机械设计总复习-第10章螺纹连接
机械设计基础第10章联接习题解答

机械设计基础第10章联接习题解答10-1 试证明具有自锁性的螺旋传动,其效率恒小于50%。
证:η=tg ψ/tg (ψ+ρ) 自锁条件ψ≤ρη≤tg ψ/tg 2ψ=(1-tg 2ψ)/2≤0.5 即50%10-2 试计算M20、M20*1.5螺纹的升角,并指出哪种螺纹的自锁性较好。
解: M20 粗牙螺纹 d 2=18.376 P=s=2.5 ψ=tg -1s/(πd 2)=2.48°M20*1.5 细牙螺纹 d 2=19.026 P=s=1.5 ψ=1.44°∴ 细牙螺纹自锁效果好10-3 求螺栓所产生的拉应力为若干?螺栓会不会损坏?解: 材料35 σB =530MPa σS =315MPa (表9-1 p123)螺栓M8 d 1=6.647 d 2=7.188 P=1.25 (表10-1 p135) ψ=3.1683° f ’=0.1 ρ’=tg -1f ’=5.7106°螺母M8 d 0=9 d w =11.5 r f =(d w +d 0)/4=5.125螺纹拧紧时 T=F a [d 2tg(ψ+ρ’)/2+f c r f ]=FL (参考例10-2 p140) ∴ F a =2FL/[ d 2tg(ψ+ρ’) +2f c r f ]=25500 N==214d F a πσ734.85 MPa >σS 螺栓会损坏10-4解: Fa=100kN 梯形螺纹 d=70 d 2=65 P=10 n=4︒==-083.1121d nP tg πψ ρ’=5.711° (1) 648.0)(='+=ρψψηtg tg (2) 86.980)(22='+=ρψtg d F T a Nm (3) 螺杆每转1转 工作台升高S=nP=40螺杆转速 n 杆=υ/S=800/40=20 r/min螺杆功率 W n TT P 205430===杆杆πω (4) 工作台下降时06.305)(22Nm >tg d F T a ='-='ρψ 阻力矩(制动力矩) 10-5 求允许的牵引力。
机械设计螺纹连接

其中:d1、p 分别为螺纹小径和螺距。
[σ ] —— 许用应力,N / mm2 ,[σ ] = σs /[ Ss ] ,
见表6.3(P110)。
第28页/共57页
机械设计
螺纹连接 28
dc
4F
[ ]
(mm) —— 设计式
∵ 螺栓为标准件 ∴ 查标准,选螺栓
第29页/共57页
机械设计
螺纹连接 29
克服螺纹中阻力所需的转矩为:
T第1 8页F/共5d272页
d2 2
Q
tan
机械设计
螺纹连接
8
旋转螺母一周,输入的驱动功W1 = 2πT1 ,有效功W2 = Q S , 故螺旋副的效率为:
W2 W1
QS
2 T1
2
Q d2 tan
d2 Q tan
tan
tan
2
由上式知:λ↑,ρ↑ —→ η↑;当:λ= 45°-ρ/2 时 —→ ηmax
其相对运动相当于楔形滑块沿楔形槽斜
面移动。故非矩形螺纹的受力分析与矩形螺
纹的受力分析过程一样。由图知:
F = Q tan(λ +ρv ) 克服螺纹中阻力所需的转矩为:
T1
F
d2 2
d2 2
Q tan v
第10页/共57页
机械设计
螺纹连接 10
螺旋副的效率为:
W2 W1
QS
2 T1
2
Q d2 tan
1)直径 大径 d 、小径 d1 、中径 d2 大径 d : 公称直径。 小径 d1 :螺纹的最小直径。 中径 d2 :齿厚 = 齿槽宽处直径,几何计算用。 d2 ≈ (d + d1 )/2 M 20 —→ d = 20 mm
机械设计基础10联接(螺纹联接)

基本原理
螺纹联接的基本原理是通过螺纹的咬合来实现连接 和紧固。
设计要求
螺纹联接的设计要考虑螺纹的类型、尺寸、加工精 度、连接长度等因素。
螺纹联接的计算和选取方法
计算方法
螺纹联接的计算方法需要考虑载荷情况、材料性能、 螺纹类型等因素。
选取方法
螺纹联接的选取应考虑加载情况、工作环境、连接 性能要求等因素。
螺纹联接的制造和装术包括螺纹加工、表面处理等环节。
2
装配技术
螺纹联接的装配技术要注意正确的装配顺序、力矩控制等。
3
检测技术
螺纹联接的检测技术包括外观检查、力矩测试等方法。
螺纹联接的常见问题和解决方法
常见问题
螺纹联接中常见的问题包括松动、脱螺纹、过紧等。
解决方法
解决螺纹联接问题的方法包括增加紧固力、正确选择螺纹类型、使用螺纹锁紧剂等。
机械设计基础10联接(螺 纹联接)
欢迎来到机械设计基础系列第十讲!本讲将介绍螺纹联接,包括定义、分类、 特点、优点、应用领域、基本原理、设计要求等内容。
螺纹联接的定义和概念
螺纹联接是一种常用的紧固连接方式,通过螺纹的互相嵌合实现连接和紧固。 它由一个内螺纹和一个外螺纹构成,通过旋转使螺纹互相咬合达到紧固的效 果。
螺纹联接的分类和特点
分类
螺纹联接可以分为内螺纹联接和外螺纹联接两种 类型。
特点
螺纹联接具有承载能力强、可重复使用、连接牢 固等特点。
螺纹联接的优点和应用领域
1 优点
2 应用领域
提供均匀的紧固力、承载能力高、便于拆卸、 可重复使用等。
广泛应用于机械制造、汽车工程、航空航天、 建筑等领域。
螺纹联接的基本原理和设计要求
机械基础第十章连接.

