(完整版)初二上册数学一次函数知识点总结

合集下载

八年级(人教版)一次函数知识点总结

八年级(人教版)一次函数知识点总结

八年级数学一次函数知识点总结基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

s 中,v表示速度,t表示时间,s表示在时间t内所走的例题:在匀速运动公式vt路程,则变量是________,常量是_______.在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数取值范围的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

八年级上册一次函数知识点总结

八年级上册一次函数知识点总结

八年级上册《一次函数》知识点总结初二数学一次函数知识点总结一、知识要点、函数概念:在一个转变进程中有两个变量x、y,若是关于x的每一个值,y都有惟一的值与它对应,那么就说x 是自变量,y是x的函数.二、一次函数和正比例函数的概念假设两个变量x,y间的关系式能够表示成y=kx+b(k,b为常数,k0)的形式,那么称y是x的一次函数(x为自变量),专门地,当b=0时,称y是x的正比例函数.说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要依照函数的实际意义来确信.(2)一次函数y=kx+b(k,b为常数,b0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必需是不为零的常数,b可为任意常数.(3)当b=0,k0时,y=b仍是一次函数.(4)当b=0,k=0时,它不是一次函数.3、一次函数的图象(三步画图象)由于一次函数y=kx+b(k,b为常数,k0)的图象是一条直线,因此一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确信一条直线,因此在尔后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一样选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0).但也没必要必然选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.4、一次函数y=kx+b(k,b为常数,k0)的性质(正比例函数的性质略)(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k﹤o时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线通过原点,是正比例函数.(4)由于k,b的符号不同,直线所通过的象限也不同;五、确信正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k0)中有两个待定系数k,b,需要两个独立的条件确信两个关于k,b的方程,求得k,b的值,这两个条件一般是两个点或两对x,y的值.六、待定系数法先设待求函数关系式(其中含有未知常数系数),再依照条件列出方程(或方程组),求出未知系数,从而取得所求结果的方式,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b确实是待定系数.7、用待定系数法确信一次函数表达式的一样步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,取得函数表达式.八、本章思想方式(1)函数方式。

初二上册数学知识点总结一次函数

初二上册数学知识点总结一次函数

初二上册数学知识点总结:一次函数篇一一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

初二上册数学知识点总结:一次函数篇二五、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成 (k,b为常数,k 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即 )(k为常数,k 0),称y是x的正比例函数。

2、一次函数的图像: 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

4、正比例函数的性质一般地,正比例函数有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。

5、一次函数的性质一般地,一次函数有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式 (k 0)中的常数k。

(完整版)八年级数学一次函数知识点总结.doc

(完整版)八年级数学一次函数知识点总结.doc

新新教育1一次函数知识点总结一、函数1.变量的定义:在某一变化过程中,我们称数值发生变化的量为变量。

注:变量还分为自变量和因变量。

2.常量的定义:在某一变化过程中,有些量的数值始终不变,我们称它们为常量。

3.函数的定义:一般地,在一个变化过程中,如果有两个变量 x 与 y,并且对于 x?的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数,y 的值称为函数值.4.函数的三种表示法:(1)表达式法(解析式法);( 2)列表法;(3)图象法.a、用数学式子表示函数的方法叫做表达式法(解析式法)。

b、由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。

c、把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的方法叫做图像法。

5.求函数的自变量取值范围的方法.( 1)要使函数的表达式有意义: a、整式(多项式和单项式)时为全体实数;b、分式时,让分母≠0;c、含二次根号时,让被开方数≠ 0 。

( 2)对实际问题中的函数关系,要使实际问题有意义。

注意可能含有隐含非负或大于0 的条件。

6.求函数值方法:把所给自变量的值代入函数表达式中,就可以求出相应的函数值.7.描点法画函数图象的一般步骤如下:Step1 :列表(表中给出一些自变量的值及其对应的函数值);Step2 :描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);Step3 :连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来).8.判断 y 是不是 x 的函数的题型A、给出解析式让你判断:可给 x 值来求 y 的值,若 y 的值唯一确定,则 y 是 x 的函数;否则不是。

