质谱技术在检验医学领域的应用
质谱技术在生物医药领域中的应用

质谱技术在生物医药领域中的应用质谱技术是一种基于分子质量和结构的分析技术,被广泛应用于生物医药领域。
在这个领域中,质谱技术被用来鉴定、定量和分析蛋白质、多肽、小分子化合物等生物分子,以及研究它们之间的相互作用。
一、质谱技术在蛋白质鉴定中的应用蛋白质是生物体内最为复杂的分子之一,它们中的每一个氨基酸都具有不同的物理和化学性质。
质谱技术能够对蛋白质进行序列鉴定、修饰分析和定量分析。
目前最常用的方法是质谱分析的两个技术:MALDI-TOF谱和ESI-Q-TOF谱,这些方法可以在非常短的时间内,对蛋白质进行快速鉴定和定量。
二、质谱技术在代谢组学中的应用代谢组学是一种研究生物体内代谢产物及其整个代谢网络的综合性学科。
生物代谢过程的异常往往与生物体内代谢产物到目标物的变化有关,而质谱技术能够完整地覆盖代谢产物的谱图,实现对代谢物质的鉴定、定量和分析。
例如,气-质联用谱(GC-MS)和液-质联用谱(LC-MS)等技术,已经成为代谢组学研究中最为常用的分析工具。
三、质谱技术在药物代谢中的应用质谱技术能够发现药物代谢性质、药物结构、代谢途径和代谢产物等信息,有助于发现新的、更有效的药物。
它通过研究药物在体内的输送、转化和排出过程,为药物代谢机理的研究提供了可靠的数据。
因此在新药研发过程中,质谱技术几乎已经成为了药物代谢研究中不可或缺的工具。
四、质谱技术在生物标志物鉴定中的应用生物标志物是指能够诊断某种疾病、指示疾病进展、预测病情、预测治疗反应或者评价治疗效果的物质。
它们可以是蛋白质、代谢物或其他组分。
质谱技术是确定生物标志物的快捷而可靠的方法之一。
研究人员可以利用质谱技术鉴定并研究特定的生物标志物。
总之,质谱技术在生物医药领域中具有关键性的作用。
它不仅可以帮助科学家们了解生物分子的性质和功能,同时也为药物研发、疾病早期诊断和治疗提供了有力的支持。
因此,随着生物医药领域的不断发展,质谱技术将继续发挥其重要的作用。
生物质谱在检验医学中的应用

生物质谱在检验医学中的应用随着科技的不断进步,生物质谱技术在检验医学领域的应用越来越广泛。
生物质谱是一种用于分析生物大分子的质谱技术,具有高灵敏度、高分辨率和快速分析等优点,为检验医学提供了新的检测手段。
在检验医学中,生物质谱技术主要应用于临床诊断、药物研发和基础研究等方面。
其中,临床诊断是最重要的应用领域之一。
生物质谱技术可以通过直接检测尿液、血液、组织等生物样本,为临床医生提供准确的诊断信息。
例如,在肿瘤检测中,生物质谱技术可以用于检测肿瘤标志物,帮助医生早期发现肿瘤并制定治疗方案。
生物质谱还可以应用于传染病的诊断和监测,例如艾滋病、乙肝等。
生物质谱在药物研发方面的应用也不断扩大。
在药物筛选过程中,生物质谱技术可以用于快速筛选和鉴定潜在的药物分子。
同时,生物质谱还可以应用于药物代谢和药效的研究,为新药研发提供重要的技术支持。
除了上述应用外,生物质谱在基础研究中也发挥着重要的作用。
例如,在研究人体代谢过程中,生物质谱可以用于检测代谢产物,帮助科学家深入了解人体代谢机制。
生物质谱还可以应用于基因组学、蛋白质组学等领域的研究,为揭示生命奥秘提供有力的支持。
生物质谱在检验医学中具有广泛的应用前景,为临床诊断、药物研发和基础研究等方面提供了重要的技术支持。
随着生物质谱技术的不断发展和完善,相信未来在检验医学领域的应用将更加成熟和广泛。
在当今的医学领域,质谱技术已经成为一种重要的分析工具,其在检验医学中的应用也日益广泛。
本文将探讨质谱技术在检验医学中的应用现状和前景。
蛋白质质谱分析是质谱技术在检验医学中应用的重要方面之一。
通过蛋白质质谱分析,可以研究蛋白质的结构、功能和差异表达,从而为疾病的诊断和治疗提供帮助。
例如,通过对特定肿瘤细胞的蛋白质组学研究,可以发现新的肿瘤标志物,为肿瘤的早期诊断和个性化治疗提供依据。
