地球化学

合集下载

地球化学

地球化学

一.关于地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学。

二.地球化学的基本问题1、地球系统中元素的组成(质)2、元素的共生组合和赋存形式(量)3、元素的迁移和循环(动)4:地球的历史和演化(史)三.地球化学研究思路在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。

(一句话那就是“见微而知著”)第一章地球和太阳系的化学组成第一节地球的结构和组成一.大陆地壳和大洋地壳的区别:1.大洋地壳较薄,10-5公里,平均厚8公里;大陆地壳较厚,最厚可达70公里,平均厚33公里。

(整个岩石圈也是大陆较厚,海洋较薄。

海洋为50—60公里,大陆为100—200公里或更深。

)2.在元素的分配上,洋壳比陆壳贫硅和碱金属,但较富镁富铁。

正是这种原因,大洋沉积物中富含Fe、Mn、Co、Ni等亲铁元素,它们是现代海洋中巨大的潜在资源。

二. 固体地球各圈层的化学成分特点○1地壳:O、Si、Al、Fe、Ca○2地幔:O、Mg、Si、Fe、Ca○3地核:Fe-Ni○4地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度一.概念1.地球化学体系:按照地球化学的观点,我们把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的空间,都处于特定的物理化学状态(C,T,P等)并且有一定的时间联系。

2.丰度:表示元素在某地质体中(如地球,地壳,宇宙星体及某岩类,岩体等)的含量。

3.克拉克值:元素在地壳中的平均含量4.质量克拉克值:若计算元素在地壳中的平均含量时以质量计算,则称为质量克拉克值。

5.原子克拉克值:以原子数之比表示的元素相对含量(即指某元素在某地质体中全部元素的原子总数中所含原子个数的百分数)任意元素的原子克拉克值=某元素在某地质体中的相对原子数(用N表示)/所有元素相对原子数之和(用 N表示)6.浓度克拉克值:某元素在某地质体中的平均含量/元素克拉克值二.克拉克值的变化规律:①递减:元素的克拉克值大体上随原子序数的增加而减少(但锂,铍,硼以及惰性气体的含量并不符合上述规律,丰度值很低)②偶数规则:周期表中原子序数为偶数的元素总分布量(86%)大于奇数元素的总分布量(14%)。