机械设计基础——过盈连接的倒角
液压拆装的圆锥面过盈连接
p 靠螺母压紧的圆锥面过盈连接
机械设计基础——联接
过盈连接的装配要求
❖ 配合表面应具有良好的表面粗糙度,零件经加 热或冷却后要将配合面擦净。
❖ 压合前,配合表面处理干净并涂以润滑油,以 免装配中擦伤配合面。
❖ 压入过程应连续,不宜过快;压入速度一般为 2~4mm/s(不宜超过10mm/s),并应准确控 制压入行程。
② 渐开线花键 定心方式为齿形定心,当齿 受载时,齿上的径向力能自 动定心,有利于各齿均载, 应用广泛,优先采用
三角形花键——齿数较多,齿较小,对轴强度削弱小。适 于轻载、直径较小时及轴与薄壁零件的联 接应用较少
df
机械设计基础——联接
二、花键联接的设计计算
设计:选花键类型→按轴径定花键尺寸→验算联接强度
❖ 压合时,应始终保持轴和孔同轴线,不许偏斜 ;应经常用角尺检查校正。
❖ 对于细长的薄壁件,更要细心检查其过盈量和 形状偏差,装配时尽可能垂直压入,以防变形 。
机械设计基础——联接
过盈连接的装配方法
❖ 压入配合法 可用手锤加垫块敲击压入,也可采用 各类压力机压入。
❖ 热胀配合法 又称红套,是利用金属材料热胀冷缩 的物理特性,在套与轴有一定过盈时,将套加热, 使孔胀大,然后将轴装入胀大的孔中,待冷却后, 轴与套孔就获得了传递轴向力、扭矩或轴向力与扭 矩同时作用的结合体。
粗牙:常用 细牙:螺距小,自锁 性能更好。常用于承 受冲击、振动及变载 荷、或空心、薄壁零 件上及微调装置中。
细牙缺点:牙小,相同载荷下磨损快,易脱扣。
机械设计基础——联接
2) 矩形螺纹
特点:牙形为正方形,=0,
机械设计基础 第十章 联接

§10—4 螺纹联接的基本类型及 螺纹紧固件
一、螺纹联结基本类型 二、螺纹紧固件
一、螺纹联接的基本类型
1、螺栓联接 a) 普通螺栓联接:
被连接件通孔不带螺纹,被联接件不太厚, 装拆方便。螺杆带钉头,螺杆穿过通孔与螺母配合 使用。装配后孔与杆间有间隙,并在工作中不许消 失,结构简单,可多次装拆,应用较广。
牙根强度弱,加工困难,常被梯形螺纹代替。
梯形螺纹特点: =2=30。比矩形螺纹效率略低。 牙根强度高,易于对中,易于制造,剖分螺母 可消除间隙,在螺旋传动中有广泛应用。
有粗牙普通螺纹M10和M68,请说明在静载 荷下这两种螺纹能否自锁(已知摩擦系数f = 0.1~0.15) 查得: 解: 1、首先求螺纹升角λ 。
粗牙螺纹
细牙螺纹
2、管螺纹 特点:用于管件连接的三角螺纹,=55,螺纹面间 没有间隙,密封性好,适用于压强在1.6MPa以下的 连接。管螺纹广泛用于水、汽、油管路联接中。
管螺纹除普通细牙螺纹外,还有60º 55º 、 的圆柱 管螺纹和60º 55º 、 的圆锥管螺纹。 管螺纹公称直径是管子的公称通径。
L=nP(n=2) L=nP(n=2) L=nP(n=2)
dd d dd 2 2 d2 dd 1 1 d1
P P P
d 1 1 d 1 d d 2 2 d 2 d d d d
hh h
LL L
4)螺 距 P — 相邻两牙在中径圆柱面的母线上对应 两点间的轴向距离。 5)导程(S)— 同一螺旋线上相邻两牙在中径圆柱面 的母线上的对应两点间的轴向距离。 6)线数n —螺纹螺旋线数目,一般为便于制造n≤4。 螺距、导程、线数之间关系:S=nP
M10螺纹: 螺距P=1.5mm,中径d2=9.026mm; M68螺纹: 螺距P=6mm, 中径d2=64.103mm。 M10螺纹升角:
机械设计基础第10章连接(键、花键-六)

§10-1 螺纹 §10-2 螺旋副的受力分析、效率和自锁 §10-3 机械制造常用螺纹(略) §10-4 螺纹连接的基本类型及螺纹紧固件 §10-5 螺纹连接的预紧与防松