B、给出图像让你判断:过 x 轴做垂线,垂线与图像交点多余一个(≥ 2)时, y 不是 x 的函数;否则 y 是 x 的函数。

二、正比例函数1.正比例函数的定义:一般地,形如 y=kx( k 是常数, k≠0)的函数,叫做正比例函数, ?其中 k 叫做比例系数。

初二数学一次函数知识点总结_会计基础知识点总结

初二数学一次函数知识点总结_会计基础知识点总结

初二数学一次函数知识点总结_会计基础知识点总结一、一次函数的定义一次函数是指数为1的函数,通常写成y=kx+b的形式,其中k和b是常数,而x和y分别是自变量和因变量。

一次函数的图像是一条直线,斜率k决定了直线的倾斜程度,而截距b决定了直线和y轴的交点。

二、一次函数的斜率一次函数的斜率k表示了函数图像的倾斜程度,斜率的计算公式为k=(y₂-y₁)/(x₂-x₁),其中(x₁,y₁)和(x₂,y₂)是直线上的两个点。

斜率为正表示函数图像向上倾斜,而斜率为负表示函数图像向下倾斜,斜率为零表示函数图像是水平的。

三、一次函数的截距一次函数的截距b表示了函数图像和y轴的交点,截距通常是函数的常数项。

如果截距大于零,函数图像和y轴交于正半轴上方,如果截距小于零,函数图像和y轴交于负半轴上方。

六、一次函数的应用一次函数是数学中非常常见的一种函数,它在生活中有很多应用,比如描述直线运动的速度、工作时间和产量的关系等等。

了解一次函数的性质和特点对我们深入理解各种现象的规律非常有帮助。

会计基础知识点总结:一、资产资产是指企业拥有并且能够为企业带来经济利益的资源,包括货币、存货、固定资产、应收账款等。

资产按照其流动性可以分为流动资产和非流动资产。

二、负债负债是指企业需要向外部支付的经济利益,包括应付账款、借款、应交税费等。

负债按照到期时间可以分为流动负债和非流动负债。

三、所有者权益所有者权益是指企业资产扣除负债后属于所有者的剩余部分。

所有者权益包括股本、资本公积、盈余公积、留存收益等。

四、会计等式会计等式是指资产等于负债加所有者权益,反映了企业资产的来源和运用的关系。

通过会计等式可以清晰地了解企业的财务状况。

五、会计账户会计账户是记录企业经济业务的工具,包括资产负债表、利润表、现金流量表等。

会计账户对企业的财务状况和经营业绩进行了详细的记录和分类。

六、会计核算方法会计核算方法包括现金制度和权责发生制度,分别反映了企业结算货币的时间点和经济业务发生的时间点。

完整版初二上册数学一次函数知识点总结

完整版初二上册数学一次函数知识点总结

初中数学一次函数知识点总结基本见解:1、变量:在一个变化过程中能够取不一样样数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,若是有两个变量x 和 y,并且关于x 的每一个确定的值, y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把 y 称为因变量,y 是 x 的函数。

3、定义域:一般的,一个函数的自变量同意取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实诘责题中,函数定义域还要和本质情况相吻合,使之存心义。

函数性质:1.y 的变化值与对应的x 的变化值成正比率,比值为k.即:y=kx+b(k,b为常数, k≠0)。

2.当 x=0 时, b 为函数在 y 轴上的点 ,坐标为 (0 ,b) 。

3 当 b=0 时 (即 y=kx) ,一次函数图像变为正比率函数,正比率函数是特其他一次函数。

4.在两个一次函数表达式中:当两一次函数表达式中的当两一次函数表达式中的当两一次函数表达式中的当两一次函数表达式中的k 相同, b 也相同时,两一次函数图像重合;k 相同, b 不一样样时,两一次函数图像平行;k 不一样样, b 不一样样时,两一次函数图像订交;k 不一样样,b 相同时,两一次函数图像交于y轴上的同一点(0,b)。

图像性质1.作法与图形:(1)列表 .(2 )描点;一般取两个点两点法”。

一般,依照“两点确定一条直线”的道理,也可叫“的 y=kx+b(k ≠0)的图象过( 0, b )和( -b/k , 0)两点画直线即可。

正比率函数 y=kx(k ≠0)的图象是过坐标原点的一条直线,一般取( 0,0)和(1,k )两点。

2.性质:(1 )在一次函数上的随意一点P (x, y),都知足等式:y=kx+b(k ≠0)。

八年级上册数学函数知识点_初中数学函数知识必看

八年级上册数学函数知识点_初中数学函数知识必看

八年级上册数学函数知识点_初中数学函数知识必看八年级上册数学函数知识点一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