地球科学中的地球化学与地球动力学

地球科学中的地球化学与地球动力学

地球科学中的地球化学与地球动力学地球科学是研究地球上自然界各种现象和规律的学科。

在地球科学的研究领域中,地球化学和地球动力学是两个重要的分支学科。

地球化学研究地球物质的组成、结构、性质和变化规律;地球动力学则研究地球内外部分的运动和变形。

一、地球化学的概念与研究内容地球化学是研究地球物质元素组成、地球化学过程和演化规律的学科。

地球化学研究的对象包括地壳、岩石、矿物、地下水和大气等,通过分析采集的样品中元素和同位素的含量及其分布,揭示地球物质的成因和变化过程。

地球化学的研究方法包括野外调查、采样、室内分析和实验模拟等。

地球化学的研究成果可以为资源勘探、环境监测和地质灾害预测提供科学依据。

二、地球化学的应用领域地球化学在各个领域都有广泛的应用。

在矿产资源研究中,地球化学可以通过分析矿石中的元素含量,判断矿石成因和找寻潜在矿床。

在环境地球化学研究中,地球化学可以通过分析大气中的污染物和土壤中的重金属元素,评估环境污染程度。

在地质灾害研究中,地球化学可以通过分析地下水中的元素含量,预测地震和火山喷发等灾害的发生。

三、地球动力学的概念与研究内容地球动力学是研究地球内外部分的运动和变形的学科。

地球动力学研究的对象包括板块运动、地震、火山活动等地球运动现象。

地球动力学主要通过地震仪和其他地球观测设备来获得地球运动的数据,通过数学模型和计算机模拟来解释地球运动的原理和机制。

四、地球动力学的应用领域地球动力学的研究成果在地震预测、资源勘探和地质灾害预测等领域有重要应用价值。

在地震预测中,地球动力学可以通过监测地表和地下的变形和应力分布,预测和评估地震的可能性和危险程度。

在资源勘探中,地球动力学可以通过研究地下构造和地壳应力,发现矿产和能源资源的分布规律。

在地质灾害预测中,地球动力学可以通过模拟地下构造和地震活动,预测和评估地质灾害的潜在风险。

综上所述,地球化学和地球动力学在地球科学中起着重要的作用。

地球化学通过研究地球物质的化学组成,为资源勘探和环境保护提供科学依据;地球动力学通过研究地球运动的原理和机制,为地震预测和地质灾害预测提供科学支持。

地球化学中的有机地球化学

地球化学中的有机地球化学

地球化学中的有机地球化学地球化学是一门研究地球化学元素的分布、运移、化学特性及其在地球圈层中的变化规律的科学。

有机地球化学则是研究有机物质在地球中的分布、特性、形成与演化的学科。

它是现代地球化学领域中的一个分支,与矿物地球化学、水文地球化学等有机结合,构成了地球化学研究的核心内容。

本文将从有机地球化学的研究对象、有机质的主要成分、有机地球化学古气候学、有机地球化学与环境科学等几个方面结合实例进行阐述。

一、有机地球化学的研究对象有机地球化学的研究对象包括石油、煤炭、天然气、沉积岩石等。

这些物质均含有不同程度的有机质,是现代人类社会生产生活的重要能源与原料资源。

石油、煤炭、天然气是含碳量极高的有机物,其成分除了含碳之外,还含有氢、氮、硫等元素。

石油和天然气是构成地球深部烃类资源的主要成分,而煤炭则是由大量的植物残骸在地质历史长期压缩和化学反应形成的,是地球上储量最丰富的燃料。

沉积岩石则是指岩石中含有可见的、经过生物化学反应后形成的化石和其他有机标志物的沉积物。

有机质最为集中的地方是深度较浅的沉积岩系。

研究沉积岩石中的有机质,有助于了解岩石的沉积环境、沉积旋回、海水温度、海平面变化等。

有机质通常包括一系列的生物标志物,如芳香烃、脂肪烃等,这些标志物具有结构独特、成分多样、稳定性高的特征,可以用来将岩石的沉积环境重建出来。

二、有机质的主要成分有机质的主成分是有机碳、有机氮、有机硫、有机氧等元素的有机物。

为了更好的理解有机质和岩石成因的关系,我们需要掌握有机质的具体特征。

(1)碳同位素组成燃料油、煤中的有机碳含量可以用碳同位素组成进行表征。

碳同位素组成是指不同样品中碳的不同原子量之间的比例,以表征碳源以及化学分馏过程。

同位素测量得到的结果是以δ13C ‰ (PDB) 的形式表示的。

其中δ13C为样品同位素组成相对于标准物质Pee Dee Belemnite(PDB)的偏移值,计算公式如下:δ13C ‰ (PDB) = [(13C/12C)样品/(13C/12C)PDB - 1] × 1000‰(2)生物标志物分析生物标志物分析是有机地球化学中的重要研究手段之一。

