为,则可知?,,又由球的相关性质可知,球的半径,所以球的表面积为,故选.第3题答案C第3题解析如图所示,当点位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选.第4题答案D第4题解析该几何体为三棱锥,设球心为,分别为和的外心,易求得,,∴球的半径,∴该几何体外接球的表面积为.第5题答案B第5题解析∵,∴,∴圆心在平面的射影为的中点,∴,∴.∴,当线段为截面圆的直径时,面积最小,∴截面面积的最小值为.第6题答案C第6题解析此几何体是底面边长为,高为的正四棱锥,可算出其体积为,表面积为. 令内切球的半径为,则,从而内切球的体积为,故选C.第7题答案B第7题解析由题意可知四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当体积最大时,可以判定该棱锥为正四棱锥,底面在球大圆上,可得知底面正方形的对角线长度为球的直径,且四棱锥的高半径,进而可知此四棱锥的四个侧面均是边长为的正三角形,底面为边长为的正方形,所以该四棱锥的表面积为?,于是,,进而球的体积. 故选.第8题答案B第8题解析由题可知该三棱锥为一个棱长的正方体的一角,则该三棱锥与该正方体有相同的外接球,又正方体的对角线长为,则球半径为,则. 故选.第9题答案A第9题解析如图:设、为棱柱两底面的中心,球心为的中点.又直三棱柱的棱长为,可知,,所以,因此该直三棱柱外接球的表面积为,故选.?第10题答案D第10题解析此几何体是三棱锥,底面是斜边长为的等腰直角三角形,且顶点在底面内的射影是底面直角三角形斜边的中点.易知,三棱锥的外接球的球心在上.设球的半径为,则,∵,∴,解得:,∴外接球的表面积为.第11题答案第11题解析过圆锥的旋转轴作轴截面,得及其内切圆⊙和外切圆⊙,且两圆同圆心,即的内心与外心重合,易得为正三角形,由题意⊙的半径为,∴的边长为,∴圆锥的底面半径为,高为,∴.第12题答案第12题解析设球心为,正三棱柱的上下底面的中心分别为,,底面正三角形的边长为,则,由已知得底面,在中,,由勾股定理得,故三棱柱体积,又,所以,则.第13题答案第13题解析底面正三角形外接圆的半径为,圆心到底面的距离为,从而其外接圆的半径,则该球的表面积.第14题答案第14题解析设正四面体棱长为,则正四面体表面积为,其内切球半径为正四面体高的,即,因此内切球表面积为,则.第15题答案第15题解析设正方体棱长为,则正方体表面积为,其外接球半径为正方体体对角线长的,即为,因此外接球表面积为,则.第16题答案第16题解析设正的外接圆圆心为,易知,在中,,故球的表面积为.第17题答案第17题解析根据题意球心到平面的距离为,在的外接圆的半径为,所以球的半径为,所以此三棱锥的外接球的体积为,所以答案为:.第18题答案第18题解析设所给半球的半径为,则棱锥的高,底面正方形中有,所以其体积,则,于是所求半球的体积为.第19题答案第19题解析依题意,外接球的表面积为,所以.如图所示,三棱柱外接圆球心为,设,在直角三角形中,所以.三棱柱的体积为,当且仅当时取得最大值.第20题答案第20题解析由已知可得长方体的体对角线为球的直径:,所以.所以球的面积为.。

高中数学 第一章 立体几何初步 1.1.6 棱柱、棱锥、棱台和球的表面同步练习(含解析)新人教B版必

高中数学 第一章 立体几何初步 1.1.6 棱柱、棱锥、棱台和球的表面同步练习(含解析)新人教B版必

高中数学第一章立体几何初步1.1.6 棱柱、棱锥、棱台和球的表面同步练习(含解析)新人教B版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章立体几何初步1.1.6 棱柱、棱锥、棱台和球的表面同步练习(含解析)新人教B版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章立体几何初步1.1.6 棱柱、棱锥、棱台和球的表面同步练习(含解析)新人教B版必修2的全部内容。

棱柱、棱锥、棱台和球的表面1.正三棱锥的底面边长为a ,高为66a ,则此三棱锥的侧面积为( ). A .234a B .232a C .2334a D .2332a 2.长方体的高等于h ,底面积等于a ,过相对侧棱的截面面积等于b ,则此长方体的侧面积等于( ).A .222b ah +B .2222b ah +C .2222b ah +D .222b ah +3.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积之比为( ).A .316 B .916 C .38 D .9324.一个几何体的三视图如图,该几何体的表面积是( ).A .372B .360C .292D .2805.已知三个球的半径R 1、R 2、R 3满足R 1+2R 2=3R 3,则它们的表面积S 1、S 2、S 3满足的等量关系是______.6.有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为3a 、4a 、5a (a >0).用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,则a 的取值范围是______.7.已知正三棱锥S-ABC,一个正三棱柱的一个底面的三顶点在棱锥的三条侧棱上,另一底面在正三棱锥的底面上,若正三棱锥的高为15 cm,底面边长为12 cm,内接正三棱柱的侧面积为120 cm2.(1)求三棱柱的高;(2)求棱柱上底面所截棱锥与原棱锥的侧面积之比.8.已知梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD 内,过C作l⊥CB,以l为轴将梯形ABCD旋转一周,求旋转体的表面积.参考答案1。

