复变函数2-2函数解析的充要条件

合集下载

复变函数解析的条件(一)

复变函数解析的条件(一)

复变函数解析的条件(一)复变函数解析的条件什么是复变函数?复变函数是指定义在复数域上的函数。

与实变函数不同,复变函数既有实部也有虚部,可以用一个复数公式表示。

复变函数的解析性复变函数在某一个区域内解析指函数连续且可导。

解析性是复变函数的重要性质。

复变函数解析的条件复变函数解析的条件有以下几个方面:1.连续性:在某一个区域内,复变函数必须连续。

也就是说,函数在该区域内的实部和虚部分别都必须连续。

2.可导性:在某一个区域内,复变函数必须可导。

也就是说,函数在该区域内的实部和虚部分别都必须可导,且满足柯西—黎曼方程。

3.开区域:复变函数的解析性要求函数定义在某一个开区域内,即不包含边界上的点。

4.解析区域的连接性:复变函数解析的区域必须是连接的,不能存在不连续的点。

复变函数解析的充要条件通过以上条件的讨论,我们可以得出复变函数解析的充要条件为:在某一个区域内,复变函数的实部和虚部都是连续可导的,并且满足柯西—黎曼方程,该区域是一个开区域且连接。

总结复变函数的解析性是指函数在某一区域内连续且可导。

解析的条件包括连续性、可导性、开区域和区域的连接性。

充要条件是函数的实部和虚部都是连续可导,并满足柯西—黎曼方程,该区域是开区域且连接。

复变函数解析的条件是复变函数理论研究和实际应用的基础。

复变函数解析的条件详解1. 连续性在复变函数的解析性中,连续性是首要的条件之一。

连续性要求函数在某一个区域内的实部和虚部都必须连续。

连续函数在数学中是一个基本的概念,它表示函数在取某个点的极限时会无限接近这个点的函数值。

在复变函数的连续性中,实部和虚部的连续性都是必需的,只有实部和虚部都连续,复变函数才能在该区域内连续。

2. 可导性在复变函数的解析性中,可导性是另一个重要的条件。

可导性要求函数在某一个区域内的实部和虚部都必须可导,且满足柯西—黎曼方程。

柯西—黎曼方程是指复变函数的实部和虚部的偏导数满足一定关系,即实部的y偏导数等于虚部的x偏导数的相反数,实部的x偏导数等于虚部的y偏导数。

复变函数22函数解析充要条件

复变函数22函数解析充要条件

黎曼介绍
课件
2
证 (1) 必要性. 设 f(z)u(x,y)iv (x,y)定义在 D 内 , 区域 且 f(z)在 D 内一 zx点 y可 i ,导 则对于充 z分 xi小 y的 0,
有 f ( z z ) f ( z ) f ( z ) z ( z ) z ,
其l中 im ( z)0, z 0
令 f ( z z ) f ( z ) u i v ,
f(z)aib , ( z )1 i2 ,
课件
3
所 u 以 i v
(aib)(xiy)(1i2)(xiy)
(a x b y1 x2 y) i(b xa y2 x1 y)
于 u a x 是 b y 1 x 2 y ,
[证毕]
课件
8
根据 ,可 定得 理 f(z)函 一 u (x ,y 数 )i(v x ,y)在 点 zxy处 i 的导 : 数公式
f(z)uiv1uv. x x iy y
函数在区 D内域解析的充要条件 定理二 函数 f(z)u(x,y)iv(x,y)在其定义 域D内解析的充:要 u(x条 ,y)与 件 v(x是 ,y)在 D内可,并 微且满足柯西 程.-黎曼方
课件
11
(2 )f(z) ex (cy o issiy )n 指数函数
u exco y, s v exsiy,n
uexcoy,suexsiyn ,
x
y
四个偏导数
vexsiyn, vexcoy,s 均连续
x
y
即uv, uv. x y y x
故f(z)在复平面内处 ,处处 处可 解 . 导 析
且 f ( z ) e x (c y i s o y ) i s n f ( z ).