地球化学的基本原理与应用

地球化学的基本原理与应用

地球化学的基本原理与应用地球化学是一门研究地球各部分以及地球与外部环境间元素、化学物质在地球上的分布、变化和相互关系的学科。

它是地球科学中的一个重要分支,具有广泛的应用领域。

下面将介绍地球化学的基本原理以及其在各个领域的应用。

一、地球化学基本原理1. 元素和同位素:地球化学研究中关注的核心是元素的存在形式和同位素的分布。

元素是组成地球和生物体的基本构成单元,而同位素则可用来追踪地球系统中的物质运移和循环过程。

2. 地质过程:地质过程是地球化学变化的根源。

包括岩浆活动、土壤形成、水文循环、生物地球化学等。

通过对地质过程和地球物质的研究,可以了解地球表层的演化历史和地壳成因。

3. 地球系统:地球是一个复杂的系统,包括大气、海洋、地壳和生物圈等多个组成部分。

地球化学通过研究这些组成部分之间的相互作用,揭示地球系统中物质循环的规律。

4. 化学平衡和反应:物理化学原理是地球化学中的基础。

化学平衡理论被应用于地球化学计算模型的构建,以揭示物质在地球系统中的分布和转化。

二、地球化学的应用领域1. 矿产资源勘探:地球化学可以应用于矿床勘探和矿产资源评价。

通过分析不同元素的分布和同位素组成,可以找到矿床的富集区域和找矿指示。

2. 环境污染与地质灾害:地球化学方法可以用于环境污染物迁移和转化的研究,例如水体中的重金属污染、土壤中的有机物污染等。

同时,地球化学还能够评估地震、火山和滑坡等地质灾害的潜在危险性。

3. 水文地质研究:地球化学可以用于水文地质研究,例如地下水的起源、成分及其与地下水补给区域的关系。

同时,地球化学方法也可以应用于地下水的污染源溯源。

4. 古气候与环境演化:地球化学分析在古气候和环境研究中起着重要作用。

通过分析沉积岩中的同位素组成和微量元素含量,可以重建过去气候变化和环境演化的历史。

5. 生物地球化学和生态系统研究:地球化学可以揭示生物地球化学循环的机制和影响因素,例如元素的生物地球化学循环过程、生态系统中的能量流动与物质转化等。

地球化学特征及环境意义

地球化学特征及环境意义

地球化学特征及环境意义地球化学是研究地球化学元素在地球上的分布、演化和环境意义的学科。

地球化学元素是指地球上存在的化学元素,包括金属元素和非金属元素,它们的存在对地球的演化和生命的存在起着至关重要的作用。

地球化学特征是指地球上不同地区地壳中元素的分布特征。

地球化学特征的研究可以揭示地球的演化历史、构造特征和成矿作用等。

根据元素的分布特征,地球化学元素可以分为两类:亏损元素和富集元素。

亏损元素是指地球地壳中含量较低的元素,如锂、铝、钠、钾等。

这些元素在地壳中分布不均,主要分布在大陆岩石中,而海洋中含量较低。

亏损元素的分布特征与地球的演化历史和构造特征密切相关,其研究可以揭示地球的演化历史和构造特征。

富集元素是指地球地壳中含量较高的元素,如铁、铜、铅、锌等。

这些元素在地壳中分布较为均匀,但不同地区的含量差异较大。

富集元素的分布特征与成矿作用密切相关,其研究可以揭示成矿作用的机制和规律。

环境意义是指地球化学元素对环境的影响和作用。

地球化学元素对环境的影响主要包括以下几个方面。

首先,地球化学元素对生命的存在和发展起着至关重要的作用。

一些元素如碳、氧、氮、氢等是生命的基本组成部分,而另一些元素如钙、镁、钾、钠等则是生命体内的必需元素。

其次,地球化学元素对环境的污染和治理具有重要的意义。

一些元素如汞、铅、镉、铬等对环境和人类健康造成严重危害,需要采取有效的治理措施。

最后,地球化学元素对资源开发和利用具有重要的意义。

一些元素如铁、铜、铝、锌等是工业生产的重要原料,其开发和利用对经济发展具有重要的意义。

综上所述,地球化学特征及环境意义是地球化学研究的重要内容。

对地球化学元素的分布特征和环境意义的研究有助于揭示地球的演化历史和构造特征,为资源开发和利用提供科学依据,同时也有助于保护环境和人类健康。

地球化学专业学什么

地球化学专业学什么

地球化学专业学什么地球化学是一门研究地球内部和外部化学组成、构造和演化的学科,地球化学专业主要研究地球化学的基本理论和应用方面的知识。

在地球化学专业的学习过程中,学生将掌握地球化学的基本概念、基本理论和实验技术,了解地球化学在资源勘探、环境保护、地质灾害预测等方面的应用,并具备独立从事地球化学研究和工作的能力。