质谱技术在临床微生物学中也发挥了重要作用。
通过质谱技术,可以快速准确地鉴定病原体,为临床医生提供准确的诊断依据。
质谱技术在检验医学领域的应用

质谱技术在检验医学领域的应用在现代医学的发展进程中,检验医学扮演着至关重要的角色。
它为疾病的诊断、治疗和预防提供了关键的依据和指导。
而在众多的检验技术中,质谱技术犹如一颗璀璨的新星,逐渐展现出其独特的优势和广阔的应用前景。
质谱技术,简单来说,就是一种通过测量物质的质量和电荷比来确定其分子结构和组成的分析技术。
它具有高灵敏度、高特异性、高准确性等特点,能够对生物样本中的微量物质进行精准检测。
在临床生化检验方面,质谱技术为我们带来了更精准的检测结果。
传统的生化检测方法,如比色法、酶法等,在某些情况下可能会受到干扰,导致检测结果出现偏差。
而质谱技术能够直接对目标物质进行检测,避免了其他物质的干扰,从而大大提高了检测的准确性。
例如,对于一些小分子代谢物,如氨基酸、脂肪酸等,质谱技术可以实现对其快速、准确的定量分析。
这对于诊断某些遗传代谢性疾病,如苯丙酮尿症、枫糖尿症等,具有重要的意义。
通过检测患者血液或尿液中这些代谢物的含量变化,医生可以及时做出诊断,并制定相应的治疗方案。
在临床免疫学检验中,质谱技术也发挥着重要作用。
免疫分析方法常用于检测蛋白质、激素等生物大分子,但传统方法可能存在交叉反应等问题,影响检测结果的特异性。
质谱技术可以对蛋白质进行精确的分子量测定和肽段序列分析,从而更准确地鉴定和定量蛋白质。
例如,在肿瘤标志物的检测中,质谱技术能够检测到低浓度的肿瘤标志物,并且可以区分不同形式的标志物,为肿瘤的早期诊断和治疗监测提供更有价值的信息。
在微生物检验领域,质谱技术的应用更是为临床带来了革命性的改变。
传统的微生物鉴定方法通常需要较长的时间,而且准确性有限。
而基于质谱技术的微生物质谱分析系统,可以在短时间内对细菌、真菌等微生物进行快速鉴定。
其原理是通过对微生物的蛋白质指纹图谱进行分析,与数据库中的已知图谱进行比对,从而确定微生物的种类。
这不仅大大缩短了检测时间,提高了检测效率,而且能够准确鉴定一些难以通过传统方法鉴定的微生物,为临床抗感染治疗提供及时的指导。
质谱在医院检验中的应用

29
应用4:微生物鉴定
质谱在医院检验中的应用
此处介绍应用MALDI Biotyper高通量微生物鉴定系统, 通过鉴定病原体自身独特的蛋白质组成,在MALDITOF 质谱仪中得到指纹图。该系统另一个重要的组成部分是已包含3 千多种微生物蛋白特征指纹图谱数据库,通过
特征模式峰的匹配值作鉴定。质谱技术鉴定微生物的优点在于其操作简单(微生物单个菌落前处理简单)、快速且
254.2
507.3
194.2
334.3 399.7
200 300 400 500
m/z 600
4
质谱(mass spectrometry,MS)
质谱工作原理与类型介绍
质谱(mass spectrometry,MS)技术是一种重要的检测分析技术,通过将待测样本转换成高速运动的离 子,根据不同的离子拥有不同的质荷比(m/z)进行分离和检测目标离子或片段,然后依据保留时间和其丰度 值进行定性和定量。近年来,质谱技术发展迅速,通过改进离子源和分离器相继发展了多种类型的质谱仪 如电喷雾离子源质谱(ESI-MS)、大气压化学电离离子源质谱(APCI-MS)、四级杆(QQQ)质谱仪、离子 阱质谱技术以及各种串联、联用质谱仪等多种类型,极大提高了检测的分辨率和检测范围。质谱技术最 先应用于计量和分析化学领域,在临床检验中质谱仍属于一种年轻的检测方法。但自从其在临床检验应 用以来,便以其高灵敏度、低检测限、样本用量少、高通量、检测速度快、样本前处理简单的优势显示 出巨大的生命力,尤其和气相、高效液相色谱仪的联用极大的扩展了质谱技术在临床检验中的分析范围。
质谱法在临床检验中的应用