复变函数第三讲解析函数的充要条件初等函数

复变函数第三讲解析函数的充要条件初等函数
u v 1 u v iii) 求导数: f' ( z ) i x x i y y

前面我们常把复变函数看成是两个实函数拼 成的, 但是求复变函数的导数时要注意, 并不是两个 实函数分别关于x,y求导简单拼凑成的.
二. 举例
例1 判定下列函数在何处可导,在何处解析:
若沿平行于实轴的方式 zቤተ መጻሕፍቲ ባይዱz z ( y0 )
f(z z)f(z) f(z)lim z 0 z [u (x x ,y )iv (x x ,y )] [u (x ,y )iv (x ,y )] lim x 0 x u (x x ,y )u (x ,y ) v (x x ,y )v (x ,y ) lim i lim x 0 x 0 x x
1 u v v u i i y y y y
f ' ( z ) 存在 u v v u i i x x y y u v x y
定义 方程

u x v x
记忆
v u x y
u y v y
Cauchy-Riemann方程
u v v u x y x y
上述条件满足时,有
f ' ( z ) u iv u iu v iu v iv x x x y y y y x
定理2 函数f (z)=u(x, y)+iv(x, y)在D内解析充要 条件是 u(x, y) 和 v(x, y)在D内可微,且 满足Cauchy-Riemann方程
第三讲 解析函数的充要条件 初等函数
§2.2 解析函数的充要条件

1. 解析函数的充要条件

复变函数解析的条件

复变函数解析的条件

复变函数解析的条件
复变函数解析的条件是指函数在某个区域内能够解析(即可导)。

在复平面上,复数可以表示为z=x+iy,其中x和y分别是实部和虚部。

复变函数是指将复数映射到其他复数的函数。

复变函数解析的条件包括以下几个方面:
1. 实部和虚部的偏导数存在且连续:如果一个复变函数在某个区域内的实部和虚部的一阶偏导数都存在且连续,那么该函数在这个区域内是解析的。

也就是说,函数对于复平面上的每个点都是可导的。

2. 柯西—黎曼方程:柯西—黎曼方程是解析函数的一个重要条件。

它要求函数的实部和虚部满足一定的关系。

设f(z)=u(x,y)+iv(x,y)是一个复变函数,如果f(z)在某个区域内解析,那么它的实部和虚部满足以下柯西—黎曼方程:
u/x = v/y
u/y = -v/x
这些方程表明了实部和虚部的偏导数之间的关系。

3. 单连通区域:如果一个区域是单连通的,那么在这个区域内的函数都是解析的。

单连通区域是指没有孔洞或环绕的区域,其中任意两点之间都可以通过一条连续的路径相连。

例如,一个圆形区域就是单连通的。

4. 几何性质:解析函数在某个区域内具有一些重要的几何性质,比如保持角度和保持面积。

总之,复变函数解析的条件包括实部和虚部的连续性、柯西—黎曼方程的满足、区域的单连通性以及几何性质的保持。

这些条件保证了函数在区域内的解析性质,使得我们可以进行复变函数的分析和计算。

复变函数课件2-2

复变函数课件2-2

t
36
极坐标方程
双纽线
2 a2 cos 2
( x2 y2 )2 a2( x2 y2 )
37
三叶玫瑰线 a sin 3
38
a sin 2
四 叶 玫 瑰 线
39
a cos 2t
40
对数螺线
e0.4
41
心脏线 a(1 cos )
3
ln 5 (2k arctan 4 ) i (k为 整 数);
3 Ln(3 4i)的主值为ln(3 4i) ln 5 arctan 4 i.
3
53
性质
(1)Ln(z1z2 ) Lnz1 Lnz 2 ,
Ln
z1 z2

Lnz 1

Lnz 2 .
应当注意,由于对数函数的多值性,对于上述等式的
y

sin
t

t
cost
33
x 8cos t 5cos 4t

y

8sin t

3 sin
4t
34
x 8 cos t 5 cos 4t

y

8 sin
t

3 sin
4t
35

x

16 cos
t

5 cos
47 3
t


y

12 sin
t

3 sin
44 3
其辐角主值argez 为区间(-,]内的一个辐角. (1) Arge2i 1 2k, arge2i 1; (2) Arge23i 3 2k, arge23i 3;

