数据结构线性表知识总结
线性表 知识点总结

线性表知识点总结线性表的特点:1. 有序性:线性表中的元素是有序排列的,每个元素都有唯一的前驱和后继。
2. 可变性:线性表的长度是可变的,可以进行插入、删除操作来改变表的元素数量。
3. 线性关系:线性表中的元素之间存在明确的前驱和后继关系。
4. 存储结构:线性表的存储结构有顺序存储和链式存储两种方式。
线性表的操作:1. 查找操作:根据元素的位置或值来查找线性表中的元素。
2. 插入操作:将一个新元素插入到线性表中的指定位置。
3. 删除操作:将线性表中的某个元素删除。
4. 更新操作:将线性表中的某个元素更新为新的值。
线性表的顺序存储结构:顺序存储结构是将线性表的元素按照其逻辑顺序依次存储在一块连续的存储空间中。
线性表的顺序存储结构通常采用数组来实现。
数组中的每个元素都可以通过下标来访问,因此可以快速的进行查找操作。
但是插入和删除操作会导致元素位置的变动,需要进行大量数据搬移,效率较低。
线性表的链式存储结构:链式存储结构是将线性表的元素通过指针相连,形成一个链式结构。
每个元素包含数据和指向下一个元素的指针。
链式存储结构不需要连续的存储空间,可以动态分配内存,适合插入和删除频繁的场景。
但是链式结构的元素访问不如顺序结构高效,需要通过指针来逐个访问元素。
线性表的应用场景:1. 线性表适用于数据元素之间存在明确的前后关系,有序排列的场景。
2. 顺序存储结构适用于元素的插入和删除操作较少,对元素的随机访问较频繁的场景。
3. 链式存储结构适用于插入和删除操作较频繁的场景,对元素的随机访问较少。
线性表的操作的时间复杂度:1. 查找操作:顺序存储结构的时间复杂度为O(1),链式存储结构的时间复杂度为O(n)。
2. 插入和删除操作:顺序存储结构的时间复杂度为O(n),链式存储结构的时间复杂度为O(1)。
线性表的实现:1. 顺序存储结构的实现:使用数组来存储元素,通过下标来访问元素。
2. 链式存储结构的实现:使用链表来实现,每个元素包含数据和指向下一个元素的指针。
线性表知识点总结

线性表知识点总结在数据结构的世界里,线性表是一种基础且重要的结构。
它就像是我们日常生活中排队的队伍,元素一个接一个地排列,有着明确的先后顺序。
线性表,简单来说,是由零个或多个数据元素组成的有限序列。
这里的“有限”很关键,意味着它的长度是有边界的。
而且,每个元素在这个序列中都有其特定的位置。
线性表有两种常见的存储结构:顺序存储结构和链式存储结构。
顺序存储结构,我们可以把它想象成一排紧密相连的格子。
每个格子里存放着一个数据元素。
因为这些格子是依次排列的,所以通过下标就能快速地找到对应的元素。
这种存储方式的优点是随机访问速度快,比如要获取第 n 个元素,直接通过下标就能很快找到。
但它也有缺点,那就是插入和删除操作比较麻烦。
比如说,要在中间插入一个元素,就需要把后面的元素都往后挪一格,这可是个费时费力的活儿。
删除也是同理,需要把后面的元素都往前移。
链式存储结构就灵活多了。
每个元素都有一个指向下一个元素的指针,就像小朋友手拉手一样。
这样,插入和删除操作就变得相对简单。
要插入一个元素,只需要修改相关的指针就可以了。
删除也是类似,修改指针就行。
但是,链式存储结构的随机访问就没那么快了,要找到第 n 个元素,得顺着指针一个一个地找过去。
线性表的基本操作包括创建线性表、销毁线性表、清空线性表、判断线性表是否为空、获取线性表的长度、获取指定位置的元素、查找指定元素在线性表中的位置、在指定位置插入元素、删除指定位置的元素等。
创建线性表就是为线性表分配存储空间,并进行一些初始化的设置。
销毁线性表则是释放掉之前分配的存储空间,以免造成资源浪费。
清空线性表是把线性表中的元素都清除掉,但存储空间还保留着。
判断线性表是否为空,这很容易理解,就是看看里面有没有元素。
获取线性表的长度,就是数一数里面有多少个元素。
获取指定位置的元素,通过给定的位置下标,能够准确地找到并返回那个位置上的元素值。
查找指定元素在线性表中的位置,需要从头到尾逐个比较元素,直到找到为止。
数据结构考研笔记整理(全)

数据结构考研笔记整理(全)数据结构考研笔记整理数据结构是计算机科学中非常重要的一门课程,对于计算机专业的学生来说,考研复习过程中对数据结构的准备非常关键。
因此,我们需要系统地整理数据结构的相关知识点,以便更好地理解和掌握。