质谱法在临床检验中的应用质谱法是一种用于分析物质的方法,通过测量物质中分子的质量和相对丰度,可以确定物质的组成、结构和含量。
在临床检验中,质谱法被广泛应用于各种疾病的诊断、治疗监测以及药物代谢动力学等方面。
本文将介绍质谱法在临床检验中的应用。
一、疾病的诊断
质谱法可以通过检测体液中的代谢产物或生物标志物,辅助医生进行疾病的诊断。
例如,质谱法可以通过分析患者尿液中的代谢产物,帮助医生诊断糖尿病、蛋白质代谢异常等疾病。
另外,质谱法还可以用于检测患者血液中的特定蛋白质或肽段,帮助医生进行癌症、心脏病等疾病的早期诊断。
二、药物监测
质谱法在临床检验中还广泛应用于药物的监测。
医生可以通过检测患者体液中药物的浓度,来调整药物的用量和频次,以确保药物疗效的同时避免药物的毒副作用。
质谱法可以快速准确地测定患者体内药物的浓度,帮助医生制定个性化的药物治疗方案。
三、药物代谢动力学
质谱法也被应用于药物代谢动力学的研究中。
通过测定患者体内药物及其代谢产物的浓度和清除率,可以评估药物在体内的代谢速度和代谢途径,为药物疗效和安全性的评估提供重要信息。
此外,质谱法
还可以用于研究不同患者对同一药物的代谢特点的差异,为个体化用药提供依据。
结论
质谱法作为一种高灵敏度、高准确度的分析方法,在临床检验中具有重要的应用前景。
通过质谱法,医生可以更加准确地诊断疾病、监测药物疗效,并为个体化药物治疗提供科学依据。
相信随着技术的不断进步和方法的不断完善,质谱法在临床检验中的应用将会越来越广泛,为医疗领域带来更多的创新和突破。
(医学课件)质谱技术在检验医学领域的应用

03
检验医学领域质谱技术的发展趋势
质谱技术在国内检验医学领域的发展现状
临床质谱实验室规范化建设
加强临床质谱实验室的规范化建设,包括硬件设施、人员培训、质量控制等方面的提升。
临床需求驱动
以临床需求为导向,开发和应用新的质谱技术,以满足临床诊疗和科研的需求。
技术创新和转化
加强技术创新和转化,提高质谱技术的检测性能和实用性,推动其在临床医学检验领域的应用。
提供更多可能性。
技术创新
未来质谱技术将与其它分析技 术结合,如免疫分析、色谱、 光谱等,实现更高效、灵敏的
分析和检测。
对检验医学领域质谱技术的建议和期望
加强技术应用
人才培养
建议在检验医学领域加强质谱技术的推广和 应用,特别是在临床常规检测和诊断中,充 分发挥其高精度、高灵敏度的优势。
加强质谱技术人才的培养,提高检验医学领 域专业人员的技能水平,以满足临床需求和 提高医学检验质量。
《医学课件》质谱技术在检 验医学领域的应用
xx年xx月xx日
contents
目录
• 质谱技术的基本原理 • 质谱技术在检验医学领域的应用 • 检验医学领域质谱技术的发展趋势 • 结论与展望
01
质谱技术的基本原理
质谱技术的简介
质谱技术是一种通过离子化样品并测量其质量电荷比(m/z )来获得样品分子量信息的分析方法。
质谱技术在检验医学领域的应用
质谱技术在蛋白质组学研究中的应用
蛋白质组学研究是质谱技术应用的重要领域之一,质谱技术 在蛋白质鉴定、定量分析和结构分析等方面具有重要作用。
质谱技术可以鉴定蛋白质复合物,研究蛋白质之间的相互作 用,揭示疾病的发生发展与蛋白质变化的关系,为新药发现 和疾病诊断提供依据。
质谱技术在医学检验中的应用

质谱在临床检验中应用
1.微生物检验方面
Microbiological test
2.临床免疫学检验 的应用
3.临床生物化学检验的 应用
4.分子生物诊断中 的应用
5.在参考方法建立和研 制标准物质方面的应用
其他应用
“1997 年国际物质量咨询委员会 ( CCQM) 将同位素稀释质谱( EDID-MS) 原理定为一 级( 基准) 测量原理之一,其同时具有质谱分析的高度特异性和同位素稀释的高 度精密性,且测量的动态范围宽,样本制备不需严格定量操作, 测量值能够直 接溯源到国际单位制的物质量基本单位“摩尔”。 因此基于同位素稀释质谱原理的方法在生物和临床化学溯源研究中受到越来越 多的重视,为临床检验中标准物质的研制提供了技术保障,是临床检验参考方 ” 法的最佳选择。