1. 基础理论知识地球化学专业的学习首先会涉及到一些基础理论知识,如基本化学理论、矿物学、岩石学和地质学等。

学生将学习到地球内部和外部物质的组成和性质,了解地球的构造和演化过程。

掌握这些基础理论知识对于后续的专业学习和研究是非常重要的。

2. 分析测试技术地球化学专业的学生还需要学习各种分析测试技术,如光谱分析、质谱分析、电子显微镜等。

这些技术可以用来分析和检测地球中的各种物质,包括矿石、岩石、土壤和水等。

通过学习这些分析测试技术,学生能够准确地测定地球化学样品中的各种元素组成和含量,为地球化学研究和应用提供数据支撑。

3. 地球化学的应用地球化学专业的学生将学习地球化学在资源勘探、环境保护、地质灾害预测等方面的应用。

地球化学可以帮助人们找到矿藏和矿产资源,发现地下水资源,预测地质灾害的发生,评估环境的污染状况等。

学生将了解并应用不同地球化学的方法和技术,为相关领域的研究和工作提供科学依据。

4. 实践和实习地球化学专业的学生通常也会进行实践和实习环节的学习。

实践和实习可以帮助学生将理论知识应用到实际问题中,培养学生的实践操作能力、解决问题能力和团队合作精神。

通过实际操作和实地调查,学生可以更好地理解和应用地球化学的知识,为将来从事地球化学研究和应用打下坚实的基础。

5. 学习成果地球化学专业的学生毕业后,将具备扎实的地球化学理论基础和实验技术能力,能够从事地球化学的研究和工作。

他们可以在矿产资源勘探、环境保护、地质灾害预测、水资源管理等领域工作,也可以选择继续深造,攻读硕士或博士学位,从事地球化学的高级研究和教学工作。

地球化学

地球化学

一.名词解释1勘查地球化学:在地质与地球化学的理论指导下,在各种介质(包括岩石、土壤、水、水系沉积物、生物、气体等)中系统地在不同比例尺与规模上采集地球化学样品,经测试分析和数据处理,发现地球化学异常与其它地球化学标,据此作为找矿的线索和依据,进而寻找矿床;同时用以解决一些地质等其它问题。

1.区域化探:是大规模、大范围的概略地球化学调查,以查明成矿远景区为目的,以地球化学省、地球化学带、矿田晕、大型矿床晕为目标所进行的化探。

2.矿区化探:是以准确圈定矿床具体位臵,甚至能确定矿体位臵,埋深情况为目标,所进行的化探。

3.相容性元素:是指容易进入结晶相而在残余流体相中迅速降低的元素。

4.不相容元素:是指那些在结晶分异过程中倾向于残余流体相中聚集的元素。

5.地球化学省:在地壳的某一大范围内,某些成分富集特征特别明显,不只是一两类岩石中元素丰度特别高,而且该种元素的矿床常成群出现,矿产出现率也特别高。

通常将地壳的这一区段成为地球化学省。

6.地球化学指标:是指一切能提供地球化学信息或地质信息的,能直接或间接测定的地球化学变量。

7.地球化学场:地球化学指标在三度空间和时间上的演化称为地球化学场。

8.地球化学障:凡是浓度梯度极大值所在的点,叫做地球化学障,其实质就是地球化学环境发生骤然变化,元素活动性发生急剧改变的地段。

9.原生环境:是指天然降水循环面以下直到岩浆分异和变质作用发生的深部空间的物理化学条件的总和。

10.次生环境:是地表天然水,大气影响所及的空间所具有的物理化学条件的总和。

11.地球化学储量:地球化学系统中元素的总量。

12.采样单元:元素在地球化学场内分布是不均匀的,当把研究区按一定面积分割成若干足够小的单元时,可以近似把这一单元内元素看做是均匀分布的,这个最小单元叫做采样单元。

13.检出限:某一分析方法或分析仪器能可靠的检测出样品中某一元素的最小重量或质量。

14.灵敏度:某一分析方法在一定条件下能可靠地检测出的最低含量。

《地球化学》章节笔记

《地球化学》章节笔记

《地球化学》章节笔记第一章:导论一、地球化学概述1. 地球化学的定义:地球化学是应用化学原理和方法,研究地球及其组成部分的化学组成、化学性质、化学作用和化学演化规律的学科。

它是地质学的一个分支,同时与物理学、生物学、大气科学等多个学科有着密切的联系。

2. 地球化学的研究对象:- 地球的固体部分,包括岩石、矿物、土壤等;- 地球的流体部分,包括大气、水体、地下水等;- 地球生物体,包括植物、动物、微生物等;- 地球内部,包括地壳、地幔、地核等。

3. 地球化学的研究内容:- 地球物质的化学组成及其时空变化;- 地球内部和外部的化学过程;- 元素的迁移、富集和分散规律;- 地球化学循环及其与生物圈的相互作用;- 地球化学在资源、环境、生态等领域的应用。

二、地球化学的研究方法与意义1. 地球化学的研究方法:- 野外调查与采样:包括地质填图、钻孔、槽探、岩心采样等;- 实验室分析:包括光学显微镜观察、X射线衍射、电子探针、电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)等;- 地球化学数据处理:包括统计学分析、多元回归、聚类分析等;- 地球化学模型:建立地球化学过程的理论模型和数值模型;- 同位素示踪:利用稳定同位素和放射性同位素研究地球化学过程。

2. 地球化学研究的意义:- 揭示地球的形成和演化历史;- 了解地球内部结构、成分和动力学过程;- 探索矿产资源的形成机制和分布规律;- 评估和治理环境污染问题;- 理解地球生物圈的化学循环和生态平衡;- 为可持续发展提供科学依据。