一、线性表线性表是数据结构中最基本的一种数据结构,它是一种有序的数据元素的集合。
常见的线性表有顺序表和链表。
1. 顺序表顺序表是将数据元素存放在一块连续的存储空间中,通过元素的下标来访问。
具有随机访问的特点,但插入和删除操作比较麻烦。
适用于查找操作频繁的场景。
2. 链表链表是将数据元素存放在任意的存储空间中,通过指针来连接各个元素。
具有插入和删除操作方便的特点,但不支持随机访问。
适用于插入和删除操作频繁的场景。
二、栈和队列栈和队列是特殊的线性表,它们都具有先进先出的特点。
1. 栈栈是一种特殊的线性表,只能在表的一端进行插入和删除操作,即“先进后出”。
常见的应用有函数调用的过程中的参数传递、表达式求值等。
2. 队列队列也是一种特殊的线性表,只能在表的一端进行插入操作,而在另一端进行删除操作,即“先进先出”。
常见的应用有任务调度、缓冲区管理等。
三、树树是一种非常重要的非线性数据结构,它由节点和边组成。
树具有层次结构,常见的树结构有二叉树、二叉搜索树和平衡二叉树等。
1. 二叉树二叉树是每个节点最多有两个子树的树结构,包括左子树和右子树。
二叉树的遍历方式有前序遍历、中序遍历和后序遍历。
2. 二叉搜索树二叉搜索树是一种特殊的二叉树,它的左子树中的所有节点都小于根节点,右子树中的所有节点都大于根节点。
具有快速查找和插入的特点。
3. 平衡二叉树平衡二叉树是一种特殊的二叉搜索树,它的左右子树的高度差不超过1。
通过旋转操作可以保持树的平衡性。
四、图图是一种非常复杂的非线性数据结构,它由顶点和边组成。
图可以分为有向图和无向图,常见的图算法有深度优先搜索和广度优先搜索。
1. 深度优先搜索深度优先搜索是一种用于遍历或搜索图和树的算法,它从一个节点开始,尽可能深地访问每个节点的所有子节点,直到没有子节点为止。
数据结构的重点知识点

数据结构的重点知识点数据结构是计算机科学中非常重要的基础知识,它主要研究数据的组织、存储和管理方式。
在学习数据结构的过程中,有一些重点知识点需要特别关注和理解。
本文将从以下几个方面介绍数据结构的重点知识点。
一、线性表线性表是数据结构中最基本、最简单的一种结构。
它包括顺序表和链表两种实现方式。
1. 顺序表顺序表是线性表的一种实现方式,它使用一个连续的存储空间来存储数据。
顺序表的主要操作包括插入、删除和查找等。
2. 链表链表是线性表的另一种实现方式,它使用节点来存储数据,并通过指针将这些节点连接起来。
链表的主要操作包括插入、删除和查找等。
二、栈和队列栈和队列是线性表的特殊形式,它们的主要特点是插入和删除操作只能在特定的一端进行。
1. 栈栈是一种先进后出(LIFO)的数据结构,它的插入和删除操作都在栈顶进行。
栈的主要操作包括入栈和出栈。
2. 队列队列是一种先进先出(FIFO)的数据结构,它的插入操作在队尾进行,删除操作在队头进行。
队列的主要操作包括入队和出队。
三、树和二叉树树是一种用来组织数据的非线性结构,它由节点和边组成。
树的重点知识点主要包括二叉树、二叉搜索树和平衡树等。
1. 二叉树二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点。
二叉树的主要操作包括遍历、插入和删除等。
2. 二叉搜索树二叉搜索树是一种特殊的二叉树,它的左子树中的所有节点的值都小于根节点的值,右子树中的所有节点的值都大于根节点的值。
二叉搜索树的主要操作包括查找、插入和删除等。
四、图图是由节点和边组成的一种复杂数据结构。
图的重点知识点主要包括有向图和无向图、图的遍历和最短路径算法等。
1. 有向图和无向图有向图和无向图是图的两种基本形式,它们的区别在于边是否有方向。
有向图的边是有方向的,而无向图的边没有方向。
2. 图的遍历图的遍历是指对图中的每个节点进行访问的过程。
常见的图遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
数据结构第1讲---线性表

34F2 地址 被释放,变 量P与地址 34F2没有关 系
p1^
200 34F2
34F2
new(p1) ——向计算机申请内存地址 p1^:=200 ——给p1指向的单元赋值 dispose(p1) ——释放存储单元
链式结构——什么是指针
Type p=^integer; arr=array[1..4] of char; arrp = ^arr; Var p1:p; p2:arrp;