第八章立体几何初步同步练习含解析

第八章立体几何初步同步练习含解析

单元素养评价(三)(第八章)(120分钟150分)一、单选题(每小题5分,共40分)1.下列命题中正确的是()A.棱柱被平面分成的两部分可以都是棱柱B.底面是矩形的平行六面体是长方体C.棱柱的底面一定是平行四边形D.棱锥的底面一定是三角形【解析】选A.平行于棱柱底面的平面可以把棱柱分成两个棱柱,故A正确;三棱柱的底面是三角形,故C错误;底面是矩形的平行六面体的侧面不一定是矩形,故它也不一定是长方体,故B错误;四棱锥的底面是四边形,故D错误.2.(2020·芜湖高一检测)如图,△ABC的斜二测直观图为等腰Rt△A′B′C′,其中A′B′=2,则△ABC的面积为()A.2B.4C.2D.4【解析】选D.因为Rt△A′B′C′是一平面图形的直观图,直角边长为A′B′=2,所以直角三角形的面积是×2×2=2,因为平面图形与直观图的面积的比为2,所以原平面图形的面积是2×2=4.3.已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的【解析】选 C.(1)当平行于三棱锥一底面,过球心的截面如题(1)图所示;(2)过三棱锥的一条棱和圆心所得截面如题(2)图所示;(3)过三棱锥的一个顶点(不过棱)和球心所得截面如题(3)图所示;(4)棱长都相等的正三棱锥和球心不可能在同一个面上,所以题(4)图是错误的.4.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:(1)若m⊥α,n∥α,那么m⊥n;(2)若m⊥n,m⊥α,n∥β,那么α⊥β;(3)若α∥β,m⊂α,那么m∥β;(4)若α⊥γ,β⊥γ,则α∥β,其中正确命题的序号是() A.(1)(2) B.(2)(3)C.(1)(3)D.(2)(4)【解析】选C.对于(1),如果m⊥α,n∥α,根据直线与平面垂直的性质可知m⊥n,所以(1)正确;对于(2),如果m⊥n,m⊥α,n∥β,根据线面垂直与线面平行性质可知α与β可以垂直,也可以平行,还可以相交,所以(2)错误;对于(3),如果α∥β,m⊂α,根据直线与平面平行的判定可知m∥β,所以(3)正确;对于(4),设平面α,β,γ分别是正方体中经过同一个顶点的三个面,则有α⊥γ且β⊥γ,但是α⊥β,推不出α∥β,故(4)不正确.5.(2020·杭州高一检测)如图,在正四面体OABC中,D是OA的中点,则BD与OC所成角的余弦值是()A. B. C. D.【解析】选B.取AC的中点E,连接DE,BE,根据题意∠BDE为异面直线BD与OC所成的角,设正四面体的边长为2,则DE=1,BD=BE=,由cos ∠BDE==,所以BD与OC所成角的余弦值是.6.如图所示的粮仓可近似为一个圆锥和圆台的组合体,且圆锥的底面圆与圆台的较大底面圆重合.已知圆台的较小底面圆的半径为1,圆锥与圆台的高分别为-1和3,则此组合体的外接球的表面积是()A.16πB.20πC.24πD.28π【解析】选 B.设外接球半径为R,球心为O,圆台较小底面圆的圆心为O1,则:O+12=R2,而OO1=+2-R,故R2=1+(+2-R)2,所以R=,所以S=4πR2=20π.7.(2020·西城高一检测)阅读下面题目及其证明过程,在横线处应填写的正确结论是() 如图,四棱锥P-ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点,求证:平面PAC⊥平面BDE.证明:因为PO⊥底面ABCD,所以PO⊥BD.又因为AC⊥BD,且AC∩PO=O,所以.又因为BD⊂平面BDE,所以平面PAC⊥平面BDE.A.BD⊥平面PBCB.AC⊥平面PBDC.BD⊥平面PACD.AC⊥平面BDE【解析】选C.因为PO⊥底面ABCD,所以PO⊥BD.又因为AC⊥BD,且AC∩PO=O,所以BD⊥平面PAC.又因为BD⊂平面BDE,所以平面PAC⊥平面BDE.8.(2020·九江高一检测)半正多面体亦称“阿基米德多面体”,如图所示,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的边长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为,则该二十四等边体外接球的表面积为()A.4πB.6πC.8πD.12π【解析】选C.由已知根据该几何体的对称性可知,该几何体的外接球即为底面棱长为,侧棱长为2的正四棱柱的外接球,所以(2R)2=()2+()2+22,所以R=,所以该二十四等边体的外接球的表面积S=4πR2=4π×()2=8π.二、多选题(每小题5分,共20分,全部选对的得5分,选对但不全的得3分,有选错的得0分)A.πB.(1+)πC.2πD.(2+π)【解析】选AB.若绕一条直角边旋转一周时,则圆锥的底面半径为1,高为1,所以母线长l=,这时表面积为×2π·1·l+π·12=(1+)π;若绕斜边旋转一周时,旋转体为两个倒立圆锥对底组合在一起,且由题意底面半径为,两个圆锥的母线长都为1,所以表面积S=2××2π·×1=π,综上所述该几何体的表面积为π或(1+)π.10.