三、地球化学的发展历程与现状1. 地球化学的发展历程:- 起源阶段:19世纪初,地质学家开始关注矿物的化学组成;- 形成阶段:19世纪末至20世纪初,维克托·戈尔德施密特等科学家奠定了地球化学的基础;- 发展阶段:20世纪中叶,地球化学在理论、方法、应用等方面取得显著进展;- 现代阶段:20世纪末至今,地球化学与分子生物学、环境科学等学科交叉,形成新的研究领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地球化学的现状及其在矿产勘探中的应用摘要地球化学是地学的一门年轻的分支学科,是化学与地学各领域相结合的产物。

随着科学技术的飞跃进步,地球化学的研究手段更加先进,研究领域不断扩大,原有分支迅速发展,同时新的分支相继出现。

目前地球化学在地质探矿、环境保护、农业生产、灾害预报等领域发挥着重要的作用,已逐渐成为地球科学最活跃、最有生命力的学科之一。

本文主要介绍地球化学的发展现状,同时结合矿产勘探实际工作来论述地球化学在地质找矿中的重要作用。

一、地球化学的现状虽然地球化学思想的萌芽阶段可以追溯到遥远的过去,但是在早期阶段,主要是对与地壳的化学组成有关的某些地球化学现象的定性的描述。

直至20世纪上半叶,地球化学才独立成型,作为一门独立学科,正式登上国际舞台。

然而随着化学、物理学和地学等领域的发展,地球化学迎来了大发展时期,当前地球化学研究手段日渐先进,研究领域不断扩展,研究精度不断提高,这些彰显了地球化学的活力。

地球化学强劲生命力的另一个体现是原有分支的迅猛发展和新分支的不断涌现,下面通过几个主要分支的叙述来反映地球化学的发展现状。

1.元素地球化学元素地球化学是研究地壳中或地表各类岩石、矿物、矿石及各种地质体中化学元素的组成、含量、分布及时空变化的学科,也是研究各种化学元素地球化学行为的主要学科。

作为地球化学中最早出现的基础学科分支,现阶段元素地球化学的研究更广泛更深入了。

对于元素在各种地质体中以及动植物中的含量和分布特征积累了越来越多的数据,对其控制规律有了更深入的认识;对于元素在各种地质作用过程中的地球化学行为有了更清楚的了解。

研究的元素种类有了明显的增加,包括许多微量元素,如稀土、稀有、分散元素,因而出现了微量元素地球化学,如稀土元素地球化学、稀有气体地球化学等,而且数据更精确、更合理了。

元素地球化学,特别是微量元素地球化学研究,包括多种元素对比值的应用,现在己经成为探讨岩石、矿床以至行星的成因和演化的重要手段。

2. 同位素地球化学同位素地质年代学也取得了长足的进展,传统的方法,如U-Pb、Rb-Sr、K-Ar、C14法更加完善;各种等时线法的提出;同位素稀释质谱法成为常现研究手段;一些理论模式的提出以及测定年代范围的扩大等。

同时新的年代测定法也得到了发展,如铀系法、裂变径迹法、Ar40/Ar39法、钐-钕法、Re-0s法、热释光法、沉降核类法等,特别是钐-钕法,比之早建立的铀铅法、铷锶法、钾氩法等同位素年代学方法更接近于封闭体系。

建立了一整套同位素地质年龄测定方法,使所测年限从距今数年直到几十乃至一百多亿年,为地球与天体演化建立了时间尺度,从而大大地丰富了人们对地球与天体演化的认识。

现在,我们可以借助这些手段,建立地球以至银河系发展的完整年表。

伴随着同位素地质年代学的蓬勃发展,特别是同位素分馏机制的深入研究和同位素分离、测试技术的提高,同位素地球化学的另一个分支——稳定同位素地球化学在这个时期也发展很快,不仅积累了大量同位素丰度测定数据,而且在理论、方法和应用各方面均有很大进展。

同位素组成变化所提供的信息,已经成为探讨许多地质过程的强有力的手段。

根据稳定同位素的研究,初步解决了一些争论多年的矿床成因问题,并提出了一些新的成矿假说。

在天体演化方面也提出了新的见解。

目前研究较多的稳定同位素种类,已经发展到氧、硫、碳、氢、铅、稀土、锂等20 余种,尤以氧、硫、碳、氢同位素发展最快。

3. 有机地球化学随着石油和天然气的大量开发和寻找,有机地球化学以惊人的速度后来居上,成为地球化学中最活跃的学科分支之一。

早在二十世纪三十年代,A.特里布斯对于地质体中卟啉化合物的研究,曾为有机地球化学的兴起做出了重要的贡献,但是由于分析测试技术的限制,十多年中没有取得重要的进展。

由于各种色谱技术的出现和应用,才使有机地球化学迅速发展为一门独立的学科分支。

不仅从现代沉积物、土堆、沉积岩和天然水体中分离鉴定出了越来越多的有机化合物,确定了多种地质体中各类天然有机质的组成和演化特征,探讨了有机质对金属元素的富集作用和有机质参与下化学元素迁移富集的一般机制,而且证实有机质转化为烃类需要一定的埋藏深度和温度条件,建立了一批生油地球化学指标和石油演化理论,在油气田的寻找和评价中发挥了重要的作用,并对生命出现前有机质的演化,即生命起源的研究做出了重要的贡献。

同时由于采用了各种色谱技术、色谱-质谱-电子计算机、核磁共振、高分辨电子显微镜等,已能从分子水平研究地质类脂物,并已深入研究和新发现了许多重要的生物标志化合物或分子化石;对高分子量有机质,如腐殖酸与干酪根等的研究也取得突破。

4. 勘查地球化学勘查地球化学,作为一种找矿方法,又叫地球化学探矿,简称化探。

作为地球化学的另一个重要分支,勘查地球化学也发展很快,各种方法不断涌现,如金属测量法、普查石油的气体测量法、生物地球化学找矿法、水化学法等。

随着分析测试技术的进步及电子计算机的广泛使用,使对数目巨大的分析数据的储存、整理和分析更加科学,对异常的解释更加精确,同时由于在找矿上“攻深找盲”的需要,有力地促进了地球化学探矿的广泛开展。

勘查地球化学已经成为一项必不可少的找矿手段,无论在国内还是国外,结合地质研究,勘查地球化学都取得了显著的找矿效果,发现了许多重要的矿床,如在加拿大发现了纽曼半岛铜矿床,在英国发现了爱尔兰纳凡铅锌矿。

另外勘查地球化学在方法、理论、探矿范围和测定对象等方面都有了很大的发展。

已经出现了微量元素、热发光、热晕、同位素等地球化学探矿的新趋势。

通过对国内外勘查地球化学一些最新进展的跟踪,认为矿体-成矿系列、地球化学异常模式、矿区化探和隐伏矿体定位预测依然是今后勘查地球化学的重要研究领域。

5.环境地球化学随着工业的发展,七十年代以后,地球化学的一个新分支——环境地球化学诞生了。

由于人类社会对环境问题日益重视,而研究环境问题与矿产勘查所依据的地球化学分散、富集与迁移的原理有许多相似之处,故近年来越来越多的勘查地球化学家转向环境地球化学领域。

越来越多的事实表明,由于周围环境,如土壤、水或农作物中某些化学元素或物质的过于缺乏或过于集中,会引起某些疾病。

这种病的发生,往往是地区性的,通常称为“地方病”,如我国的克山病、大骨节病等。

由于工业的发展,大量的废气、废液、废渣排向自然界,在农业生产中,化肥农药的广泛使用,加上矿山的开发以及工程设施的大量修建,使往日深埋在地下的物质暴露于地表,从而改变了当地的化学组成,影响其化学作用和化学演化的进行,给人类的生存和生态平衡造成了严重的威胁。

环境地球化学近些年最为突出的进展是提出了“化学定时炸弹”的新概念。

化学定时炸弹是指化学物质在土壤中不断累积,终于使土壤承受能力达到极限。

这时只要增加少量投入就会使原被土壤固定的化学物质大量释放,造成无法收拾的严重灾害。

另一种类型的化学定时炸弹是由于气候及土地利用的改变使土壤承受能力大幅度下降,导致化学定时炸弹提前引爆。

6.实验地球化学实验地球化学应用化学原理和现代实验技术,在实验室中模拟自然条件,研究地球化学过程中元素的行为和自然化学反应的机理。

实验地球化学不仅为地球化学的理论和假说提供实验证据,而且是地球化学研究和地球化学过程的热力学计算与数学模拟之间的桥梁。

它对地球化学,甚至整个地球科学的发展均有重要作用。

实验地球化学是在实验矿物学和实验岩石学的基础上逐步发展起来的。

它是地球化学的一个分支,是以野外及室内实验资料为依据,利用不同温度、压力的技术和设备,在实验室里创造不同的地球化学作用过程,研究元素的迁移与富集、分布与分配,岩石及矿床的形成条件;探讨自然化学反应机理,以实现实验室对自然地球化学作用的再现。