线性结构 数据的逻辑结构 数 据 结 构 树形结构 图形结构 数据的存储结构 顺序存储
链式存储
数据结构的基本运算 :查找、插入、删除等
三、线性结构——线性表
1、线性表的概念
线性表是由n(n≥0)个具有相同特性数据元素(结点)
a1,a2,…,an组成的有限序列。
线性表的长度:所含元素的个数,用n表示,n>=0。
在我们生活中有哪些属于线性表的例子,列举几个。 1、英文字母表(A,B,…,Z)是线性表, 表中每个字母是一个数据元素(结点)
2、学生成绩表中,每个学生及其成绩是一
个数据元素,其中数据元素由学号、姓名、
各科成绩及平均成绩等数据项组成。
4、线性表的顺序存储
顺序存储是线性表的一种最 简单的存储结构,存储方式是: 在内存中为线性表开辟一块连 续的存储空间。用数组来存放 每一个节点。
[例4-2] 法雷序列
[问题描述]对任意给定的一个自然数n(n<=100),将 分母小于等于n的不可约的真分数按上升次序排序,并 且在第一个分数前加0/1,而在最后一个分数后加1/1, 这个序列称为n级的法雷序列。 当n=8时序列为:0/1, 1/8, 1/7, 1/6,1/5, 1/4,2/7,1/3,3/8, 2/5,3/7,1/2,4/7,3/5,5/8,2/3,5/7,3/4, 4/5,5/6,6/7,7/8, 1/1 。 编程求出n级的法雷序列,每行输出10个分数。
数据结构大纲知识点

数据结构大纲知识点一、绪论。
1. 数据结构的基本概念。
- 数据、数据元素、数据项。
- 数据结构的定义(逻辑结构、存储结构、数据的运算)- 数据结构的三要素之间的关系。
2. 算法的基本概念。
- 算法的定义、特性(有穷性、确定性、可行性、输入、输出)- 算法的评价指标(时间复杂度、空间复杂度的计算方法)二、线性表。
1. 线性表的定义和基本操作。
- 线性表的逻辑结构特点(线性关系)- 线性表的基本操作(如初始化、插入、删除、查找等操作的定义)2. 顺序存储结构。
- 顺序表的定义(用数组实现线性表)- 顺序表的基本操作实现(插入、删除操作的时间复杂度分析)- 顺序表的优缺点。
3. 链式存储结构。
- 单链表的定义(结点结构,头指针、头结点的概念)- 单链表的基本操作实现(建立单链表、插入、删除、查找等操作的代码实现及时间复杂度分析)- 循环链表(与单链表的区别,操作特点)- 双向链表(结点结构,基本操作的实现及特点)三、栈和队列。
1. 栈。
- 栈的定义(后进先出的线性表)- 栈的基本操作(入栈、出栈、取栈顶元素等操作的定义)- 顺序栈的实现(存储结构,基本操作的代码实现)- 链栈的实现(与单链表的联系,基本操作的实现)- 栈的应用(表达式求值、函数调用栈等)2. 队列。
- 队列的定义(先进先出的线性表)- 队列的基本操作(入队、出队、取队头元素等操作的定义)- 顺序队列(存在的问题,如假溢出)- 循环队列的实现(存储结构,基本操作的代码实现,队空和队满的判断条件)- 链队列的实现(结点结构,基本操作的实现)- 队列的应用(如操作系统中的进程调度等)四、串。
1. 串的定义和基本操作。
- 串的概念(字符序列)- 串的基本操作(如连接、求子串、比较等操作的定义)2. 串的存储结构。
- 顺序存储结构(定长顺序存储和堆分配存储)- 链式存储结构(块链存储结构)3. 串的模式匹配算法。
- 简单的模式匹配算法(Brute - Force算法)的实现及时间复杂度分析。
数据结构必考知识点总结

数据结构必考知识点总结在准备考试时,了解数据结构的基本概念和相关算法是非常重要的。
以下是一些数据结构的必考知识点总结:1. 基本概念数据结构的基本概念是非常重要的,包括数据、数据元素、数据项、数据对象、数据类型、抽象数据类型等的概念。
了解这些概念有助于更好地理解数据结构的本质和作用。
2. 线性表线性表是数据结构中最基本的一种,它包括顺序表和链表两种实现方式。
顺序表是将数据元素存放在一块连续的存储空间内,而链表是将数据元素存放在若干个节点中,每个节点包含数据和指向下一个节点的指针。
了解线性表的概念和基本操作是非常重要的。
3. 栈和队列栈和队列是两种特殊的线性表,它们分别具有后进先出和先进先出的特性。
栈和队列的实现方式有多种,包括数组和链表。
掌握栈和队列的基本操作和应用是数据结构的基本内容之一。
