大学物理下(计算题)

合集下载

大学物理考卷答案(下学期)

大学物理考卷答案(下学期)

大学物理考卷(下学期)一、选择题(每题4分,共40分)A. 速度B. 力C. 位移D. 加速度2. 在国际单位制中,下列哪个单位属于电学基本单位?A. 安培B. 伏特C. 欧姆D. 瓦特A. 物体不受力时,运动状态不会改变B. 物体受平衡力时,运动状态会改变C. 物体受非平衡力时,运动状态不变D. 物体运动时,必定受到力的作用A. 功B. 动能C. 势能D. 路程A. 速度大小B. 速度方向C. 动能D. 动量6. 下列哪个现象属于光的衍射?A. 彩虹B. 海市蜃楼C. 水中倒影D. 光照射在单缝上产生的条纹A. 恢复力与位移成正比B. 恢复力与位移成反比C. 恢复力与位移的平方成正比D. 恢复力与位移的平方成反比8. 一个电路元件的电压u与电流i的关系为u=2i+3,该元件是:A. 电阻B. 电容C. 电感D. 非线性元件A. 电磁波在真空中传播速度小于光速B. 电磁波在介质中传播速度大于光速C. 电磁波在真空中传播速度等于光速D. 电磁波在介质中传播速度等于光速10. 一个理想变压器的初级线圈匝数为1000匝,次级线圈匝数为200匝,若初级线圈电压为220V,则次级线圈电压为:A. 110VB. 220VC. 440VD. 880V二、填空题(每题4分,共40分)1. 在自由落体运动中,物体的加速度为______。

2. 一个物体做匀速圆周运动,其线速度的大小不变,但方向______。

3. 惠更斯原理是研究______现象的重要原理。

4. 一个电阻的电压为10V,电流为2A,则该电阻的功率为______。

5. 根据电磁感应定律,当磁通量发生变化时,会在导体中产生______。

6. 在交流电路中,电阻、电感和电容元件的阻抗分别为______、______和______。

7. 一个单摆在位移为0时速度最大,此时摆球所受回复力为______。

8. 光的折射率与光的传播速度成______比。

9. 一个电子在电场中受到的电势能变化量为______。

大学物理题库——计算题2

大学物理题库——计算题2

1、从一个半径为R 的均匀薄板上挖去两个直径为R/2的圆板,形成的圆洞中心在距原薄板中心R/2处,所剩薄板的质量为m 。

求此时薄板对于通过原中心而与板面垂直的轴的转动惯量。

2、水星绕太阳(太阳质量为M )运行轨道的近日点到太阳的距离为1r ,远日点到太阳的距离为2r ,G 为引力常量。

求出水星越过近日点和远日点的速率1υ和2υ的表达式。

(1/2)*(V1*Δt)*r1=(1/2)*(V2*Δt)*r2 得:V1/V2=r2/r1 据“开普勒第三定律” R^3/T^2=GM/4∏^2 r1+r2=T/∏ √GM3、证明:行星在轨道上运动的总能量为21r r GMmE +-=式中M ,m 分别为太阳和行星质量,r 1,r 2分别为太阳到行星轨道近日点和远日点距离。

4、如图所示,一质量为m 的物体,从质量为M 的圆弧形槽顶端由静止滑下,圆弧形草的半径为R ,张角为2/π。

忽略所有摩擦,求:(1)物体刚离开槽底端时,物体和槽的速度各是多少?(2)在物体从A滑到B的过程中,物体对槽所做的功?5、如图所示,均匀直杆长L,质量M,由其上端的光滑水平轴吊起而处于静止。

有一质量为m的子弹以速率 水平射入杆中而不复出,射入点在轴下3L/4。

求子弹停在杆中时杆的角速度和杆的最大偏转角的表达式。

若m=8.0g ,M=1.0kg ,L=0.40m ,υ=200m/s 则子弹停在杆中时杆的角速度有多大?6、如图所示,在光滑的水平面上有一木杆,其质量kg 0.11=m ,长m 4.0=l ,可绕通过其中点并与之垂直的轴转动。

一质量为kg 01.02=m 的子弹,以12s m 100.2-⋅⨯=υ的速度射入杆端,其方向与杆及轴正交。

若子弹陷入杆中,试求得到的角速度。

题4.17解:根据角动量守恒定理()ωω'+=212J J J式中()2222l m J =为子弹绕轴的转动惯量,ω2J 为子弹在陷入杆前的角动量,l v 2=ω为子弹在此刻绕轴的角速度。