总结与展望
Summary and Prospect
1.缺乏自动化 2.设备的高昂的资本成本 3.要求熟练劳动力 4.监管不确定
1.更具灵敏性、特异性和准 确性 2.具有高通量、高效率的优 势 3.国外发展较成熟,国内发 展潜力大
THANKS
•
感 谢
感
阅谢
读阅
读
以
Agilent 7900 ICPMS 为例
质谱在临床检验中应用
The application of Ms in clinical test
质谱在临床检验中应用
1.微生物检验方面
Microbiological test
2.临床免疫学检验 的应用
3.临床生物化学检验的 应用
4.分子生物诊断中 的应用
2023最新整理收集 do something
质谱技术在医学检验中的应用
Application of mass spectrometry in medical examination
质谱技术在医学检验中的应用

质谱技术在医学检验中的应用随着液质联用技术的迅速发展,特别是LC-MS/MS技术的出现,极大地推动了该技术在临床检验中的应用。
一、新生儿遗传疾病筛查(Neonatal screening);欧美等国已广泛采用LC-MS/MS进行新生儿遗传疾病筛查。
传统检测方法需要对每一种筛查项目进行一次单独实验, LC-MS/MS则可对一份标本同时检测多种项目, 目前有苯丙酮尿症(phenylketonuria, PKU )、中链酰基辅酶A脱氢酶缺乏症(medium chain acyl CoA dehyrogenase deficiency, MCAD)等40余种。
常用的筛查方法对于氨基酸稀有代谢障碍(如枫糖尿症,map le syrup urine disease,MSUD) 、脂肪酸氧化缺陷(如肉毒碱缺乏症) 、有机酸代谢障碍(如methylamalonaciduria)检出率很低,应用LC-MS/MS可大幅度提高筛查效率。
LC-MS/MS将新生儿筛查的诊断准确度和特异度大幅度提高。
二、临床药理监测;临床药理学的研究内容包括药动学(Pharmacokinetics)与生物利用度(Bioavailability)研究,药动学是研究药物在正常人与病人体内的吸收、分布、代谢和排泄的规律性,而生物利用度是用药代动力学原理来研究和评价药物相同剂量的不同剂型吸收速度与量的差别。
治疗药物监测(Therapeutic drug monitoring, TDM)是近20多年来形成的一门新的医学分支,进行TDM的药物包括抗旅痛药物、心血管药物(如地高辛)、杭生素等,近年新增加了抗肿瘤药物、抗病毒药物(HIV)和治疗精神病药物。
目前药物监测主要通过免疫化学技术,简单易行但所测药物种类较少。
LC-MS/MS技术准确性更高而且可用于绝大部分药物的监测。
LC-MS/MS的高敏感、高特异、高重现性的特点,已使其成为临床药理监测的主要分析技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mass analyzer
+
样品蒸发、解离、原子化、电离等过程
电子倍增器电极
+
电子脉冲 来自质量分析器的离子
法医,公安等: 1% 核工业: 5% •核燃料的分析 •放射性同位素的分析 •初级冷却水的污染分析 化工,石化等: 4% •R&D •QA/QC •射击残留物分析 •特征材料的定性 •来源分析 •毒性分析 环境: 49% 地质学: 2% •金属材料,合金等 •土壤、矿石、沉积物 •饮用水、海水、环境水资源 •食品、卫生防疫、商检等 •土壤、污泥、固体废物 •生产过程QA/QC,质量控制 •烟草/酒类质量控制, 鉴别真伪等 Hg, As, Pb, Sn等的价态形态分析 半导体: 33% •高纯金属(电极) •高纯试剂(酸,碱,有机)