八年级上册数学函数知识考点归纳大全我们称数值变化的量为变量(variable)。

有些量的数值是始终不变的,我们称它们为常量(constant)。

在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。

新人教八年级数学(上册)一次函数知识点总结

新人教八年级数学(上册)一次函数知识点总结

一、常量与变量在一个变化过程中,数值保持不变的量叫常量,数值发生改变的量叫变量。

实际上,常量就是具体的数,变量就是表示数的字母。

(注意“π”是常量)二、自变量与函数在一个变化过程中,有两个变量x和y,如果x每取一个值,y都有唯一确定....的值与它对应,那么,把x叫自变量,y叫x的函数。

判断两个变量是否有函数关系就是“看对于自变量的每一个确定的值,函数值是否有惟一确定的值和它对应。

”三、函数值如果x=a时,y=b,那么把“y=b叫做x=a 时的函数值”。

四、表示函数的方法方法(一)解析式法。

方法(二)列表法方法(三)图像法五、自变量的取值范围在一个变化过程中,自变量允许取值的区域,叫自变量的取值范围。

六、自变量取值范围的求法(一)对于解析式1、解析式是整式。

自变量取一切实数。

2、自变量在分母。

取使分母不等于0的实数。

3、自变量在根号内(1)在内。

自变量取一切实数。

(2)在内。

取使根号内的值为非负数的实数。

(二)对于实际问题自变量的取值要符合实际意义。

在一个函数解析式中,同时有几种代数式时,函数的自变量的取值范围应是各种代数式中自变量的取值范围的公共部分例:求函数中自变量x的取值范围。

解:要使有意义,必须且即,。

所以中自变量x 的取值范围是。

说明:求使函数有意义的自变量的值,就是求函数自变量的取值范围。

七、函数图象的画法步骤把每个点描在平面直角坐标系中。

(三)连线。

把描出的点按照自变量由小到大的顺序,用平滑的线....连结起来。

八、正比例函数1、定义:形如(k是常数,)的函数叫做正比例函数。

2、图象:是经过(0,0)与(1,k)的直线。

3、性质:(1)(2)九、一次函数(一)定义:形如b的函数叫做一次函数。

因为当b=0时,y=kx,所以“正比例函数是特殊的一次函数”。

(二)图象:是经过(,0)与(0,b)两点的直线。

因此一次函数y=kx+b的图象也称为直线y=kx+b.其中,(,0)是直线与x轴的交点坐标,(0,b)是直线与y轴的交点坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学一次函数知识点总结
基本概念:
1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定
的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y 是x的函数。

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

函数性质:
1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k≠0)。

2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。

3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

4.在两个一次函数表达式中:
当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;
当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;
当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;
当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。

图像性质
1.作法与图形:
(1)列表.
(2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。

一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。

2.性质:
(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的关系。

一次函数的图象特征和性质:
4、特殊位置关系:
当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K 值的乘积为-1)
了解如何设一次函数解析式:
点斜式y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点)
两点式(y-y1) / (y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y2)两点)
截距式(y=-b/ax+b a、b分别为直线在x、y轴上的截距,已知(0,b),(a,0) )实用型(由实际问题来做)
扩展
1. 求函数图像的k值:(y1-y2)/(x1-x2)
2.求任意线段的长:√(x1-x2) 2+(y1-y2) 2
3.求两个一次函数式图像交点坐标:解两函数式,就是解方程组
4.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2 ]
5.若两条直线y1=k1x+b1平行y2=k2x+b2,那么k1=k2,b1≠b2
6 . 向右平移n个单位y=k(x-n)+b
向左平移n个单位y=k(x+n)+b
向上平移n 个单位 y =kx+b+n
向下平移n 个单位 y =kx+b-n
总结与前几章的关系
1、一元一次方程与一次函数的关系
任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.
2、一次函数与一元一次不等式的关系
任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.
3、一次函数与二元一次方程组
(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=b c x b a +-
的图象相同.
(2)二元一次方程组的解可以看作是两个一次函数和的图象交点.。

相关文档
最新文档