第2节:函数解析的充要条件

第2节:函数解析的充要条件

vx=2cx+dy, vy=dx+2y 则由ux=vy, uyvx, 得
2x+ay=dx+2y, 2cx+dyax2by
a=2, b1, c1, d=2
故此时函数在复平面内处处解析, 且
f(z)=x2+2xyy2+i(x2+2xy+y2) =(1i)(x+iy)2=(1i)z2
例3. 求证 f '(z)≡0, z∈D f(z)≡C, z∈D
证 ) 显然 ) f (z) u i v v i u 0 x x y y
故 u u v v 0 x y x y
所以u=常数, v=常数, 因而 f(z)在D内是常数.
例4. 设函数 w=f(z)=u(x,y)+ iv(x,y)在区域D内解析, 并 满足下列条件之一,那么 f(z)是常数: [书P67: 10]
u v , u v
(*)
x y y x
这时f (z) u i v 1 u v x x i y y
定理二: 函数 f(z)=u(x,y)+iv(x,y)在区域D内解析(可导) 的充要条件是: (1) u(x,y)与v(x,y)在D内可微, 并且(2)
在D内满足柯西-黎曼方程(*)式.
注: (1) 如函数 f(z)在区域D内不满足C-R方程, 则 f(z) 在D内不解析;
r r r r
例1. 判断下列函数在何处可导, 在何处解析:
1) f (z) x 2iy; 2) w z 2 ;
3) f (z) x2 y2 x i(2xy y2 ).
4) f (z) ex (cos y i sin y).
解. 1) 因为 u=x, v=2y,

复变函数第二章(第三讲)

复变函数第二章(第三讲)

∂u ∂v 1 ∂u ∂v iii) 求导数: f '(z) = ∂x + i ∂x = i ∂y + ∂y 求导数:
前面我们常把复变函数看成是两个实函数拼成的, 前面我们常把复变函数看成是两个实函数拼成的, 但是求复变函数的导数时要注意, 但是求复变函数的导数时要注意, 并不是两个实函 数分别关于x, 求导简单拼凑成的 求导简单拼凑成的. 数分别关于 ,y求导简单拼凑成的.实可微与复可微 是完全不同的概念。 是完全不同的概念。
§2.2 解析函数的充要条件
Cauchy-Riemann定理 1. Cauchy-Riemann定理 2. 举例
Cauchy-Riemann定理 1. Cauchy-Riemann定理
定理 设f (z)= u + i v, z= x +i y, z0=x0+i y0, 则f (z)在 在
(1) u( x, y), v( x, y)在( x0 , y0 )可微, ∂u ∂v ∂u ∂v z0处可导⇔ . (2) = , = − 在( x0 , y0 )成立 ∂x ∂y ∂y ∂x 定义 方程
∂u ∂v = ∂x ∂y
∂v ∂u =− ∂x ∂y
称为Cauchy-Riemann方程(简称C-R方程).
֠
由此可以看出可导函数的实部与虚部有密切 的联系. 的联系.
֠ 利用该定理可以判断那些函数是不可导的. 利用该定理可以判断那些函数是不可导的.
基本步骤: 偏导数的连续性, 基本步骤 i) 判别 u(x, y),v (x, y) 偏导数的连续性, , ii) 验证 验证C-R条件 条件. 条件
由以上讨论得 函数; P ( z ) = a 0 + a1 z + L + a n z n 是整个复平面上的解析 函数; P(z) R( z ) = 是复平面上 ( 除分母为 0点外 )的解析函数 . Q( z)