(2020·潍坊高一检测)正方体ABCD -A1B1C1D1的棱长为2,已知平面α⊥AC1,则关于α截此正方体所得截面的判断正确的是()A.截面形状可能为正三角形B.截面形状可能为正方形C.截面形状可能为正六边形D.截面面积最大值为3【解析】选ACD.显然A,C成立,B不成立,下面说明D成立,如图截得正六边形,面积最大,MN=2,GH=,OE==,所以S=2××(+2)×=3,故D成立.11.设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,则下列命题中正确的是()A.若m⊂α,n⊂α,m∥β,n∥β,则α∥βB.若m⊥α,n⊥β且m⊥n,则α⊥βC.若l∥α,α⊥β,则l⊥βD.若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n【解析】选BD.由α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线知:A.若m⊂α,n⊂α,m∥β,n∥β,则α与β相交或平行,故A错误;B.若m⊥α,n⊥β,且m⊥n,则由面面垂直的判定定理得α⊥β,故B正确;C.若l∥α,α⊥β,则l与β相交、平行或l⊂β,故C错误;D.若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则由线面平行的性质定理得m∥n.故D正确.12.在三棱锥C -ABD中(如图),△ABD与△CBD是全等的等腰直角三角形,O为斜边BD的中点,AB=4,二面角A-BD -C的大小为60°,下面结论中正确的是()A.AC⊥BDB.AD⊥COC.cos ∠ADC=D.三棱锥C -ABD的外接球表面积为32π【解析】选AD.因为△ABD与△CBD是全等的等腰直角三角形,O为斜边BD的中点,所以CO⊥BD,AO⊥BD,AO∩OC=O,所以BD⊥平面AOC,所以AC⊥BD,因此A正确;假设CO⊥AD,又CO⊥BD,AD∩BD=D,可得CO⊥平面ABD,与∠AOC是二面角A-BD -C的平面角且为60°矛盾,因此B不正确;AB=4,AC=OA=2,AD=CD=4,所以cos ∠ADC==≠,因此C不正确;三棱锥C -ABD的外接球的球心为O,半径为2,表面积S=4π×(2)2=32π,因此D正确.三、填空题(每小题5分,共20分)13.(2020·南京高一检测)在三棱柱ABC -A1B1C1中,点P是棱CC1上一点,记三棱柱ABC -A1B1C1与四棱锥P-ABB1A1的体积分别为V1与V2,则=.【解析】设AB=a,在△ABC中AB边所对的高为b,三棱柱ABC -A1B1C1的高为h,则V1=abh,V2=×ah·b,所以==.答案:14.如图所示,ABCD -A1B1C1D1是棱长为a的正方体,M,N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=.【解析】因为平面ABCD∥平面A1B1C1D1,MN⊂平面A1B1C1D1,所以MN∥平面ABCD,又PQ=平面PMN∩平面ABCD,所以MN∥PQ.因为M,N分别是A1B1,B1C1的中点,所以MN∥A1C1∥AC,所以PQ∥AC,又AP=,ABCD-A1B1C1D1是棱长为a的正方体,所以CQ=,从而DP=DQ=,所以PQ=== a. 答案: a15.将一副斜边长相等的直角三角板拼接成如图所示的空间图形,其中AD=BD=,∠BAC=30°,若它们的斜边AB重合,让三角板ABD以AB为轴转动,则下列说法正确的是(填序号).①当平面ABD⊥平面ABC时,C,D两点间的距离为;②在三角板ABD转动过程中,总有AB⊥CD;③在三角板ABD转动过程中,三棱锥D -ABC体积的最大值为.【解析】①取AB中点O,连接DO,CO,因为AD=BD=,所以DO=1,AB=2,OC=1.因为平面ABD⊥平面ABC,DO⊥AB,DO⊂平面ABD,所以DO⊥平面ABC,DO⊥OC,所以DC=,①正确;②若AB⊥CD,AB⊥OD,OD∩CD=D,则AB⊥平面CDO,所以AB⊥OC,因为O为AB中点,所以AC=BC,∠BAC=45°与∠BAC=30°矛盾,所以②错误;③当DO⊥平面ABC时,棱锥的高最大,此时V棱锥=××AC·BC·DO=××1×1=,③正确.答案:①③16.在四面体S-ABC中,SA=SB=2,且SA⊥SB,BC=,AC=,则该四面体体积的最大值为,该四面体外接球的表面积为.【解析】四面体的体积最大时即面SAB⊥面ABC,SA=SB=2,且SA⊥SB,所以AB=2,因为BC=,AC=,所以AC2+BC2=AB2,所以∠ACB=90°,取AB的中点H,连接CH,SH,SH⊥AB,面SAB∩面ABC=AB,SH在面SAB内,所以SH⊥面ABC,而SH=×SA=,所以V S-ABC=S△ABC·SH=××××=;则外接球的球心在SH所在的直线上,设球心为O,连接OC,CH=AB=×2=,因为SH=,所以O与H重合,所以R=CH=SH=,所以四面体的外接球的表面积为4πR2=8π.答案:8π四、解答题(共70分)17.(10分)某个实心零部件的形状是如图所示的几何体,其下部是正四棱台ABCD -A1B1C1D1,其上部是底面与四棱台的上底面重合的正四棱柱ABCD -A2B2C2D2.