色谱分析仪
气相色谱仪
液相色谱仪
色谱-质谱联用
色谱的高分离性能
+
质谱的高鉴别特点
质谱联用仪
串联质谱仪
(LC-MS/MS)
气相色谱-质谱仪
(GS-MS)
主要应用
蛋白组学 代谢组学 个性化医学 疾病诊断 药物临床试验和新药研发
蛋白组学
旨在研究比较细胞在不同生理或病理条件下蛋白质表达的异同,对相关蛋白 质进行分类和鉴定,更重要的是蛋白质组学的研究要分析蛋白质间相互作用 和蛋白质的功能,旨在阐明生物体全部蛋白质的表达模式及功能模式; 其内容包括蛋白质的定性鉴定、定量检测、细胞内定位、相互作用研究等, 最终揭示蛋白质功能,因此是基因组DNA序列与基因功能之间的桥梁 通过蛋白质组学的研究,找到更多具有医学实际意义的蛋白标志物,用以帮 助疾病的诊断、分期、危险性预测以及药物作用靶点 因此,蛋白质组学研究的数据与基因组学数据的整合,将会在基因组研究中 发挥重要作用。同时,该研究也促进了分子诊断的发展,如寻找药物的靶分 子。
减轻家庭及个人负担
内分泌系列
类固醇激素在体内代谢过程非常复杂,因此大部分需通过其代谢产物 进行测定; 而所检测的生物样本均具有复杂的基体干扰,且个体基质具有差异, 浓度范围跨度大,有些内分泌诊断标志物浓度跨度约有10个数量级; 因此需要灵敏度高、选择性强的方法,可以在很多其他内源性物质的 存在下准确分析目标物; 与传统检测方法相比,串联质谱技术可以很好地满足以上要求。
炬管
流动相 进样器 预柱 HPLC
接口锥
样品锥
离子透镜
四级杆质谱
四级杆质量 分析器
HPLC-色谱柱 泵 雾化器
监测器
雾化腔
干扰消除部件— 碰撞反应池
检测器
待测粒子的流向
样品导入系统
ICP-MS分析过程
气溶胶 液体样品 雾化过程 去溶过程 粒子
吸收过程
原子化
分子
蒸发过程
原子
离 电离过程 子
固体样品
发射过程
联用仪,感应耦合等离子体质谱仪等;
目前质谱分析法已广泛应用于医学、材料、环境、地质、能源、药物 、生命科学、化学等各个领域。
国内外应用现状
质谱分析方法已广泛应用于临床检验。 国内一些大医院已应用到了相关检测工作,如北京二炮总医院(免疫抑制剂药物浓
度监测、 氨基酸营养状况评价等),广州市妇婴医院(新生儿疾病筛查),上海市
高新技术平台
流式细胞分析技术平台
免疫组化技术平台 荧光原位杂交分析技术平台 细胞与分子遗传检测技术平台 分子诊断检测技术平台 均相酶免疫反应检测技术平台(EMIT) 质谱/色谱检测技术平台
金域质谱平台
高效液相色谱-串联质谱仪
API3200:5台 API4000:1台 API5500:1台 MPX(LC-MS/MS):5台 Agilent 6460(单通道):2台 Agilent 6495:1台
ICP:电感耦合等离子体(Inductively Coupled Plasma)
—高温离子源(温度约8000--10000K)
MS:质谱仪(Mass Spectrometer)
—四级杆扫描质谱仪—质量范围从2到260amu(Li到U…) —快速顺序扫描实现所有元素分离 —使用双模式进行离子检测
离轴偏转透镜 池气体入口 高基体进样系 统(HMI) 稀释气 入口 低流速进样
灵敏度,需要达到ng/mL级 样品用量
串联质谱
前景应用
肿瘤标记物的早期痕量分析 心血管疾病标记物的早期痕量检出 传染病学痕量应用
......
全国市场网络 金域服务网络
服务全国6000多家 医疗机构,其中三甲 医院 200 多家,二甲 医 院 2000 多 家 。 仅 广东省内服务客户近
质谱技术在检验医学领域的应用
概要
质谱技术简介 无机质谱技术平台及应用 有机质谱技术平台及应用
质谱技术简介
质谱的基本概念
质谱是什么?
特殊的天平:称量离子的质量
质谱能做什么?