(最新整理)(完整版)复变函数解析函数

(最新整理)(完整版)复变函数解析函数
f(z)Ae
成立, 则称当z趋于z0时, f(z)以A为极限,并记做 limf(z)A 或 f(z) A (z z0 ).
zz0
注意: 定义中zz0的方式是任意的.
几何意义
y
(z)
v
w f(z)
z0 d
o
xo
(w)
e
A
u
几何意义: 当变点z一旦进
入z0 的充分小去 心邻域时,它的象
点f(z)就落入A的
(最新整理)(完整版)复变函数解析函数
2021/7/26
1
第二章 解析函数
2.1 复变函数的概念 2.2 解析函数的概念 2.3 解析的充要条件 2.4 初等函数
2.1 复变函数的概念、极限与连续性
复变函数的概念
1. 复变函数的定义 2. 映射的概念 3. 反函数或逆映射
1. 复变函数的定义—与实变函数定义相类似
0)
A
zz0 g(z) l i mg(z) zz0
B
zz0
以上定理用极限定义证!
例1
证明 wx2yi(xy2)在平面上处处 . x2 y, x y2在平面上处处有极限
例2
求 f(z)zz
z 在 z0时的极 . 限 z
f(z)2(xx22yy22)在(0,0)处极限不 . 存在
例3
证 明 f(z)Rez z在z0时 的 极 限.不 存
y (z)
v (w)
w z2
2
o
x
o
u
y (z)
v (w)
w z2
w z2
o
6
x w z2 o
3
u
x2 y2 4
3. 反函数或逆映射
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证 因为 f (z) 2xy , 所以 u 2xy , v 0,
ux
(0,0)
lim
x0
u(
x,0) x
u(0,0) 0
0
vy
(0,0),
uy (0,0)
lim
y0
u(0,
y) y
u(0,0) 0
0
vx (0,0),
柯西-黎曼方程在点 z 0 成立.
25
但在点 z 0 , f (z) f (0) 2xy
黎曼方程
u v , u v . x y y x
掌握并能灵活应用柯西—黎曼方程.
27
思考题
用柯西-黎曼条件判断 f (z) u( x, y) iv( x, y) 解析时应注意什么?
28
思考题答案
首先判断 u( x, y) 和 v( x, y) 在 D内是否可微; 其次再看是否满足C - R条件 : u v , u v ;
z
x iy
因为 lim f (z) f (0) 2 ,
xy00
z
1 i
lim f (z) f (0) 0,
x0,y0
z
故函数 f (z) 在点 z 0 不可微.
26
三、小结与思考
在本课中我们得到了一个重要结论—函数
解析的充要条件:
u( x, y)与 v( x, y) 在D内可微, 并且满足柯西-
z0
令 f (z z) f (z) u iv,
f (z) a ib, (z) 1 i2 ,
3
所以 u iv
(a ib) (x iy) (1 i2 ) (x iy) (ax by 1x 2y)
i(bx ay 2x 1y)
于是 u ax by 1x 2y, v bx ay 2x 1y.
(3) f (z) 常数;
(4) f (z)解析;
(5) Re[ f (z)] 常数; (6) Im[ f (z)] 常数;
(7) v u2;
(8) arg f (z) 常数.
22
例7 设 f (z) u iv 为一解析函数, 且 f (z) 0, 那末曲线族u( x, y) c1 与 v( x, y) c2 必相互正交, 其中c1 , c2 为常数. 证 因为 f (z) v 1 u 0,
因为 lim (z) 0, z0
所以
lim
x0
1
lim
x0
2
0,
y0
y0
4
由此可知 u( x, y) 与 v( x, y) 在点 ( x, y) 可微, 且满足方程 u v , u v . x y y x
(2) 充分性. 由于 f (z z) f (z) u( x x, y y) u( x, y)
uy vy
1,
故曲线族 u( x, y) c1 与 v( x, y) c2 相互正交.
如果 uy 和 v y 中有一个为零, 则另一个必不为零,
两族中的曲线在交点处的切线一条是水平的, 另
一条是铅直的, 它们仍然相互正交.
24
例8 证明函数 f (z) Im z2 的实、虚部在点 z 0 满足柯西-黎曼方程, 但在点 z 0 不可微.
点满足柯西-黎曼方程
柯西介绍
u v , u v . x y y x
黎曼介绍
2
证 (1) 必要性. 设 f (z) u( x, y) iv( x, y) 定义在区域 D内, 且 f (z) 在 D内一点 z x yi 可导, 则对于充分小的z x iy 0,
有 f (z z) f (z) f (z)z (z)z, 其中 lim (z) 0,
i[v( x x, y y) v( x, y)] u iv, 又因为 u( x, y) 与 v( x, y) 在点 ( x, y) 可微,
5