现需对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:cm),若加工处理费为0.2元/cm2,求需支付的加工处理费.【解析】因为四棱柱ABCD -A2B2C2D2的底面是正方形,侧面是全等的矩形,所以该零部件上部的表面积S1=S四棱柱上底面+S四棱柱侧面=A2+4AB·AA2=102+4×10×30=1 300(cm2),又四棱台ABCD -A1B1C1D1的上下底面均是正方形,侧面是全等的等腰梯形,所以该零部件下部的表面积S2=S四棱台下底面+S四棱台侧面=A1+4××(AB+A1B1)×h等腰梯形的高=202+4××(10+20)×=1 120(cm2),则该实心零部件的表面积S=S1+S2=1 300+1 120=2 420(cm2),0.2×2 420=484(元),故需支付加工处理费484元.(1)求证:AC⊥BA1;(2)求圆柱的侧面积.【解析】(1)依题意AB⊥AC.因为AA1⊥平面ABC,所以AA1⊥AC.又因为AB∩AA1=A,所以AC⊥平面AA1B1B.因为BA1⊂平面AA1B1B,所以AC⊥BA1.(2)在Rt△ABC中,AB=2,AC=2,∠BAC=90°,所以BC=2.S侧=2π×3=6π.19.(12分)(2020·全国Ⅰ卷)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为π,求三棱锥P-ABC的体积.【解题指南】(1)根据已知可得PA=PB=PC,进而有△PAC≌△PBC,可得∠APC=∠BPC=90°,即PB⊥PC,从而证得PB⊥平面PAC,即可证得结论;(2)将已知条件转化为母线l和底面半径r的关系,进而求出底面半径,求出正三角形ABC的边长,在等腰直角三角形APB中求出AP,结合PA=PB=PC即可求出结论.【解析】(1)由题设可知,PA=PB=PC.由于△ABC是正三角形,故可得△PAC≌△PAB.△PAC≌△PBC.又∠APC =90°,故∠APB=90°,∠BPC=90°.从而PB⊥PA,PB⊥PC,故PB⊥平面PAC,因为PB在平面PAB内,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l.解得r=1,l=,从而AB=.由(1)可得PA2+PB2=AB2,故PA=PB=PC=.所以三棱锥P-ABC的体积为××PA×PB×PC=××=.20.(12分)如图,在直三棱柱ABC -A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【证明】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC -A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为DE⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC -A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.21.(12分)如图①,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图②中△A1BE的位置,得到四棱锥A1-BCDE.(1)证明:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为36,求a的值.【解析】(1)在题图①中,因为AB=BC=AD=a,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图②中,BE⊥A1O,BE⊥OC,又A1O∩OC=O,从而BE⊥平面A1OC.因为BC AD ED,所以四边形BCDE为平行四边形,所以CD∥BE,所以CD⊥平面A1OC.(2)由已知,平面A1BE⊥平面BCDE,且平面A1BE∩平面BCDE=BE,又由(1)可得A1O⊥BE,所以A1O⊥平面BCDE.即A1O是四棱锥A1-BCDE的高.由题意知,A1O=AO=AB=a,平行四边形BCDE的面积S=BC·AB=a2,从而四棱锥A1-BCDE的体积为V=S·A1O=×a2×a=a3.由a3=36,得a=6.22.(12分)如图,在直三棱柱ABC -A1B1C1中,AA1=AC且BC1⊥A1C.(1)求证:平面ABC1⊥平面A1ACC1;(2)点D在边A1C1上且C1D=C1A1,证明在线段BB1上存在点E,使DE∥平面ABC1,并求此时的值.【解析】(1)因为三棱柱ABC -A1B1C1是直三棱柱,所以四边形ACC1A1是矩形.因为AA1=AC,所以AC1⊥A1C.又BC1⊥A1C,AC1∩BC1=C1,所以A1C⊥平面ABC1.因为A1C⊂平面A1ACC1,所以平面ABC1⊥平面A1ACC1.(2)当=时,DE∥平面ABC1,如图,在A1A上取点F,使=,连接EF,FD.因为===,所以EF∥AB,DF∥AC1.因为AB∩AC1=A,EF∩DF=F,所以平面EFD∥平面ABC1,因为DE⊂平面DEF,所以DE∥平面ABC1.。