§10-6 螺栓连接的强度计算 §10-7 螺栓的材料和许用应力 §10-8 提高螺栓连接强度的措施 §10-9 螺旋传动 (略) §10-10 滚动螺旋简介(略) §10-11 键连接和花键连接
在重型机械中常采用切向键 ——一对楔键组成。
窄面 工作面
d 潘存云教授研制
斜度1:100
装配时将两楔键楔紧,键的窄面是工作面,所产生 的压力沿切向方向分布,当双向传递扭矩时,需要 两对切向键分布成120~130 ˚ 。
二、平键联接的强度校核 1. 类型的选择 应根据各种平键的特点及具体应用情况来选择。 考虑:扭矩大小、对中性要求、轴上位置等情况。 2 . 尺寸的选择 键是一种标准件,主要尺寸:长L、宽b、高h b×h____按轴的直径由标准选取。表10-9 P156 L_____参照轮毂宽度B从标准中选取 一般: L=B-(5~10) mm 3. 材料的选择 键的材料常用45钢:σB≥ 600 MPa的碳素钢
MPa
表10-11 花键连接的许用挤压应力[σp ]和许用压强[p ]
连接工作方式
工作条件
[σp ] 或[p ] 齿面未经热处理 齿面经热处理
不良
35~50
40~70
静连接[σp ]
中等 良好
潘6存0云~教1授0研0制 80~120
100~140 120~200
动连接[p ] (空载下移动)
动连接[p ] (在载荷下移动)
二、平键联接的强度校核
1. 类型的选择 2 . 尺寸的选择 3. 材料的选择
机械设计基础10+螺纹连接与键连接

螺钉无头,无螺母,直接拧入被连接 件中,通过拧紧使螺钉产生预紧力。
螺柱连接
由一端带孔的螺柱和两个螺母组成, 一个螺母固定在被连接件上,另一个 螺母拧紧使螺柱伸出端产生预紧力。
螺纹连接的预紧与防松
预紧
在装配时,通过拧紧螺母或螺钉 ,使螺栓、螺柱或螺钉产生预拉 力,以提高连接的刚性和紧密性 。
防松
为防止螺纹连接在承受外载荷时 松动,采取各种措施来阻止松动 。常用的防松方法有弹簧垫圈、 自锁螺母、开口销等。
坏或磨损现象。
润滑
定期对键连接进行润滑 ,以减少摩擦和磨损,
延长使用寿命。
紧固
对于松动的键连接,应 及时进行紧固,防止出
现意外事故。
更换
对于磨损严重的键连接 ,应及时进行更换,防
止出现安全事故。
05
螺纹连接与键连接的发展趋势
新型螺纹连接的开发与应用
自锁螺纹连接
这种新型螺纹连接具有自锁功能,能 够在无外力的情况下保持紧密,防止 松动。广泛应用于需要高稳定性的机 械装置。
02
键连接
键连接的类型与特点
平键连接
平键连接是最常见的键连接类型,主要用于传递扭矩和旋 转运动。它具有结构简单、工作可靠、装拆方便等优点, 但承受的载荷较小。
楔键连接
楔键连接主要用于固定轴的位置,并传递扭矩。楔键连接 具有较高的承载能力和定位精度,但装拆不太方便。
花键连接
花键连接是一种多齿的键连接,能够承受较大的载荷。花 键连接具有较高的承载能力和较高的效率,但制造较复杂 ,成本较高。
键连接在机械中的应用
固定轴与轮毂
键连接主要用于固定轴与轮毂之 间的连接,如汽车变速箱中的轴
和齿轮等。
传递扭矩
机械设计基础_第十章_连接

(2)导向平键连接
导向平键连接属于动连接
返回
2 半圆键连接
特点:键的侧面为工作面,键的上表面与毂槽底
面间有间隙。但键槽较深,应力集中较大,对轴 的强度削弱较大,适于轻载、锥形轴端的连接。
半圆键实例
3 楔键连接
特点:楔键的上下面分别与毂和轴上的键槽的
底面贴合,为工作面,靠摩擦力传递转矩。
粗牙:常用 细牙:自锁性能更好。 常用于承受冲击、振 动及变载荷、或空心、 薄壁零件上及微调装 置中。
细牙缺点:牙小,相同载荷下磨损快,易脱扣。
2) 矩形螺纹
特点:牙形为正方形,=0,
所以效率高,用于传动。
3) 梯形螺纹
特点: =2=30。比矩形
螺纹效率略低,在螺旋传动 中有广泛应用。
4) 锯齿形螺纹
楔键连接
1. 平键连接