于是
u
u x
x
u y
y
1x
2
y,
v
v x
x
v y
y
3x
4y,
其中
lim
x0
k
0,
(k 1,2,3,4)
y0
因此 f (z z) f (z)
x y y x 最后判定 f (z)的解析性.
放映结束,按Esc退出.
29
证 (1) z 2 x2 y2 2xyi,
u x2 y2, v 2xy,
u 2x, u 2 y, v 2 y, v 2x.
x
y
x
y
仅当 x 0时, 满足柯西-黎曼方程 ,
故函数 w z 2 仅在直线 x 0 上可导, 在复平面内不解析.
14
(2) sin z sin x cosh y i cos x sinh y,
证 因为 f (z) xy , 所以 u xy , v 0,
ux
(0,0)
lim
x0
u(
x,0) x
u(0,0) 0
0
vy
(0,0),
uy (0,0)
lim
y0
u(0,
y) y
u(0,0) 0
0
vx (0,0),
柯西-黎曼方程在点 z 0 成立.
17
但当 z 沿第一象限内的射线 y kx 趋于零时,
u sin x cosh y, v cos x sinh y,
u cos x cosh y, v cos x cosh y,
x
y
仅当 x k 2
u v . x y
(k 0, 1, 2, )时,
sin z 在复平面上不解析.
15
例3 设 f (z) x2 axy by2 i(cx2 dxy y2 ), 问常数 a, b, c, d 取何值时, f (z) 在复平面内处处
解析? 解 u 2x ay,
x
u ax 2by, y
v 2cx dy, v dx 2 y,
x
y
欲使 u v , u v , x y y x
2x ay dx 2 y, 2cx dy ax 2by,
所求 a 2, b 1, c 1, d 2.
16
例4 证明函数 f (z) xy 在点 z 0 满足柯 西-黎曼方程但在点z 0 不可导.
12
(3) w z Re(z) x2 xyi, u x2, v xy,
u 2x, u 0, v y, v x.
x
y
x
y
四个偏导数均连续
仅当 x y 0时, 满足柯西-黎曼方程,
故函数 w z Re(z) 仅在 z 0 处可导,
在复平面内处处不解析.
13
例2 证明(1) z 2; (2) sin z 在复平面上不解析.
(
2
i 4
)
y z
.
7
因为 x 1, y 1,
z
z
lim
z0
(1
i
3
)
x z
(
2
i
4
)
y z
0,
所以 f (z) lim f (z z) f (z) u i v .
z0
z
x x
即函数 f (z) u( x, y) iv( x, y) 在点 z x yi 可导.
[证毕]
8
根据定理一, 可得函数 f (z) u( x, y) iv( x, y) 在 点 z x yi 处的导数公式:
u x
i
v x
x
u y
i
v y
y
(1
i
3
)x
(
2
i
4
)y.
6
由柯西-黎曼方程 u v , u v i2 v , x y y x x
f (z z) f (z)
u x
i
v x
(x
iy)
(1
i
3
)x
(
2
i 4
)y.
f (z z) f (z) z
u x
i
v x
(1
i 3
)
x z
第二节 函数解析的充要条件
一、主要定理 二、典型例题 三、小结与思考
一、主要定理
定理一
设函数 f (z) u( x, y) iv( x, y) 定义在区域
D 内, 则 f (z) 在 D内一点 z x yi 可导的充要条
件是 : u( x, y) 与 v( x, y) 在点 ( x, y) 可微, 并且在该
u e x cos y, x v e x sin y, x
u e x sin y,
y
四个偏导数
v e x cos y, 均连续 y
即 u v , u v . x y y x
故 f (z) 在复平面内处处可导, 处处解析.
且 f (z) ex (cos y i sin y) f (z).
(2) 如果复变函数 f (z) u iv 中 u,v 在 D内 的各一阶偏导数都存在、连续(因而 u, v( x, y) 可微)并满足 C R 方程, 那么根据解析函数 的充要条件可以断定 f (z) 在 D内解析.
10
二、典型例题
例1 判定下列函数在何处可导, 在何处解析: (1) w z; (2) f (z) e x (cos y i sin y); (3) w z Re(z).
解 u v 2u u ,
(1)
x y y
u v 2u u , (2)
y x
x
将(2)代入(1)得 u (4u2 1) 0, x
由 (4u2 1) 0 u 0, x
19
由(2)得 u 0, 所以 u c (常数), y
于是 f (z) c ic2 (常数). 课堂练习 设 my 3 nx 2 y i( x3 lxy2 ) 为解析 函数, 试确定 l, m, n的值. 答案 l n 3, m 1.
相关文档
最新文档