大学物理下计算题

大学物理下计算题

第9章9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知0.04m BC =,0.03m AC =,求C 点电场强度E ρ的大小和方向(cos370.8︒≈,sin370.6︒≈).解:如解图9-4所示C 点的电场强度为12E E E =+r r rC 点电场强度E ρ的大小方向为即方向与BC 边成33.7°。

9-5 两个点电荷6612410C,810C q q --=⨯=⨯的间距为0.1m ,求距离它们都是0.1m 处的电场强度E ρ。

解:如解图9-5所示1E ρ,2E ρ沿x 、y 轴分解 电场强度为9-12.一均匀带电球壳内半径16cm R =,外半径210cm R =,电荷体密度为53210m C ρ--=⨯⋅,求:到球心距离r 分别为5cm 8cm 12cm 、、处场点的场强. 解: 根据高斯定理0d ε∑⎰=⋅q S E sϖϖ得解图9-5解图9-4当5=r cm 时,0=∑q ,得8=r cm 时,∑q 3π4p=3(r )31R - ()20313π43π4rR r E ερ-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -32(R )31R ()42031321010.4π43π4⨯≈-=rR R E ερ1C N -⋅ 沿半径向外. 9-13 两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如题图9-13所示,(1)求图中三个区域的场强1E ρ,2E ρ,3E ρ的表达式; (2)若624.4310C m σ--=⨯⋅,那么,1E ρ,2E ρ,3E ρ各多大解:(1)无限大均匀带电平板周围一点的场强大小为在Ⅰ区域Ⅱ区域Ⅲ区域(2)若624.4310C m σ--=⨯⋅则9-17 如题图9-17所示,已知2810m a -=⨯,2610m b -=⨯,81310C q -=⨯,82310C q -=-⨯,D 为12q q 连线中点,求: (1)D 点和B 点的电势;(2) A 点和C 点的电势;(3)将电量为9210C -⨯的点电荷q 0由A 点移到C 点,电场力所做的功;(4)将q 0由B 点移到D 点,电场力所做的功。

大学物理(下)习题

大学物理(下)习题
定义电偶极矩为: P ql e
E
Q
E
r
l
Pe
r l

r
2
l /4
2

3/2
E
r
3
p 4 π 0 r
3
q
q
结论:电偶极子中垂线上,距离中心较远处一点
的场强,与电偶极子的电矩成正比,与该点离中心 的距离的三次方成反比,方向与电矩方向相反。
当r R 高斯面内电荷为 0
高斯面 E 0
均匀带电球壳
rR
高斯面
结果表明:
Q
均匀带电球壳外的场强 分布正像球面上的电荷 都集中在球心时所形成 的点电荷在该区的场强 分布一样。在球面内的 场强均为零。
R
r
例5:求无限大均匀带电平板的场强分布。
设面电荷密度为 e 。
解:由于电荷分布对于求场点 p到平面的垂线 op 是对称的, 所以 p 点的场强必然垂直于该 平面。
3 rR Q E r r 3 1 3 1 3 0 r1 4π 0 r1
r1 R
Q
E
r 1 Q E r2 r 3 2 3 0 4π 0 R
r2 R
r
R
例4:均匀带电的球壳内外的场强分布。 设球壳半径为 R,所带总电量为 Q。 解:场源的对称性决定着场强分布的对称性。
需注意方向:
A

C
B

由图可知,在A 区和B区场强均为零。C 区场强 的方向从带正电的平板指向带负电的平板。 场强大小为一个带电平板产生的场强的两倍。

2 0
EC E E 2

0
A

(完整word)大学物理习题册计算题及答案

(完整word)大学物理习题册计算题及答案

大学物理习题册计算题及答案三 计算题1. 一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点。

弹簧的劲度系数k = 25N ·m -1。

(1) 求振动的周期T 和角频率.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相. (3) 写出振动的数值表达式。

解:(1) 1s 10/-==m k ω 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7。

5 cm,v 0 〈 0 由 2020)/(ωv +=x A得 3.1220-=--=x A ωv m/s π=-=-31)/(tg 001x ωφv 或 4/3∵ x 0 > 0 , ∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI )振动方程为)310cos(1015)cos(2πϕω+⨯=+=-t t A x (SI )﹡2. 在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T = 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板。

解:选平板位于正最大位移处时开始计时,平板的振动方程为 t A x π4cos = (SI)t A x ππ4cos 162-=(SI ) (1) 对物体有 x m N mg=- ① t A mg x m mg N ππ4cos 162+=-= (SI) ② 物对板的压力为 t A mg N F ππ4cos 162--=-= (SI )t ππ4cos 28.16.192--= ③(2) 物体脱离平板时必须N = 0,由②式得 04cos 162=+t A mg ππ (SI )A qt 2164cos π-=π 若能脱离必须 14cos ≤t π (SI )即 221021.6)16/(-⨯=≥πg A m三 计算题﹡1。