特点:平键的两侧面是工作面,上表面与轮毂键槽
底面间有间隙,定心性好。
类型:常用的平键有普通平键和导向平键。
(1)普通平键
1、类型:A型(圆头)、B型(方头)、C型(单圆头)。 2、轴上键槽加工方法:指状铣刀(A、C型)或盘铣
刀(B型)。
3、毂上键槽加工方法:插削或拉削。
普通楔键和钩头楔键
平键的选用和强度校核 1 平键的选用 (1)键的尺寸选择
断面尺寸 b×h: 根据轴径 d 查标准确定。 键长 L:应略短于轮毂的宽度,并符合标准尺寸系列。
附:键的长度系列:
10 12 14 16 18 20 22 25 32 36 40 45 50 63 70 80 90 100 110 125 140 160 …..
0.16~0.25 0.25~0.4 0.4~0.6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(10-6b)
α β
三.效率:
当匀速上升:
η
S
η =有效功/输入功 d φ 2 =Fa· S/(Fπ d2) 45 / 2 =Fa· π d2 tg φ /[Fa· tg(φ +ρ ′)π d2]
tg tg ( )
(10-8)
ρ′-当量摩擦角 , φ-升角 要效率高→ φ ↑, ρ′↓ → α ↓, φ ↑(多头)
d 2
tgφ=n p/πd2
S (n p)
(10-1)
牙型:
锯齿形
60 °
普通 α =60 ° β=30°
30 °
梯形
α =30 ° β=15°
3° 30 ° β工=3°, β非=30°
矩形 α =0 ° β =0 °
§10-2 螺旋副的受力分析、效率和自锁p.132
联接 内螺纹 拧紧、加载、 →螺旋副 传动 相对运动→ 外螺纹 顶起重物 →在轴向载荷下相对运动图(10-4,a) →水平力作用下滑块(重物)在斜面运动
机械防松 不可拆防松
锁紧螺母 弹簧垫片 对顶螺母
弹簧垫圈
返回
对顶螺母
返回
尼龙圈锁紧螺母
返回
机械防松→利用便于更换的金属元件来约束螺旋副。
F Fa
→将螺旋线沿中径展开
S (n p)
d 2
一.矩形螺纹 : (α =0○ )
图(10-4,b)
Fn ρ FR F φ F f F a Fa
FR
φ+ρ
F →加载Fa(轴向力,自重,阻力) →施加水平推力F →法向反力Fn(⊥斜面) →摩擦阻力: f·Fn=Ff →合反力FR ∵(滑块) 合力=0 FR与Fn夹角→摩擦角ρ: tgρ= f = Ff /Fn ∴FR与Fa 夹角=φ+ρ ∴F=Fa· tg(φ +ρ) (10-2a) 作用在螺旋副上的驱动力矩: d2 d2 (10-2b) T F Fa tg ( ) 2 2
T1=F d2/2=Fa tg(φ +ρ’) d2 /2 T0 螺母支持面上的摩擦阻力矩T2 T2= fc· Fa · rf (10-10) T0=T1+T2≈0.2Fad N· mm
控制、不严格控制FS(测力矩板手、定力矩板手)
(二)螺纹联接的防松
p.139
螺旋副→联接(可靠)→拧紧+ 自锁→防松? ∵靠摩擦力自锁 →不可靠 , ∴→防松 防松方法:→关键 →阻止螺旋副相对转动 摩擦防松 →使螺纹接触面间始终保持一定的压力 (纵向、横向)→始终有阻止螺旋副转 动的摩擦阻力矩。
§10-1 螺纹参数
(一)螺纹的形成:
p.131
右旋(常) 旋向 →判断方法 左旋
①顺时针旋进→右旋 ②以轴线为基准(外)
单头→联接 线数 线数一般不超过4 → 判断方法 多头→传动
二.螺纹参数:
n=1
n=2
n=3
单线ቤተ መጻሕፍቲ ባይዱ纹和多线螺纹
(二)螺纹参数:P.132 d(大径-标准直径) ;d1(小径) ;d2(中径) ; p(螺距);n(螺旋线数) ; S(导程) ; S=n p ; α (牙型角) ; β (牙側角) ;φ(升角) =?