基本立体图形 同步练习-高一下学期数学人教A版(2019)必修第二册

基本立体图形 同步练习-高一下学期数学人教A版(2019)必修第二册

8.1基本立体图形同步练习一一、单选题1.球面上有3个点,其中任意两点的球面距离都等于大圆周长的16,经过这3个点的小圆的周长为4π,那么这个球的半径为()A.3B.3C.2D32.通用技术老师指导学生制作统一规格的圆台形容器,用如图所示的圆环沿虚线剪开得到的一个半圆环(其中小圆和大圆的半径分别是1cm和4cm)制作该容器的侧面,则该圆台形容器的高为()A3B.1cm C3D333.在古代,斗笠作为挡雨遮阳的器具,用竹篾夹油纸或竹叶棕丝等编织而成,其形状可以看成一个圆锥体,在《诗经》有“何蓑何笠”的句子,说明它很早就为人所用.已知某款斗笠如图所示,它的母线长为2)A.4B.42C2D.24.如图,已知正三棱柱111ABC A B C的底面边长为lcm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达1A点的最短路线的长为()A.12B.13C.D.155.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成三棱锥的个数为A.1B.2C.3D.06.如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45︒,过圆柱的轴的平面截该几何体所得的四边形ABB A''为矩形,若沿AA'将其侧面剪开,其侧面展开图形状大致为()A.B.C.D.7.我们把底面是正三角形,顶点在底面的射影是正三角形中心的三棱锥称为正三棱锥.现有一正三棱锥-P ABC放置在平而α上,已知它的底面边长为2,高h,该正三棱锥绕BC边在平面α上转动(翻转),某个时刻它在平面α上的射影是等腰直角三角形,则h的取值范围是()A.6⎛⎝⎦B.66,13⎛⎡⎤⎢⎥⎝⎦⎣⎦C.6⎛⎝⎦D.66,12⎛⎛⎫⎪⎪⎝⎦⎝⎭8.如图,在棱长为1的正方体ABCD A B C D-''''中,点P是线段AD'上的动点,E是A C''上的动点,F是BD上的动点,则PE PF+长度的最小值为()A.1B2C6D.31二、多选题9.用一张长为8,宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径可能是A .2πB .2π C .4π D .4π10.如图在四面体ABCD 中,2AB CD ==,3AC BD ==5AD BC ==E 、F 分别是AD ,BC 的中点.若用一个与直线EF 垂直,且与四面体每个面都相交的平面a 去截该四面体,由此得到一个多边形截面,则下列说法正确的是( )A .EF AD ⊥且EF BC ⊥B .四面体ABCD 6C .多边形截面为矩形D 611.在正四棱台1111ABCD A B C D -中,1124A B AB ==,12AA =,则( ) A 2B .该棱台的表面积为203+C .该棱台的体积为282D .该棱台外接球的表面积为40π12.如图所示,已知正方体1111ABCD A B C D -的棱长为2,M ,N 分别是AD ,1CC 的中点,P 是线段AB 上的动点,则下列说法正确的是( )A .当点P 与A ,B 两点不重合时,平面PMN 截正方体所得的截面是五边形 B .平面PMN 截正方体所得的截面可能是三角形C .MPN △一定是锐角三角形D .MPN △21 三、填空题13.圆锥的底面半径为1,其侧面展开图是一个圆心角为23π的扇形,则此圆锥的母线长为______.14.若圆台上底面半径为5cm ,下底面半径为10cm ,母线AB (点A 在下底面圆周上,点B 在上底面圆周上)长为20cm ,从AB 中点拉一根绳子绕圆台侧面转到A ,则绳子最短的长度___________.15.如图,四面体ABCD 中,DA =DB =DC =1,且DA 、DB 、DC 两两互相垂直,在该四面体表面上与点A 23的点形成一条曲线,这条曲线的长度是____________.16.“牟和方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体,它是由两个相同的圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体(如图1).如图2所示的“四脚帐篷”为“牟和方盖”的上半部分,点O 为四边形ABCD 的中心,点P 为“四脚帐篷”的“上顶点”,1OP =.用平行于平面ABCD 的平面α去截“四脚帐篷”,当平面α经过OP 的中点时,截面图形的面积为___________.四、解答题17.如图,一个三棱柱的底面是边长为2的正三角形,侧棱1CC ⊥底面ABC ,13CC =.有一只小虫从点A 沿三个侧面爬到点1A ,求小虫爬行的最短路程.18.如图,已知ABC 各顶点均在球O 的球面上,若球半径为10,分别求球心到平面ABC 的距离.(1)ABC 是边长为3的正三角形;(2)ABC 是边长分别为8AB =,7AC =,6BC =的三角形. (以上结果均保留2位小数)19.三角形ABC 中,AC =3、BC =4、AB =5,各边都与半径为2的球O 相切.(1)求球心O 到三角形各边的距离;(2)求球心O 到三角形ABC 所在平面的距离; (3)求球心O 到三角形各顶点的距离.20.已知圆锥SO 的底面半径5R =,高12H =. (1)求圆锥SO 的母线长;(2)圆锥SO 的内接圆柱'OO 的高为h ,当h 为何值时,内接圆柱'OO 的轴截面面积最大,并求出最大值.21.已知圆锥的底面半径为8,点Q 为半圆弧AC 的中点,点P 为母线SA 的中点(1)若母线长为10,求圆锥的体积;(2)若PQ 与SO 所成角为arctan 2,求,P Q 两点在圆锥侧面上的最短距离.22.已知棱长为2cm 的正方体容器内盛满水,把半径为1cm 的钢球放入水中,刚好被淹没;然后放入一个铁球,使它也淹没于水中.要使流出的水量最多,这个铁球的半径应为多少?参考答案1--8BDCCC ABC9.AD 10.ABD 11.ABD 12.AD 13.3 14.50 cm 153π16.317.解:沿1AA 将三棱柱的侧面展开,则展开后的图形是矩形11AA D D ,如下图所示:且326AD =⨯=,13DD =,所以,小虫爬行的最短路程为1AD 的长, 且221135AD AD DD + 18.(1)记ABC 所在小圆的半径为1r ,球心到平面ABC 的距离为1d ,则有22211d R r =-,因为ABC 是边长为3的正三角形,利用正弦定理1223sin 603AB r ==︒13r 所以221197d R r =-=19.85d ≈. (2)记ABC 所在小圆的半径为2r ,球心到平面ABC 的距离为2d ,则有22222d R r =-,因为ABC 是边长分别为8AB =,7AC =,6BC =,所以由余弦定理得22222287611cos 228716AB AC BC A AB AC +-+-===⋅⨯⨯,又0A π<<,所以2315sin 1cos A A =- 再由正弦定理得22sin 31515BC r A ===215r =, 所以2222246659.1115d R r =-=≈. 19.(1)由各边都与半径为2的球O 相切可得球心O 到三角形各边的距离为球的半径2; (2)过三角形的平面截此球所得截面为小圆1O ,在Rt ABC △中,设l 为ABC 的周长,r 为ABC 内切圆的半径, 则12ABCSl r =⋅,得1r =,则球心O 到圆心1O 的距离为221213OO -O 到三角形ABC 3 (3)连接111,,O A O B O C ,由(2)得ABC 内切圆的半径为1,则1112OC =+()211315O A =+-()2114110O B =+-=O 到顶点A 的距离3522OA =+=O 到顶点B 的距离31013OB =+=球心O 到顶点C 的距离325OC=+=20.(1)∵圆锥SO 的底面半径5R =,高12H =, ∵圆锥SO 的母线长2213L H R =+; (2)作出圆锥、圆柱的轴截面如图所示,其中12SO =,5OA OB ==,()012OK h h =<<. 设圆柱底面半径为r ,则12512r h -=,即()51212h r -=.设圆柱的轴截面面积为()()()2255'21263601266S r h h h h h ⎡⎤=⋅=-=--+<<⎣⎦.∵当6h =时,'S 有最大值为30.21.(1)圆锥的底面半径为8, 母线长为10,根据勾股定理得到: 222SO AO SA += 解得6SO =22118612833V R h πππ==⨯=(2)如图所示:M 为AO 中点,连接,PM QMP 为母线SA 的中点,M 为AO 中点,则PM SO ‖,PQ 与SO 所成角为QPM ∠tan 2,452545QMQPM QM PM SO PM∠=====故22214412SA SO AO SA =+=∴=将圆锥沿SA 展开得到侧面平面图:对应圆心角为β 42812343ASQ πβππββ⨯=∴=∴∠==在SPQ ∆中,利用余弦定理得到:2222cos 1083PQ SP SQ SP SQ ASQ PQ =+-⋅∠=∴=故最短距离为322.解:过正方体对角面的截面图如图所示,设两球的交点为S123AC =3,31AO AS AO OS =-=设铁球的半径r ,12tan C AC ∠= 在1AO D 中,13AO r , 11AS AO O S ∴=+, 313r r =+.计算得出:23(cm)r =为所求要使流出来的水量最多,这个铁球的半径应该为23.。

高中数学立体几何外接球专题练习(含解析)

高中数学立体几何外接球专题练习(含解析)

高中数学立体几何外接球专题练习(含解析)1.已知菱形ABCD满足|AB|=2,∠ABC=120°,将菱形ABCD沿对角线AC折成一个直二面角B-AC-D,则三棱锥B-ACD外接球的表面积为()。

A。

πB。

8πC。

7πD。

4π2.如图,四面体ABCD中,面ABD和面BCD都是等腰直角三角形,AB=BD=BC=1,∠CBD=60°,且二面角A-BD-C的大小为120°,∠BAD=45°,若四面体ABCD的顶点都在球O上,则球O的表面积为()。

A。

12πB。

20πC。

24πD。

36π3.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()。

A。

28πB。

32πC。

41πD。

31π4.已知一个几何体是由半径为2的球挖去一个三棱锥得到(三棱锥的顶点均在球面上).若该几何体的三视图如图所示(侧视图中的四边形为菱形),则该三棱锥的体积为()。

A。

4/3B。

2/3C。

8/3D。

16/35.已知一个几何体的三视图如图所示,则该几何体的表面积是()。

A。

2+2+2B。

4+4+2C。

2+4+4D。

4+4+46.某三棱锥的三视图如图所示,则它的外接球表面积为()。

A。

25πB。

20πC。

16πD。

40π7.如图是某几何体的三视图,则该几何体的表面积是()。

A。

18+2B。

15+2C。

12+2D。

18+48.在四面体ABCD中,AD⊥底面ABC,DE⊥AC,E为棱BC的中点,DG⊥BE,点G在AE上且满足AG=2GE,若四面体ABCD的外接球的表面积为S,则tan∠AGD=S/12.A。

1/2B。

1C。

2D。

49.在三棱锥S-ABC中,∠ASB=90°,SA=SB=SC=2,且三棱锥S-ABC的体积为8/3,则该三棱锥的外接球的表面积为()。

A。

4πB。

16πC。

36πD。

72π10.如图所示,正方形ABCD的边长为2,切去阴影部分围成一个正四棱锥,则当正四棱锥体积最大时,该正四棱锥外接球的表面积为()。

立体几何《球》 专题(提高题)(题目及答案)