它不仅为地球化学的理论和假设提供实验依据,而且是地球化学研究和地球化学过程的热力学计算与数学模拟之间的桥梁。

它对地球化学、甚至整个地球科学的发展均有重要贡献。

目前实验地球化学的研究热点主要有以下几点:(1)水溶液和热水溶液体系的实验研究,涉及温度范围由地表温度到500℃,压力不超过5000万帕,重点在流体相的研究。

(2)流体-矿物体系的实验研究,温度低于固相线温度,压力不超过10亿帕。

研究重点是矿物相,主要利用各种外加热高温高压设备,研究固溶体矿物的成分界限、矿物与流体之间元素的分配及其与物理化学条件的关系,以及测定分配系数等。

(3)硅酸盐体系的高温高压实验研究,温度高于固相线温度,压力一般高于100万帕。

研究的重点是熔体相,所用设备包括内加热高压装置和超高压高温设备。

硅酸盐熔体中挥发分和惰性气体溶解度的实验研究对于探讨岩浆的产生、地壳-地幔体系的演化意义重大。

通过硅酸盐熔体(淬火玻璃)的拉曼光谱、穆斯鲍尔谱学研究,了解硅酸盐熔体的结构,查明各种元素在硅酸盐熔体中的结构作用,加深了认识岩浆熔体的本质。

二、地球化学在矿产勘探中的应用随着地质矿产普查工作程度的提高,地质找矿难度越来越大,主要是近地表肉眼易见的露头矿越来越少。

因此,在地质找矿中,地球化学勘查新方法、新技术得到迅速的发展。

主要是应用高灵敏度、高精密度、高准确度的分析仪器,进行多元素、多信息、多目标地寻找那些肉眼难以识别的地表浅部矿以及深部盲矿和掩埋矿。

应用这些地球化学勘查新方法、新技术,已经取得了显著地质找矿效果。

另外,在扩大区域地球化学调查应用范围方面,近年来区域地球化学调查的发展不仅仅是直接找矿,而且在基础地质研究、成矿预测、环境地质方面等都已显示了它独特的作用和巨大的潜力。

近十多年来,地球化学勘查在深度和广度方面都迅速发展,矿区化探在推动整个化探工作发展中起到很重要的作用。

特别在隐伏矿普查中,显示了矿区化探的潜在能力。

矿区化探的发展主要表现在以下三方面:已知矿区及外围找矿,典型矿床、矿田地球化学找矿模式的建立与研究,矿床、矿田地球化学特征和成矿成晕机制的研究。

在已知矿区及外围开展普查找矿,多年来运用较多的方法是岩石和土壤地球化学测量,特别是矿区钻孔原生晕工作。

它反映了不同产状和剥蚀深度的矿体,对于研究矿与非矿原生异常的形成机理和特征指标,提供了有利的条件。

在矿区外围开展了大量土壤或岩石地球化学测量,一般采用大比例尺面积性工作,用以发现矿区外围新的矿体或成矿有利地段,均取得显著找矿效果。

另外近年来,在矿区和外围开展了大量新方法新技术的运用,例如汞气测量、地电化学方法、地气方法、综合气体方法等在许多矿区及外围寻找隐伏矿取得了一些新的地质找矿效果。

对于典型矿床、矿田地球化学找矿模式的建立与研究也得到足够的重视,近年来,由于地表出露的矿体日益减少,盲矿、掩埋矿已逐步成为主要找矿对象。

为了提高找矿效果,国内外对各种地质成矿模式,特别是地球化学异常模式的研究工作,日益广泛和深入。

地球化学异常模式是一种找矿模式,它是对所研究的地质体产生的各种地球化学异常特征的概括,是通过总结已知矿体、矿床、矿田的各种地球化学异常特征,即原生异常和次生异常、元素组合的水平及垂向分带、异常的展布及发育等特征,力求反映出它们与地质体在空间、时间、成因上的关系,从而指出最优的方法及各种找矿评价指标。

相关文档
最新文档