大学物理下册期末复习计算题

大学物理下册期末复习计算题

大学物理下册期末复习计算题第7章真空中的静电场*1.一半径为R 的带电导体球,电荷为-Q 。

求:球内、外任意一点的电场强度。

1.解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)*2.一半径为R 的带电导体球,电荷为Q 。

求:(1)球内、外任意一点的电场强度;(2)球内、外任意一点电势。

解:由高斯定理可求出电场强度的分布(3分) (2分)当r>R 时 (3分) 当r ≤R 时 (4分)⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 042020πεπε=⎪⎩⎪⎨⎧<>R r R r r q E0 420πε=r qdr r q V r 02044πεπε=⎰∞=R qdr r q dr V RRr 020440πεπε=+⎰⎰∞=⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 0 4202πεπε=*3. 如图所示,一长为L ,半径为R 的圆柱体,置于场强为E 的均匀电场中,圆柱体轴线与场强方向平行,求穿过圆柱体下列端面的电通量。

(1)左端面(2)右端面 (3)侧面 (4)整个表面解: 根据电通量定义 (1)左端面⎰⎰⎰-=-==⋅=121cos s s R E dS E EdS s d E ππφ(4分)(2)右端面⎰⎰===⋅=2030cos R E ES EdS s d E s πφ(4分) (3)侧面⎰⎰==⋅=02cos 2πφEdS s d E s (1分)(4)整个表面0321=++=s s s s φφφφ(3分)4. 三个点电荷1q 、2q 和3q -在一直线上,相距均为R 2,以1q 与2q 的中心O 作一半径为R 2的球面,A 为球面与直线的一个交点,如图。

大学物理习题选编(主编:陈晓)(下)

大学物理习题选编(主编:陈晓)(下)

振动习题一、选择题1、 已知一质点沿y轴作简谐振动.其振动方程为)4/3cos(π+=t A y ω.则与之对应的振动曲线是 [ B ]2、 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为A 、T /12B 、T /8.C 、T /6.D 、T /4 [ C ] 3、 将两个振动方向,振幅,周期都相同的简谐振动合成后,若合振幅和分振动的振幅相同,则这两个分振动的位相差是: A 、6π; B 、3π; C 、2π; D 、23π [ D ]二、填空题4、 一简谐振动曲线如图所示,则由图可确定在t = 2s 时刻质点的位移为 0 ,速度为 3π cm/s .5、 一简谐振动的旋转矢量如图所示,振幅矢量长2cm ,则该简谐振动的初相为 π/4 .振动方程为x=2cos(πt+π/4) cm .6、 一简谐振子的振动曲线如图所示,则以余弦函数表示的振动方程为x=0.04cos(πt+π/2) m 。

三、计算题7、 质量为2 kg 的质点,按方程)]6/(5sin[2.0π-=t x 沿着x 轴振动.求: (1) t = 0时,作用于质点的力的大小;(2) 作用于质点的力的最大值和此时质点的位置.t-解:(1))65cos(π-==t dt dx v )65sin(5π--==t dt dv aN t ma F 5)65sin(520=-⨯==∴π(2)N F10max=m x 2.0±=∴8、 一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解:(1) T=8s )/(42s rad T ππω==∴ 设振动方程为)4cos(ψπ+=A xt=0时,5cos 0-==ψA x①t=2时,5)2cos(0=+=πψA x ② 由①②得,1=ψtg ,考虑到00>vπψ43-=∴ 代入①得,cm A 25=)434cos(25ππ-=∴t x (cm)(2))434sin(245πππ--==t dt dx vππ45222450=⨯=v (cm/s)波动习题1一、选择题1、 一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y ,则该波在t = 0.5 s 时刻的波形图是 [ B ]m )-m )2、 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则A 、波的频率为a .B 、波的传播速度为 b/a .C 、波长为 π / b .D 、波的周期为2π / a . [ D ] 3、 如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为A 、])/(cos[0φω+-=u x t Ay . B 、)]/([cos u x t A y +=ω. C 、})]/([cos{0φω+-=u x t A y . D 、})]/([cos{0φω++=u x t A y . [ D ] 二、填空题4、 A ,B 是简谐波波线上距离小于波长的两点.已知,B 点振动的相位比A 点落后π31,波长为λ = 3 m ,则A ,B 两点相距L = ____1/2____________m .5、 已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为 π.6、 请按频率递增的顺序,写出比可见光频率高的电磁波谱的名称___紫外线_______ ;_______X 射线___; ___γ射线______ . 三、计算题7、 图为t = T / 4 时一平面简谐波的波形曲线,求其波的表达式。

大学物理(下)题库

大学物理(下)题库
2. 在单缝衍射实验中,当缝宽为a时,屏上P点为第三级暗纹,若把缝宽缩小为原来的二分之一,则P点处的条纹变化为第_______级_______纹。
3. 在复色光照射下的单缝衍射图样中,其中某一波长的第3级明纹位置恰与波长λ=600nm的单色光的第2级明纹位置重合,此光波的波长是_______。
4.一束平行单色光垂直入射在一光栅上,若光栅的透光缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为__________。
10: 在作单缝衍射实验时,缝宽为0.6 mm,屏幕距单缝40 cm,用波长为600nm的单色光垂直照射单缝,求屏幕上中央亮纹的宽度及第三级极小到中心点的距离。
11:用白光垂直照射一光栅时,能在30o衍射方向上观察到λ1=6000的第三级明纹,但在该方向上不见λ2=4500的第四级明纹,求光栅常数和最小缝宽。(1=10-10m)
4.用红光和紫光分别做杨氏双缝干涉实验,则所产生的干涉条纹的间距哪种光大?___________.
5. 在硅片上(n1=3.4)生成一层二氧化硅薄膜,并作成劈尖形状,如图。二氧化硅的折射率n2= 1.5,今用波长=590nm的单色光垂直照射到二氧化硅上,则劈尖边缘(棱边)是____纹,现共看到5个亮条纹,且膜的最厚处恰为亮条纹,则膜的厚度为_________。
一定量的理想气体,从a状态(2P1,V1)经历如图所示的直线过程到b状态(P1,2V1),则ab过程中系统作功A=___________,内能改变ΔE=___________。
计算题
设一动力暖气装置,由一台卡诺热机和一台卡诺制冷机组合而成。热机靠燃料燃烧时释放的热量工作并向暖气系统中的水放热。同时,热机带动制冷机。制冷机自天然蓄水池中吸热,也向暖气系统放热。假定热机锅炉的温度为t1=2100C,天然蓄水池中水的温度为t2=150C,暖气系统的温度为t3=600C,热机从燃料燃烧时获得热量2.1×107J,计算暖气系统所得热量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方向垂直纸面向里。
通过微分面积 的磁通量为
通过矩形线圈的磁通量为
感生电动势
时,回路中感应电动势的实际方向为顺时针; 时,回路中感应电动势的实际方向为逆时针。
13-3均匀磁场 被限制在半径R=10cm的无限长圆柱形空间内,方向垂直纸面向里。取一固定的等腰梯形回路ABCD,梯形所在平面的法向与圆柱空间的轴平行,位置如题图13-3所示。设磁场以 的匀速率增加,已知 , ,求等腰梯形回路ABCD感生电动势的大小和方向。
第9章
9-4直角三角形ABC如题图9-4所示,AB为斜边,A点上有一点荷 ,B点上有一点电荷 ,已知 , ,求C点电场强度 的大小和方向( , ).
解:如解图9-4所示C点的电场强度为
C点电场强度 的大小
方向为
即方向与BC边成33.7°。
9-5两个点电荷 的间距为0.1m,求距离它们都是0.1m处的电场强度 。
而 在O点产生的 的大小为
和 方向相反,大小相等.即 。
直导线 在O点产生的 。
直导线 在O点产生的 ,方向垂直纸面向外。
则O点总的磁感强度大小为 ,方向垂直纸面向外。
2.一载有电流 的长导线弯折成如题图所示的形状,CD为1/4圆弧,半径为R,圆心O在AC,EF的延长线上.求O点处磁场的场强。
解:因为O点在AC和EF的延长线上,故AC和EF段对O点的磁场没有贡献。
解:设顺时针方向为等腰梯形回路绕行的正方向.则t时刻通过该回路的磁通量
,其中S为等腰梯形ABCD中存在磁场部分的面积,其值为
感应电动势
代入已知数值得
“–”说明,感应电动势的实际方向为逆时针,即沿ADCBA绕向。用楞次定律也可直接判断感应电动势的方向为逆时针绕向。
13-4如题图13-4所示,有一根长直导线,载有直流电流I,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度 沿垂直于导线的方向离开导线.设t=0时,线圈位于图示位置,求:
4.一根很长的圆柱形实心铜导线半径为 ,均匀载流为 。试计算:
(1)如题图(a)所示,导线内部通过单位长度导线剖面的磁通量;
(2)如题图(b)所示,导线外部通过单位长度导线剖面的磁通量.
解:由磁场的安培环路定理可求得磁感应强度分布情况为
然后求磁通量。沿轴线方向在剖面取面元 ,考虑到面元上各点 相同,故穿过面元的磁通量 ,通过积分,可得单位长度导线内的磁通量。
(1)求图中三个区域的场强 , , 的表达式;
(2)若 ,那么, , , 各多大?
解:(1)无限大均匀带电平板周围一点的场强大小为
在Ⅰ区域
Ⅱ区域
Ⅲ区域
(2)若 则
9-17如题图9-17所示,已知 , , , ,D为 连线中点,求:
(1)D点和B点的电势;
(2)A点和C点的电势;
(3)将电量为 的点电荷q0由A点移到C点,电场力所做的功;
(3)外圆筒导体内( )的B;
(4)电缆外( )各点的B。
解:在电缆的横截面,以截面的轴为圆心,将不同的半径 作圆弧并取其为安培积分回路 ,然后,应用安培环路定理求解,可得离轴不同距离处的磁场分布。
(1)当 时, , ,得B=0;
(2)当 时,同理可得 ;
(3)当 时,有 ,得
(4)当 时,B=0;
6.如题图所示,一根长直导线载有电流 ,矩形回路载有电流 ,已知 , 试计算:
(1)作用在回路各边上的安培力;
(2)作用在回路上的合力.
解:(1)上下导线所受安培力大小相等,方向相反。
左右导线所受安培力大小分别为:
线框所受总的安培力 为左、右两边安培力 和 之矢量和,故合力的大小为:
合力的方向朝左,指向直导线.
(1)空间场强分布;
(2)两圆柱面之间的电势差。
解: (1)由高斯定理求对称性电场的场强分布
取同轴圆柱形高斯面,侧面积 ,则
小圆柱面内: ,
两圆柱面间: , ,
方向沿径向向外
大圆柱面外: ,
(2)
9-21在半径为R1和R2的两个同心球面上分别均匀带电q1和q2,求在 , , 三个区域内的电势分布。
解:利用高斯定理求出空间的电场强度:
Cห้องสมุดไป่ตู้段:
DE段
O点总磁感应强度为
,方同垂直纸面向外.
3.如题图所示,在长直导线AB内通有电流 ,有一与之共面的等边三角形CDE,其高为 ,平行于直导线的一边CE到直导线的距离为 。求穿过此三角形线圈的磁通量。
解:建立如解图所示坐标,取距电流AB为 远处的宽为 且与AB平行的狭条为面积元
则通过等边三角形的磁通量为:
第13章
13-1如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为 , 。已知两导线中电流都为 ,其中I0和 为常数,t为时间。导线框长为a,宽为b,求导线框中的感应电动势。
解:无限长直电流激发的磁感应强度为 。取坐标Ox垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。取回路的绕行正方向为顺时针。由场强的叠加原理可得x处的磁感应强度大小
则空间电势的分布:
第11章
1.用两根彼此平行的长直导线将半径为R的均匀导体圆环联到电源上,如题图所示,b点为切点,求O点的磁感应强度。
解:先看导体圆环,由于 和 并联,设大圆弧有电流 ,小圆弧有电流 ,必有: 由于圆环材料相同,电阻率相同,截面积S相同,实际电阻与圆环弧的弧长 和 有关,即:
则 在O点产生的 的大小为
解:如解图9-5所示
, 沿x、y轴分解
电场强度为
9-12.一均匀带电球壳内半径 ,外半径 ,电荷体密度为 ,求:到球心距离 分别为 处场点的场强.
解: 根据高斯定理 得
当 时, ,得
时,
, 方向沿半径向外.
cm时,
沿半径向外.
9-13两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如题图9-13所示,
(1)导线内部通过单位长度导线剖面的磁通量
(2)导线外部通过单位长度导线剖面的磁通量.
5.有一根很长的同轴电缆,由两个同轴圆筒状导体组成,这两个圆筒状导体的尺寸如题图11-19所示。在这两导体中,有大小相等而方向相反的电流 流过。求:
(1)内圆筒导体内各点( )的磁感应强度B;
(2)两导体之间( )的B;
(4)将q0由B点移到D点,电场力所做的功。
解:(1)建立如解图9-17所示坐标系,由点电荷产生的电势的叠加得
同理,可得
(2)
(3)将点电荷q0由A点移到C点,电场力所做的功
(4)将q0由B点移到D点,电场力所做的功
9-20半径为 和 ( > )的两无限长同轴圆柱面,单位长度上分别带有电量 和 ,试求:
相关文档
最新文档