前
言:
→ 机器 联接
机械零件 → 构件(运动单元) → 机构 动联接 零件 (制造单元) 静联接 联接 被联接件 联接件
联接 机械静联接→ 可拆联接 →螺纹、键、销 分类 不可拆联接→焊、粘、铆 机械动联接→运动副 螺 内螺纹 螺旋副→ 连接螺纹(静联接→构件) 纹 外螺纹 传动螺纹(动联接→机构)
45 / 2 max 25 / max \ 过大,制造困难
要自锁好→α↑ φ ↓(单) ;要效率高→α↓φ↑(多)
§10-3 机械制造常用螺纹及标准
ρ′↑ →α↑ 联接 ( 可靠 ) → 螺 φ ↓ →单线n=1 → 要自锁 旋 副 传动→ ρ′↓→α↓ 效率高 φ ↑→多线n>1
FR φ-ρ Fa F (10-3b)
→无论Fa多大,滑块不会自动下滑→自锁
自锁条件: F≤0 → φ ≤ ρ
二.非矩形螺纹
法向压力比矩形大 →将ρ→ρ′ (当量摩擦角)
tgρ′=f / cos β = f ′ (10-4) (当量摩擦系数) 匀速上升: F=Fa· tg(φ+ρ′) (10-5a) 匀速下降: F=Fa· tg(φ-ρ ′)
§10-4螺纹联接基本类型及螺纹联接件
一.螺纹联接基本类型
图(10-9,a) 螺栓联接 普通螺栓 铰制孔用螺栓联接 图(10-9,b) 螺钉联接 图(10-10,a) 双头螺柱联接 图(10-10,b) 紧定螺钉联接 图(10-11) e C1 d0
p.137
1. 螺 栓 联 接
2. 螺 钉 联 接
3. 双 头 螺 柱 联 接
4. 紧 定 螺 钉 联 接
二.螺纹联接件 1. 螺 栓、 螺 柱、 螺 钉 联 接 件
p.138
2. 紧 定 螺 钉、 螺 母
3. 垫 圈
§10-5螺纹联接的预紧和防松 P.139
(一)拧紧力矩T0 目的:→防止松动→提高可靠、强度、紧密性 T0 的大小: 拧紧时→锁紧力 螺栓→轴向拉力 FS 被联接件→轴向压力 →T0=T1+T2 螺纹阻力矩 T1 :(10-5b)
d2 d2 T F Fa tg ( ) 2 2
(10-5b)
(10-6a)
自锁条件: φ ≤ρ′ (10-7) α (β )↑ ρ′ ↑ → 自锁性↑ φ ↑ → 自锁性↓ 要自锁好→ α (β ) ↑ , φ ↓(单头)
d2 d2 T F Fa tg ( ) 2 2
分析: 1.当匀速上升:
2. 当匀速下降 :图(10-4,c) →施加水平支持力F (匀速下滑)
Fn
FR
Ff
当F=0→ 滑块在斜面运动状态不变 F<0→ 作用力F与假设力的方向相反→推力
d2 d2 T F Fa tg ( ) 2 2
F Fatg ( )
φ
ρ F Fa
p.134
1.三角形/普通螺纹(M) →α=60°, β=30° 螺纹 →紧固→联接(单线、α大)(粗,细) (联接) \管螺纹 →α=60°、55°→紧密 →α小、 φ大 →多线 2.传动螺纹 →效率高 梯形螺纹 Tr →α=30°, β=15° 锯齿形螺纹S →β工=3°,β非=30° 矩形螺纹 →α=0 °