立体几何《球》 专题(提高题)(题目及答案)

《球》【类型1:求长度】1、设正三棱锥A BCD -的所有顶点都在球O 的球面上,1BC =,,E F 分别是,AB BC 的中点,EF DE ⊥,则球O 的半径为2、点S 、A 、B 、C 2的同一球面上,点S 到平面ABC 的距离为12,3AB BC CA ===则点S 与ABC ∆中心的距离为( )A 3B 2C .1D .123、已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,AB 为圆M 与圆N 的公共弦,4AB =.若3OM ON ==,则两圆圆心的距离MN = .4、高为24的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为5、(2013年辽宁卷)已知三棱柱111C B A ABC - 的6个顶点都在球O 的球面上,若AB = 3,AC = 4 ,AB AC ⊥ 121=AA ,则球O 的半径为( )A 317B .210C .132D .3106、已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=32,则球心到平面ABC的距离为()A.1 B.2C.3D.27、已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.2C.3D.28、已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________.9、(2013年天津卷)已知一个正方体的所有顶点在一个球面上. 若球的体积为92, 则正方体的棱长为______.【类型2:求面积】1、在四面体ABCD 中,若AB CD ==2AC BD ==,AD BC ==ABCD 的外接球的表面积为( )A .2πB .4πC .6πD .8π2、四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________.3、已知点A 、B 、C 、D 均在球O 上,AB =BC =错误!未找到引用源。

高中数学 第一章 立体几何初步 1.1.7 柱、锥、台和球的体积同步练习(含解析)新人教B版必修2(

高中数学 第一章 立体几何初步 1.1.7 柱、锥、台和球的体积同步练习(含解析)新人教B版必修2(

高中数学第一章立体几何初步1.1.7 柱、锥、台和球的体积同步练习(含解析)新人教B版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章立体几何初步1.1.7 柱、锥、台和球的体积同步练习(含解析)新人教B版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章立体几何初步1.1.7 柱、锥、台和球的体积同步练习(含解析)新人教B 版必修2的全部内容。

柱、锥、台和球的体积1.若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .2B .1C .23D .132.直三棱柱ABC -A 1B 1C 1的体积为V ,已知点P 、Q 分别为AA 1,CC 1上的点,而且满足AP =C 1Q ,则四棱锥B -APQC 的体积是( ).A .12VB .13VC .14VD .23V3.64个直径均为4a的球,记它们的体积之和为V 甲,表面积之和为S 甲,一个直径为a 的球,记其体积为V 乙,表面积为S 乙,则( ).A .V 甲>V 乙,S 甲>S 乙B .V 甲<V 乙,S 甲<S 乙C .V 甲=V 乙,S 甲>S 乙D .V 甲=V 乙,S 甲=S 乙4.如图,正方体ABCD -A 1B 1C 1D 1的棱长为2,动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积( ).A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关5.正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14 cm 3,则棱台的高为______. 6.一个几何体的三视图如图所示,则这个几何体的体积为______.7.在棱长为1的正方体内,有两球外切,并且分别与正方体相内切.(1)求两球的半径之和;(2)球的半径为多少时,两球的体积之和最小?8.一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:(1)圆锥的侧面积;(2)圆锥的内切球的体积.9。

2015届吉林地区高三数学一轮复习----立体几何 (球)

2015届吉林地区高三数学一轮复习----立体几何 (球)