4. 树结构树是一种非线性的数据结构,它包括二叉树、多路树、二叉搜索树等多种形式。
了解树的基本定义和遍历算法是必考的知识点。
5. 图结构图是一种非线性的数据结构,它包括有向图和无向图两种形式。
了解图的基本概念和相关算法是非常重要的,包括图的存储方式、遍历算法、最短路径算法等。
6. 排序算法排序是一个非常重要的算法问题,掌握各种排序算法的原理和实现方式是必不可少的。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
7. 查找算法查找是另一个重要的算法问题,包括顺序查找、二分查找、哈希查找、树查找等。
了解各种查找算法的原理和实现方式是必考的知识点之一。
8. 算法复杂度分析算法的时间复杂度和空间复杂度是评价算法性能的重要指标,掌握复杂度分析的方法和技巧是非常重要的。
9. 抽象数据类型ADT是数据结构的一种概念模型,它包括数据的定义和基本操作的描述。
了解ADT的概念和实现方式是非常重要的。
10. 动态存储管理动态存储管理是数据结构中一个重要的问题,包括内存分配、内存释放、内存回收等。
了解动态存储管理的基本原理和实现方式是必考的知识点之一。
线性表知识点总结

线性表知识点总结一、概述线性表是数据结构中的一种基本结构,它是一种线性的、有序的、可重复的数据结构。
线性表的存储结构有两种:顺序存储和链式存储。
二、顺序存储顺序存储的方式是把线性表的元素按照顺序存储在一个一维数组中,它的优点是随机访问时间复杂度为O(1),缺点是插入和删除操作时间复杂度为O(n)。
1. 初始化线性表的初始化需要先定义一个结构体,包含数据元素和线性表的长度两个成员。
```c#define MaxSize 100typedef struct{ElemType data[MaxSize];int length;}SqList;```2. 插入线性表的插入操作需要先判断是否有足够的空间进行插入操作,然后将插入位置后面的元素后移,最后将待插入的元素插入到插入位置。
```cStatus ListInsert(SqList &L, int i, ElemType e){int j;if(i<1 || i>L.length+1){return ERROR;}if(L.length>=MaxSize){return ERROR;}for(j=L.length;j>=i;j--){L.data[j]=L.data[j-1];}L.data[i-1]=e;L.length++;return OK;}```3. 删除线性表的删除操作需要先判断要删除的位置是否合法,然后将删除位置后面的元素前移,最后将最后一个元素赋值为空。
```cStatus ListDelete(SqList &L, int i, ElemType &e){int j;if(i<1 || i>L.length){return ERROR;}e=L.data[i-1];for(j=i;j<L.length;j++){L.data[j-1]=L.data[j];}L.length--;return OK;}```4. 查找线性表的按值查找操作需要遍历整个数组进行查找,时间复杂度为O(n),按位查找可以通过数组下标直接访问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
2017/9/7
线性表的特点
同一性:线性表由同类数据元素组成,每一
个ai必须属于同一数据对象。 有穷性:线性表由有限个数据元素组成,表 长度就是表中数据元素的个数。 有序性:线性表中相邻数据元素之间存在着 序偶关系<ai,ai+1>。
5
2017/9/7
2.1.2 线性表的抽象数据类型定义
数据结构线性表知识总结
1
2017/9/7
第2章 线性表
2.1 2.2 2.3 2.4
线性表的概念及运算 线性表的顺序存储 线性表的链式存储 一元多项式的表示及相加
2
2017/9/7
2.1
线性表的概念及运算
线性表的逻辑结构 线性表的抽象数据类型定义
2.1.1 2.1.2
3
2017/9/7
loc(ai) =loc(a1)+(i-1)×k
8
2017/9/7
顺序存储结构示意图
存储地址
Loc(a1)
内存空间状态
a1
逻辑地址
1
Loc(a1)+(2-1)k
a2
2
…
loc(a1)+(i-1)k
…
ai
…
i
…
loc(a1)+(n-1)k
…
an
…
n
...