定性:化学物的结构
定量:混合物的组成 领域:化学、生物学、医学、药学、环境 物理、地质、能源等
质谱的基本概念
质谱分析是先将物质离子化,再按离子的质荷比将其分离,然
济南 西安 重庆 成都 贵阳 昆明 南宁 郑州 合肥 长沙 南京 沈阳 长春
1000家;
CRO 、卫生检验 、
科研等服务相关多元 化
上海
杭州 福州
广州
香港
以临床为导向的检测中心
病理检测中心
血液病检测中心
感染性疾病检测中心 妇女健康检测中心 个性化检测中心 优生优育检测中心 内分泌疾病检测中心
个体化用药
个体化用药,就是药物治疗“因人而异”、“量体裁衣”,充分考虑每个病人的个 人因素;
现在,合理用药被公认为是个体化给药的核心,而合理用药则需要通过药物基因组 学和治疗药物监测等手段来实现。 药物基因组学主要研究遗传因素对药物效应的影响,确定药物作用的靶点,研究从 表型到基因型的药物反应的个体多样性,即将基因的多态性与药物效应的个体多样 性紧密联系在了一起; 而患者用药后,体内的药物浓度必须达到稳定浓度时才能获得其治疗效果,而很多 药物的有效治疗浓度与中毒浓度之间差距很小,不同个体对药物的吸收和代谢差异 很大; 因此,需要定期检测血药浓度,既要达到治疗效果,又要防止药物中毒,这就是治 疗药物监测的概念; 质谱技术用于血药浓度监测,具有专属性强、准确度高、重现性好、灵敏度高、成 本低等优点。
较少
快 广 YES uL
仪器成本
$
$$
分析元素广
极低检出限
D.L. range
1A 2A 3B 4B 5B
< 1 ppt
6B 7B 8B 8B
1 – 100 ppt
8B 1B 2B 3A 4A 5A
0.1 – 1 ppb
6A 7A 8A
H Li Be Na Mg K Ca Sc Ti Y V B Al C Si N P O S F
He Ne
Cl Ar
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr I Xe
Rb Sr
Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te Ir Pt Au Hg Tl Pb Bi Po
Cs Ba La Hf Ta W Re Os Fr Ra Ac
•同位素比的研究
•激光熔蚀直接分析固 体样品
医药及生理分析6% •头发、全血、血清、尿样、 生物组织等 •医药研究,药品质量控制 •药理药效等的生物过程研究
•Si 晶片的超痕量杂质
•光刻胶和清洗剂
Page
检验医学领域应用
主要应用于临床样本(血液、尿液、毛发、组织等)的 元素分析,如:Pb,Se,Hg,Cd,Mg,Fe,Ca,Zn,Cu,Mn等。
GC-MS
尿液有机酸检测:一次性检测132项指标,可辅助检测40余种遗传代 谢病(主要为有机酸血症,也包括氨基酸代谢病及脂肪酸氧化缺陷病 )。
遗传代谢病检测--意义
社会:提高人口素质,造福于患者 医院:提高医生诊治水平,提高医院知名度 , 扩大影响,解决纠纷 新生儿、患者及家庭:避免或减少伤残儿
第3代八极杆反 应池系统 (ORS3)
快速同时双模式 检测器 (9 个数 量级线性动态范 围)
高频率 (3MHz) 双曲面四极杆
半导体冷却控温雾 室
高性能真空系 统 高速频率匹配的 27MHz 射频发生器 高离子传输效率、耐高盐接 口
Agilent 7900 ICP-MS
ICP-MS原理图
ICP离子源
代谢组学
代谢组学的研究就是运用一系列分析化学手段,如色谱、质谱、核磁共振 、光谱等,通过分析生物体液、组织中的内源性代谢产物谱的变化来研究 整体的生物学状况和基因功能调节; 作为系统生物学的重要组成部分,代谢组学已经成为继基因组学、转录组 学、蛋白质组学之后兴起的一个新的组学研究热点; 与基因组学、蛋白质组学相比,代谢组学研究的是已经发生的改变,而前 两者研究的是可能发生的改变,因此在这个意义上说,代谢组学更接近于 临床。
At Rn
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
线性范围宽
9 个数量级的动 态线性范围
有机质谱技术平台及应用
什么是色谱?
色谱法是一种分离方法, 它利用物质在两相中分配系 数(或吸附系数)的微小差 异产生了很大的效果,使各 组份分离,以达到分离,分 析及测定一些物质的目的。
后测量各种离子的谱峰强度而实现分析目的的一种分析方法。
质量是物质的固有特性之一,不同的物质有不同的质量谱--质
谱,利用这一特性,可以进行定性分析;谱峰强度又与它代表的化