1.设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值为( )A. 4B.8C. 12D. 162.三棱锥S﹣ABC的四个顶点都在球面上,SA是球的直径,AC⊥AB,BC=SB=SC=2,则该球的表面积为A.4πB.6πC.9πD12π3.一个四面体的每个面都是有两条边长为3,一条边长为2的三角形,则该四面体的外接球的表面积A.9πB.πC.11πD.π4棱锥P﹣ABCD的所有侧棱长都为,底面ABCD是边长2的正方形,则四棱锥P﹣ABCD的外接球的表面积A.3πB.8πC.9πD.36π 5.已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=120°,若点P,A,B,C,D都在同一球面上,则此球的表面积等于( )A.8πB.12πC.16πD.20π6.在四面体ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,则四面体ABCD的外接球半径A.B.C.D. 3 7.已知正四棱锥P﹣ABCD的底面边长和高都为4,O是底面ABCD的中心,以O为球心的球与四棱锥P﹣ABCD的各个侧面都相切,则球O的表面积为( )A.B.C.D.8.点A,B,C,D在同一个球面上,AB=BC=,AC=2,若球的表面积为,则四面体ABCD体积最大值为A.B.C.D. 29.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,,AB=1,AC=2,∠BAC=60°,则球O的表面积为A.4πB. 12πC.16πD. 64π10.已知三棱锥P﹣ABC的底面是以AB为斜边的等腰直角三角形,且AB=2,PA=PB=PC=2,则该三棱锥的外接球的表面积为( )A.B.C.D.11.设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值为( )A. 4B.8C. 12D. 1612.一个空间四边形ABCD的四条边及对角线AC的长均为,二面角D﹣AC﹣B的余弦值为,则下列正确的A.空间四边形ABCD的四个顶点在同一球面上且此球的表面积为3πB.空间四边形ABCD的四个顶点在同一球面上且此球的表面积为4πC.空间四边形ABCD的四个顶点在同一球上且此球的表面积为D.不存在这样的球使得空间四边形ABCD的四个顶点在此球面上13.三棱锥S﹣ABC所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O表面积A.B.C. 3πD. 12π14.已知正三棱柱ABC﹣A′B′C′的所有顶点都在球O的球面上,AB=3,AA′=2,则球O的体积为( )A.B.C.D.15.已知四面体ABCD中,AB=AD=6,AC=4,CD=2,AB⊥平面ACD,则四面体ABCD外接球的表面积为A. 36πB.88πC. 92πD. 128π16.点A,B,C,D在同一球球面上,AB=BC=2,AC=2,若四面体ABCD体积最大值为,则该球表面积为A.B. 8πC. 9πD. 12π17.已知四面体P﹣ABC的四个顶点都在球O的球面上,若PB⊥平面ABC,AB⊥AC,且AC=1,PB=AB=2,则球O的表面积为( )A.7πB. 8πC. 9πD. 10π18.在三棱椎A﹣BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为,,,则该三棱椎外接球的表面积为( )A. 2πB. 6πC.πD. 24π19.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD 是边长为3的等边三角形.若AB=2,则球O的表面积为( )A.B. 12πC. 16πD. 32π20.已知球O,过其球面上A,B,C三点作截面,若O点到该截面的距离等于球半径的一半,且AB=BC=2,∠B=120°,则球O的表面积为( )A.B.C. 4πD.21.四面体ABCD中,已知AB=CD=,AC=BD=,AD=BC=,则四面体ABCD的外接球的表面积为A. 25πB. 45πC. 50πD.100π22.已知三棱锥D﹣ABC中,AB=BC=1,AD=2,BD=,AC=,BC⊥AD,则三棱锥的外接球的表面积为A.πB. 6πC. 5πD. 8π23.如图,在三棱锥S﹣ABC中,M、N分别是棱SC、BC的中点,且MN⊥AM,若AB=2,则此正三棱锥外接球的体积是( )A. 12πB. 4πC.πD. 12π24.已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为 ____.25.将长、宽分别为4和3的长方形ABCD沿对角线AC折起,得到四面体A﹣BCD,则四面体A﹣BCD的外接球的体积为 _________ .26.已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=90°,若点P、A、B、C、D都在同一球面上,则此球的表面积等于 _________ .27.将长、宽分别为6和8的长方形ABCD沿对角线AC折起,得到四面体A﹣BCD,则四面体A﹣BCD的外接球的表面积为 _________ . 28.正四棱锥P﹣ABCD的五个顶点在同一球面上,若该正四棱锥的底面边长为2,侧棱长为,则这个球的表面积为 _________ .29.(三棱锥P‐ABC的四个顶点均在同一球面内,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的体积是 _________ .30.若三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为 _________ .31三棱锥P﹣ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的表面积为 _________ .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何同步训练15
球(A )
班级_______ 姓名___________
一、 选择题
1、,A B 是球面上相异两点,则经过,A B 可作的大圆个数为 ( )
(A)只有一个 (B)无数个 (C)两个 (D)一个或无数个
2、半径为5的球被一个平面所截,截面面积为16π,则球心到截面的距离为 ( )
(A) 4 (B) 3 (C)2.5 (D) 2
3、自半径为1的球面上一点Q ,作球的三条互相垂直弦,,QA QB QC ,则222QA QB QC ++= ( )
(A) 4 (B) 2 (C) 1 (D)不能确定
4、已知地球的半径为R ,在南纬α的纬度圈上有A,B 两点,若沿纬度圈这两点间的 距离为cos R πα,则A,B 两点间的球面距离为 ( )
(A) R π (B) cos R πα (C) R α (D) (2)R πα-
5、球的半径为R ,,A B 是球面上两点,且球面距离为3R π
,则球心到过,A B 的
所有平面的距离中,最大距离为 ( )
(A) R (B) 2R (C) 12
R (D) 不存在 6、两个平行平面去截半径为5的球,若截面面积分别为9,16ππ,则这两个平行 平面间的距离是 ( )
(A) 1 (B) 7 (C) 3或4 (D) 1或7
二、 填空题
7、正方体的内切球与外接球的半径之比为____________。

8、球的半径为10,经过球面上任意一点作截面,若截面与经过该点的半径成0
45角, 则截面面积是_________。

9、已知球的半径为12,过球的直径的三等分点作垂直于该直径的截面,则截面面积为___________。

10、下面三个命题(1)球面上不同的三点不可能在同一直线上。

(2)球面上两点的最短距离即为这两点的球面距离。

(3)球面上两点的球面距离就是过这两点的大圆弧长。

其中正确命题的序号是_________。

(正确的全部写上)
三、 解答题
11、在半径为13的球面上,有,,A B C 三点,若6,10,8AB BC CA ===,
(1)求球心到平面ABC 的距离。

(2)求BC 间的球面距离。

12、,,A B C 是半径为1的球面上的三点,任意两点间的球面距离为2π
,(
O 为球心) 求球心到截面ABC 的距离。

相关文档
最新文档