loc(a1)+(maxlen-1)k
空闲
9
2017/9/7
顺序存储结构的C语言定义
#define maxsize=线性表可能达到的最大长度; typedef struct { ElemType elem[maxsize]; /* 线性表占用的数组空间*/ int last; /*记录线性表中最后一个元素在数组elem[ ] 中的位置(下标值),空表置为-1*/ } SeqList;
移动元素
插入元素
4 4
9 9
15 21
28 28
30 30
30 30
42 42
51 51
62 62
15
2017/9/7
插入运算
int InsList(SeqList *L,int i,ElemType e) { int k; if( (i<1) || (i>L->last+2) ) /*首先判断插入位置是否合法*/ { printf(“插入位置i值不合法”);return(ERROR); } if(L->last>=maxsize-1) { printf(“表已满无法插入”); return(ERROR); } for(k=L->last;k>=i-1;k--) /*为插入元素而移动位置*/ L->elem[k+1]=L->elem[k]; L->elem[i-1]=e; /*在C语言中数组第i个元素的下标为i-1*/ L->last++; return(OK); } 算法演示(此处连接算法演示程序)。
1.
12
2017/9/7
线性表的查找运算
int Locate(SeqList L,ElemType e) { i=0 ; /*i为扫描计数器,初值为0,即从第一个元素开始比较*/ while ((i<=st)&&(L.elem[i]!=e) ) i++; /*顺序扫描表,直到找到值为key的元素,或扫描到表尾而没找到*/ if (i<=st) return(i); /*若找到值为e的元素,则返回其序号*/ else return(-1); /*若没找到,则返回空序号*/ }
注意区分元素的序号和数组的下标,如a1的序号为1,而 其对应的数组下标为0。
10
2017/9/7
2.2.2 线性表顺序存储结构的基本运算
线性表的基本运算:
1.
2.
3. 4.
查找操作 插入操作 删除操作 顺序表合并算法
线性表顺序存储结构的优缺点分析
11
2017/9/7
查找操作
线性表的两种基本查找运算
按序号查找GetData(L,i):要求查找线性表L中第i 个数据元素,其结果是L.elem[i-1]或L->elem[i-1]。 2. 按内容查找Locate(L,e): 要求查找线性表L中与 给定值e相等的数据元素,其结果是:若在表L中找 到与e相等的元素,则返回该元素在表中的序号;若 找不到,则返回一个“空序号”,如-1。 线性表的查找运算算法描述为:
6
2017/9/7
2.2
线性表的顺序存储
2.2.1 线性表的顺序存储结构 2.2.2 线性表顺序存储结构上的基本运算
7
2017/9/7
顺序存储结构的定义
线性表的顺序存储是指用一组地址连续的存 储单元依次存储线性表中的各个元素,使得线性 表中在逻辑结构上相邻的数据元素存储在相邻的 物理存储单元中,即通过数据元素物理存储的相 邻关系来反映数据元素之间逻辑上的相邻关系。 采用顺序存储结构的线性表通常称为顺序表。 假设线性表中每个元素占k个单元,第一个元素 的地址为loc(a1),则第k个元素的地址为:
13
2017/9/7
插入操作
线性表的插入运算是指在表的第i (1≤i≤n+1) 个位置,插入一个新元素e,使长度为n的线性表 (e1,…,ei-1,ei,…,en) 变成长度为n+1的线 性表(e1,…,ei-1,e,ei,…,en)。
线性表的插入运算算法。
14
2017/9/7
插入算法示意图
已知:线性表 (4,9,15,28,30,30,42,51,62),需在第4个元素之前插 入一个元素“21”。则需要将第9个位置到第4个位置的元素依次后 移一个位置,然后将“21”插入到第4个位置, 2 3 4 5 6 7 8 9 10 序号 1 4 9 15 28 30 30 42 51 62
抽象数据类型定义 :
ADT LinearList{ 数据元素:D={ai| ai∈D0, i=1,2,…,n n≥0 ,D0为某一数据对象} 关系:S={<ai,ai+1> | ai, ai+1∈D0,i=1,2, …,n-1} 基本操作: (1)InitList(L) 操作前提:L为未初始化线性表。 操作结果:将L初始化为空表。 (2)DestroyList(L) 操作前提:线性表L已存在。 操作结果:将L销毁。 (3)ClearList(L) 操作前提:线性表L已存在 。 操作结果:将表L置为空表。 ……… }ADT LinearList
线性表的定义
线性表 (Linear List) 是由 n (n≥0) 个类型相同的 数据元素 a1,a2,… , an 组成的有限序列 ,记做 (a1,a2,…,ai-1,ai,ai+1, …,an)。 数据元素之间是一对一的关系,即每个数据 元素最多有一个直接前驱和一个直接后继。 线性表的逻辑结构图为: