1平行四边形及其性质1导学案

合集下载

平行四边形的性质1

平行四边形的性质1

是的,走在生活的风雨旅程中,当你羡慕别人住着高楼大厦时,也许瑟缩在墙角的人,正羡慕你有一18.1.1平行四边形的性质(一)学习目标:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、自主预习(8分钟)1.由__ _条线段首尾顺次连接组成的多边形叫四边形;四边形有 _条边,_ __个角,四边形的内角和等于_____度;2.如图AB 与BC 叫_ __边, AB 与CD 叫__ _边;∠A 与∠B 叫_ __角,∠D 与∠B 叫_ __角;3多边形中不相邻顶点的连线叫对角线,如图四边形ABCD 中对角线有__ _条,它们是___ ___自学课本P41~P43,1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD 记作__________。

2.如图□ABCD 中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。

的边、角各有什么关系吗?并证明你的结论。

结论:二、合作探究1、证明上面的结论。

已知:如图ABCD ,求证:AB =CD ,CB =AD ,∠B =∠D ,∠BAD =∠BCD .分析:作ABCD 的对角线AC ,它将平行四边形分成△ABC 和△CDA ,证明这两个三角形是的,走在生活的风雨旅程中,当你羡慕别人住着高楼大厦时,也许瑟缩在墙角的人,正羡慕你有一全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)写出证明过程:2、例习题分析:讲解例1(教材P42例1)知识点识记:平行线间的距离定义:两条平行线中,一条直线上任意一点到另外一条直线的距离。

平行四边形的性质(1)

平行四边形的性质(1)

里辛一中初三数学导学案二、【自主学习探究新知】探究一:平行四边形的有关概念及记法(1)平行四边形的概念:两组对边分别_____的四边形.(2)四边形ABCD是平行四边形,记作“___ ___”.(3)平行四边形的对角线:平行四边形_______的两个顶点连成的线段.跟踪训练:如图,AD∥ EF ∥ BC,AB∥ GH∥ DC,图中的平行四边形有_个,探究二:平行四边形的性质旋转平行四边形,探究对称性和角的关系已知:四边形ABCD 是平行四边形。

求证:AB=CD ,BC=AD ,∠B=∠D例题:已知:在 ABCD 中,E ,F 是对角线 AC 上的两点,并且 AE = CF.求证:BE = DF跟踪训练:在 平行四边形ABCD 中,已知∠A=52 ° ,求其余三个角的度数。

CDBA平行四边形的性质:(1)平行四边形的中心对称性:平行四边形是中心对称图形,其对称中心为两条_______的交点. (2)对边:平行四边形的对边_____, (3)对角:平行四边形的对角_____.从最简单的做起宁可少些,但要好些! 三、【课堂达标】利用平行四边形的性质进行计算1.▱ABCD的周长为32cm,△ABC的周长为20cm,则AC的长为( )A.13cmB.4cmC.3cmD.2cm2.(2013·黔西南州中考)已知▱ABCD中,∠A+∠C=200°,则∠B的度数是( )A.100°B.160°C.80°D.60°第2题图第4题图3.在▱ABCD中,若∠C=∠B+∠D,则∠A= .4.在▱ABCD中,∠B=45°,对角线AC=2cm,且AC⊥BC,则▱ABCD的周长为.5.如图,在▱ABCD中,AE平分∠BAD交DC于点E,AD=5cm,AB=8cm,求EC的长.利用平行四边形的性质进行证明1.(2013·南充中考)下列图形中,∠2>∠1的为( )2.已知ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是( )3.如图,四边形ABCD是平行四边形,点E,F分别是DB,BD延长线上的点,且BE=DF,求证:AE∥CF.4.已知:在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF,EG,AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长.(2)求证:∠CEG=1∠AGE.2四、【课堂总结】。

《18.1平面四边行的性质(1)》导学案(定稿)

《18.1平面四边行的性质(1)》导学案(定稿)

§18.1《平行四边形的性质(第1课时)》导学案学校 班级 姓名 座号一、学习目标理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质; 运用平行四边形的性质进行有关的计算与证明、进而解决简单的问题; 了解两条平行线之间距离的意义,能度量两条平行线之间的距离. 二、学习重点理解并掌握平行四边形的概念及其性质. 三、学习难点在平行四边形性质的探索过程中体会转化思想,提高合情推理和演绎推理能力. 四、学前准备卡片数张、平行四边形卡纸、两个全等的三角形卡纸、图钉、剪刀、三角尺 五、学习过程(一)先学先知环节1.与生活情景对话,揭示主题(1)有一块形状如图所示的玻璃,不小心把EDF 部分打碎了,现在只测得AE=60cm 、BC=80cm ,∠B=60°且AE ∥BC 、AB ∥CF ,你能根据测得的数据计算出DE 的长度和∠D 的度数吗?你的猜想是: .(2)平行四边形是一种很特殊的四边形,你能举出生活中常见的平行四边形的 一些例子吗?说说平行四边形是如何区别于一般的四边形的呢?你的知识储备有: .2.与教材文本对话,解读概念(学生自主阅读教材第72-74页 )(1)请在你的卡纸上,作一个平行四边形(参照P72页试一试,剪下备用) (2)通过作图,概括定义:__________________________叫做平行四边形. (3)平行四边形的表示:如图所示, 平行四边形ABCD 记作: ;对边有: ;对角有: . (4)理解定义的双重性: 具备条件:______________的四边形,才是平行四边形;反过来,平行四边形一定具有的性质是 . 几何语言表述: 如上右图所示,① ∵ AB ∥CD AD ∥BC ∴四边形ABCD 是平行四边形; ② ∵ 四边形ABCD 是平行四边形 ∴AB ∥CD AD ∥BC.B ADC(5)通过探索,你还得到平行四边形的边、角的哪些性质呢?用几何语言表述. 如图所示,∵四边形ABCD 是平行四边形 ∴ ; ∴ ;∴ . 3.与题组检测对话,即学即用(1)已知□ABCD 中,∠A=40°,则∠B= ,∠C= ,∠D= ; (2)在□ABCD 中,∠A+∠C=100°, 则∠A= ,∠D= ; (3)在□ABCD 中,∠A:∠B=1:2,则∠A= ,∠D= ; (4)在□ABCD 中,AB=5, BC=8,则CD= ,AD= ; (5)已知□ABCD 的周长为60cm ,则AB+BC= ; 若AB :BC=2:3,则AB= ______,BC= ;(6)如图,在□ABCD 中,已知AC=3cm ,△ABC 的周长=8cm ,则平行四边形的周长为_______cm .(二)交流展示环节1.与探究活动对话,探索性质(合作探究平行四行边的数量关系、角的数量关系)第 小组合作学习记录板(1)利用所画的平行四边形的性质:你们小组选择的方法是:○度量 ○平移 ○旋转 ○折叠 ○拼图 ○其他(2)你们小组利用的学具有: ; (3)探索过程汇报展示:(4)你们探究的结论有: .AD CBAB CD(以上部分,请同学们先自学本节内容,并独立完成,上交组长检查)2.与演绎推理对话,理解性质问题:你能用已学的知识,通过演绎推理,证明上述探索的结论吗?并提出相异构想. 已知: 求证: 证明:(备用图)3.与例题改编对话,提升技能(1)例2 如图,在□ABCD 中, AB=8,周长等于24,求其余三条边的长.(2)改编训练如图,已知□ABCD 中,∠DAB 的平分线AE 交CD 于E ,且AB =8,EC =3, 求□ABCD 的周长.BA DCAD CBBA DCBA DCCDA BE4.与实践探索对话,拓展知识(1)阅读教材P75页“试一试”,给了你什么启发呢?(2)请你在作业纸中任画两条平行直线m和n,用直角三角尺的一条直角边紧贴直线n;并沿着n平移,观察三角尺的另一条直角边与直线m交点处的刻度会改变吗?请概括你的发现.(3)若在直线m上任取两点A、C,过A作AB⊥n于B,过C作CD⊥n于D,测量AB、CD的长度,你有什么发现?试用平行四边形的性质定理加以说明.(4)概括:①平行线的又一个性质:;②两条平行线之间的距离的意义: .(5)如图,直线m∥n,点B、C是直线n上的两个定点,点A是直线m上的一个动点,那么在点A移动的过程中,△ABC的面积将().A、逐渐变大B、逐渐变小C、保持不变D、无法确定5.与总结收获对话,升华知识(三)课外作业与综合实践1.必做题:课本P75练习:第2、3题;P80 18.1习题:第3题、第5题2.实践与探索题:如图,甲、乙两户的承包田被折线ABC分割,给耕种带来许多不便,他们想把这条分割线改成直线,并且保持两户农田面积不变,道路的一端仍为A,问应该怎么改?画出示意图,并说明理由。

初中数学 九年级上导学案(青岛泰山版)

初中数学 九年级上导学案(青岛泰山版)

初中数学九年级上导学案(青岛泰山版) 第1章特殊四边形1.1 平行四边形及其性质学习目标:1、知道平行四边形的概念;2、掌握平行四边形边和角之间的位置关系和数量关系3、通过操作、观察、培养动手和归纳能力,在观察、操作、推理、归纳的过程中发展合情推理能力。

重点、难点:平行四边形的性质及推理。

导学过程:一、情境导入1、想一想我们实际生活中,哪些物体的形状是平行四边形?2、在小学时,我们已经学习了平行四边形,哪位同学说一说,什么叫做平行四边形?二、自主学习自学课本第4也内容,完成下列问题:1、怎样用符号表示平行四边形?2、看下图,我们知道平行四边形是由边和角组成,找一找□ABCD中的对边、对角、邻边、邻角、对角线。

三、合作交流根据平行四边形定义很容易得到两组对边平行,那么根据图形、平行四边形还有什么特征呢?进一步启发学生平行四边形的特征与边、角、对角线有什么关系?归纳并证明:四、随堂练习1、已知□ABCD,根据下列条件填空:⑴已知∠A=50°,则∠B= _____,∠C= _____,∠D= _____。

⑵已知∠A+∠C=200°,则∠A= _____,∠B= _____。

⑶已知AB=3,BC=5,则□ABCD的周长= _______。

2、已知□ABCD中,AC、BD为两条对角线,图中有哪些相等的线段,哪些相等的角。

3、完成课本中例1、例2.五、课堂小结:六:课外拓展1、把两个完全重合且三边都不相等的三角形按不同的方法拼成平行四边形,你能拼成几个平行四边形?(看谁拼的又快又多又好2、有一张平行四边形的纸片你能把它剪成面积相等的两块三角形纸片吗?你能把它剪成面积相等的4块三角形纸片吗?七、巩固检测:(A教材P6中1、P7中练习1、习题1.1中1(B教材P6中2、P7中练习2、习题1.1中51.2 平行四边形的判定学习目标1.经历探索、猜想、证明的过程,进一步发展推理论证的能力。

2.能运用综合法证明平行四边形判定定理。

2023年春八下数学 18-1-3 平行四边形的判定(1) 导学案(人教版)

2023年春八下数学 18-1-3 平行四边形的判定(1) 导学案(人教版)

人教版初中数学八年级下册18.1.3 平行四边形的判定(1) 导学案一、学习目标:1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.重点:掌握平行四边形的判定定理.难点:综合运用平行四边形的性质与判定解决问题.二、学习过程:课前自测平行四边形的性质:边:_____________________________;∵ _______________________________∴ _______________________________角:_____________________________;∵ _______________________________∴ _______________________________对角线:_____________________________;∵ _______________________________∴ _______________________________自主学习思考:反过来,对边相等,或对角相等,或对角线互相平分的四边形是平行四边形吗?也就是说,平行四边形的性质定理的逆命题成立吗?逆命题1:____________________________________________.逆命题2:____________________________________________.逆命题3:____________________________________________.逆命题1:(证明过程)如图,在四边形ABCD中,AB=CD,AD=CB.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理1:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题2:(证明过程)如图,在四边形ABCD中,∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理2:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题3:(证明过程)如图,在四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理3:_________________________________________.几何符号语言:∵ _______________________,∴ _________________________.典例解析例1.如图,以△ABC的各边向同侧作正三角形,即等边△ABD、等边△ACE、等边△BCF,连接DF,EF.求证:四边形AEFD是平行四边形.【针对练习】如图,将□ABCD的四边DA,AB,BC,CD分别延长至点E,F,G,H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.求证:四边形EFGH为平行四边形.例2.如图,四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【针对练习】如图,在□ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.求证:四边形AFCE是平行四边形.例3.如图,□ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.【针对练习】变式1:若E、F继续移动至OA、OC的延长线上,仍使AE=CF,则结论还成立吗?为什么?变式2:问题中AE=CF,过点O作一直线分别交AB、CD于G、H,则四边形GFHE 是平行四边形吗?为什么?达标检测1.下面给出四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是( )A.1:2:3:4B.2:3:2:3C.2:3:3:2D.1:2:2:32.如图,在四边形ABCD中,AB=CD,BC=AD.若∠D=120°,则∠C的度数为( )A.60°B.70°C.80°D.90°3.如图,在□ABCD中,对角线AC、BD交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE= ∠CBF;④∠ABE= ∠CDF.其中不能判定四边形DEBF是平行四边形的有( )A.0个B.1个C.2个D.3个4.四边形ABCD中,AB=9cm,BC=6cm,CD=9cm,当AD=____cm时,四边形ABCD 是平行四边形.5.如图,在□ABCD中,点E,F分别在边AD,BC上,且BE//DF,若AE=5,则CF=_____.6.如图,线段AB,CD相交于点O,且图上各点把线段AB,CD四等分,这些点可以构成平行四边形的个数是_____.7.如图,在□ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,求证:四边形KLMN为平行四边形.8.如图,在□ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.9.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.10.如图,AC是平行四边形ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.。

6.1平行四边形的性质(1)学案

6.1平行四边形的性质(1)学案

6.1平行四边形的性质(1)学案学习目标:1、明确平行四边形及相关概念.2、探究并理解平行四边形的对称性及边、角的性质.3、能运用平行四边形的性质解决简单的几何问题学习重点:探究平行四边形的性质.学习难点:性质的探究及运用.学习过程:一、导入新课1、下面的图片中,有你熟悉的哪些图形?2、观察图形,说出下列图形边的位置有什么特征?二、收获新知1、认识平行四边形定义:的四边形叫平行四边形.特征:表示方法:平行四边形ABCD记作:读作:几何语言:练习:找找看:如图:在□ABCD中,EF∥AB.①则图中有__个平行四边形;②若GH∥AD,EF与GH交于点O,则图中有__个平行四边形.2、深入了解平行四边形:在□ABCD中,邻边有:邻角有:对边有:对角有:对角线:平行四边形中连成的线段叫做平行四边形的对角线.与都是□ABCD的对角线.3、探究平行四边形的性质探究1:在□ABCD中,对角线AC与BD交于点O,将□ABCD绕点O旋转,旋转后的图形能与□ABCD完全重合吗?这说明了什么?平行四边形的性质性质1:平行四边形是,其是对角线的交点.探究2:在□ABCD中(1)对边AB与CD,AD与BC有怎样的位置关系?你是怎样知道的?(2)对边AB与CD,AD与BC有怎样的数量关系?为什么?平行四边形的性质性质2:平行四边形的两组对边,平行四边形的两组对边.几何语言:探究3:在□ABCD中(1)对角∠A与∠C,∠B与∠D的大小有怎样的关系?为什么?(2)对边AB与CD,AD与BC有怎样的数量关系?为什么?平行四边形的性质性质3:平行四边形的两组对角,平行四边形的邻角.几何语言:三、学以致用1、在□ABCD中,已知∠A=60°,BC=3,你能得出哪些结论?2、在□ABCD中,∠A:∠B:∠C:∠D的值可以是( )A.1∶2∶3∶4B.1∶2∶2∶1C.2∶2∶1∶1D.1∶2∶1∶23、四边形ABCD和四边形ACEB都是平行四边形,请你找出图中相等的线段和角.相等的线段:相等的角:4、在□ABCD中,E,F是对角线AC上的两点,并且AE=CF.求证:BE=DF.四、课堂小结请你在课后把本节课所学的知识分类整理在下面.五、课后作业A组1.如图1,在□ABCD中,下列各式不一定正确的是( )A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°图1 图22.如图2,已知在平行四边形ABCD中,AB=4 cm,AD=7 cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=___________ cm.3.□ABCD中,∠A比∠B大20°,则∠C的度数为( )A.60°B.80°C.100°D.120°4.如图3,在□ABCD中,点E、F在对角线BD上,且BE=DF,求证:AE=CF.图35.如图4,在□ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:∠BAE=∠DCF.图4B组1.在□ABCD中,已知AB,BC,CD三条边的长度分别为(x+3)CM,(x-4)CM,16CM,这个平行四边形的周长是多少?2.如图5,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G.(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG是等腰直角三角形,并说明理由.图5。

平行四边形的定义、性质—导学设计

平行四边形的定义、性质—导学设计

平行四边形的定义、性质导学设计保和镇初级中学程丹本节选自华东师范大学出版义务教育教科书《数学》八年级下册第十八章第一节第一课时的内容.一、教材分析1、教材的地位与作用平行四边形的性质是在学生掌握了平行线、三角形及简单图形的平移等几何知识的基础上进一步认识学习更复杂的平面几何图形.平行四边形及其性质是本节的重点,又是本章的重点.学习它不仅是对已学平行线、三角形等知识的综合应用和深化,提升推理探究能力,又是下一步学习矩形、菱形、正方形等特殊平行四边形的基础,起着承上启下的作用.2、学情分析本班学生基础知识中等,主动学习的积极性较高,具备一定的自主学习的能力.学生在小学阶段已经对平行四边形有了初步、直观的认识,为平行四边形性质的研究提供了一定的认知基础,八年级学生正处在试验几何向论证几何的过渡阶段,对于严密的推理论证还有所欠缺,而利用动手操作来实现探究活动,对学生较适宜,而且有一定的吸引力,可进一步调动学生的求知欲,发挥学生的主体地位.3、导学目标根据课程标准的要求,我确定了三维导学目标:(1)知识目标:掌握平行四边形的定义及性质;(2)能力目标:学会“观察—归纳—猜想—证明—应用”的思维过程;培养学生直观想象、逻辑推理等数学核心素养;(3)情感目标:通过对平行四边形性质的研究,培养学生主动探索、勇于发现的求知精神,养成细心观察、认真分析、善于总结的良好思维习惯.4、导学重点和难点重点:平行四边形边角性质的证明和应用;难点:平行四边形性质的探究,即如何添加辅助线将平行四边形问题转化为三角形问题的思想方法.【设计意图】本着课程标准,为了本章后面的学习,首先必须掌握平行四边形的定义,其次平行四边形的边角性质和应用是学习平行四边形的灵魂,所以我确立平行四边形边角性质的证明和应用为导学的重点.将不熟悉的平行四边形转化为学过的三角形来解决,这是数学中的“化规”思想,这对学生能力要求比较高,所以我确立平行四边形性质的探究,即如何添加辅助线将平行四边形问题转化为三角形问题的思想方法为难点.二、导学方法1、导法引导探究式为主,讲练结合法为辅.【设计意图】学习平行四边形的性质是在小学的基础上学习的,因此我采用引导探究式为主,讲练结合法为辅的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现和提出问题、分析和解决问题.2、学法观察猜想法、合作交流法、探究学习法、总结归纳法.【设计意图】本节课主要是引导学生通过实践操作以及严格的逻辑推理得出平行四边形的性质,要求学生在教师的引导下解决问题,让学生观察,分析,归纳,推理,因此,我将学法设置为探究学习法.3、导学手段粉笔、两个全等的三角形、两个全等的平行四边形和多媒体教学.【设计意图】为了提高课堂效率,节约课堂时间,增强课堂趣味性,我采用了粉笔、实物模型和多媒体教学的导学手段.三、导学过程为了突出重点,突破难点,我将教学过程设置为以下七个环节.(一)创设情境先让学生感受古希腊数学家、哲学家毕达哥拉斯说的一句话,让学生知道本节课的重点在于探讨知识的形成过程.由弗赖登塔尔的数学教育必须面向社会现实,必须联系日常生活实际,因而我会展示生活中的平行四边形,由学生观察它们的形状,在头脑中对平行四边形有一个初步的认识.【设计意图】为学习新知识创设问题情境,激发学生的求知欲,从而形成初步印象.(二)自主预习1、研读课本72-73页,看图回答下列问题:记作: ;读作:.平行四边形中相对的边称为,相对的角称为.相邻的边称为 ,相邻的角称为 .平行四边形不相邻的两个顶点连成的线段叫它的 .请用几何语言描述平行四边形的定义? .2、尝试练习如图,在□ABCD 中,//EF AD ,//GH CD ,图中的平行四边形有 个,它们是 . 在课本165页的格点图中画一个平行四边形,观察这个四边形,除了“两组对边分别平行”以外,它的边、角之间有什么关系吗?度量一下,是不是和你的猜想一致?【设计意图】通过学生阅读课本上的基本知识,完成自主学习,即锻炼了学生自主学习的能力,又培养了学生独立解决问题的能力.(三)探究学习问题探究一拿出准备好的两个全等的三角形纸片,并将它们相等的一组边重合,可以得到四边形吗?你有几种方案?在你拼出的四边形中有平行四边形吗?你能结合平行四边形的定义给出合理的解释吗?问题探究二你能验证猜想吗?方法一:利用两个全等的平行四边形验证你的猜想并回答下列问题:1、平行四边形是 图形(选填“轴对称”、“中心对称”),若是轴对称图形,找出它的对称轴,若是中心对称图形,找出它的对称中心;2、将两个形状大小完全一样的□ABCD 和□A B C D ''''重合在一起,沿着对角线交点O ,将其中一个旋转180°,你有什么发现?方法二:利用逻辑推理证明你的猜想已知:如图,□ABCD求证:AB CD =,BC AD =,B D ∠=∠,A C ∠=∠.B【设计意图】波利亚主张数学教育主要目的之一是发展学生的发现问题、解决问题的能力,教会学生思考.因而通过师生共同探究,让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.通过问题探究一,可以让学生知道平行四边形是可以由两个全等的三角形组成的,这为问题探究二中的“利用逻辑推理证明猜想”埋下了伏笔;通过问题探究二的方法一旋转平行四边形,直观感受平行四边形是中心对称图形,并得到平行四边形的边角关系;通过问题探究二的方法二,用严格的逻辑推理证明平行四边形的边角关系,体现了数学严格的逻辑推理,也为今后平行四边形问题的解决提供了方法——转化成三角形来解决.(四)归纳总结【设计意图】根据奥苏贝尔的“良好的认知结构”,为了让学生对本节课的内容有一个系统性的认识,我将本节课的知识点设计成表格的形式,帮助学生理清知识结构,构建自己的知识系统.(五)尝试练习1、在□ABCD 中,50B ∠=︒,则A ∠= ,C ∠= ;D ∠= .2、在□ABCD 中,3AB cm =,5BC cm =,则AD = ,CD = .3、在□ABCD 中, 120A C ∠+∠=︒,B ∠= ;D ∠= .4、已知□ABCD 的周长为32,4AB =,则BC = .5、在□ABCD 中,4B A ∠=∠,则C ∠= .6、已知:在□ABCD 中,E ,F 是对角线AC 上的两点,并且AE=CF ,求证:BE=DF .7、(选做)已知平行四边形的一个内角的平分线与平行四边形的一边相交,并把此边分成两线段的比为2:3,此平行四边形的周长为32,求此平行四边形相邻两边的长.【设计意图】让陈述性知识转化为程序性知识,增强学生对平行四边形的性质的理解与运用,提高解决实际问题的能力.7题为选做题,这也体现了课标要求“让不同的学生在数学上得到不同的发展”.(六)课堂小结根据奥苏贝尔的“良好的认知结构”,为了让学生对本节课的内容有一个系统性的认识,我会先让学生回忆本节课所学的内容,然后再根据实际情况进行补充,主要从平行四边形的定义、平行四边形的边角性质及对称性三个方面进行小结.1、平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形.2、平行四边形的性质⎧⎪⎨⎪⎩边:对边平行且相等;角:对角相等,邻角互补;对称性:中心对称图形.(七)布置作业根据课程标准,我将分层布置作业,必做题为了对本节课所学的知识进行巩固,熟练运用平行四边形的性质;思考题是为了提高学有余力的学生的发展,培养独立思考、自主学习的能力,同时也为下节课平行四边形的性质(2)做准备.必做题:练习册 课时1 平行四边形的性质(1);思考题:学案的尝试练习第7题.【设计意图】注重学生的个体差异,使不同的学生在数学上得到不同的发展.四、 板书设计为了突出重点与难点,层次分明,美观大方,我将板书设计如下:五、导学反思在课前一天放学前,将导学案发到学生手中,让学生提前感知学习目标,以导学案为指引对课堂学习内容进行自主预习;按照导学案上面的问题看书,找出知识的重点和难点,以问题带动知识点,将知识点预习中发现的问题带进课堂,这一过程就是培养学生正确的自学方法,是培养学生自主学习能力的手段.数学课程标准明确指出—教师应向学生提供充分从事数学活动的机会,引导学生大胆观察,积极思考.为了充分上好本节课,我制作了形象直观的实物模型,突出重点、分散难点,实现了本节课的学习目标.在以后的教学当中,我还应大胆对教材进行重新组合,设置更为合理的教学环节,来促进学生对新知识的构建.采用“独学—对学—群学”及学生讲解的导学模式,体现了“教师为主导,学生为主体”的课标思想,发挥学生的主观能动性,同时还可以提高学生的学习兴趣,加深度知识的理解与应用.课堂是一门不完美的艺术,本节课也存在一些不足之处,请各位老师给予批评指正.。

平行四边形的性质导学案

平行四边形的性质导学案

平行四边形的性质导学案[学习目标]知识与技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力。

过程与方法:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力。

情感态度与价值观:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.[学习重点与难点]重点:理解并掌握平行四边形的概念及其性质.难点:运用平移、旋转的图形变换思想探究平行四边形的性质.[学习过程]一、导入新课问题(1)同学们,你们留意观察过阳光透过长方形窗口投在地面上的影子是什么形状吗?问题(2)爱动脑筋的小钢观察到平行四边形影子有一种对称的美,他说只要量出一个内角的度数,就能知道其余三个内角的度数;只需测出一组邻的边长,便能计算出它的周长,这是为什么呢?通过本节课的学习,大家就能明白其中的道理.今天,我们来共同研究平行四边形及其性质.二、新知学习活动一:拼图游戏.问题1:你能利用手中两张全等的三角形纸板拼出四边形吗?问题2:观察拼出的这个四边形的对边有怎样的位置关系?说说你的理由.①平行四边形的定义:这个定义包含两层意义:①②。

②平行四边形的表示:平行四边形用符号“”表示,平行四边形ABCD记作“ ABCD”。

读作“平行四边形ABCD”。

练习:观察课本图16.1.1,哪些是平行四边形呢?问题3:根据定义画一个平行四边形。

(可参照课本探索)步骤:1:2:3:活动二:开放探究平行四边形的性质.活动要求:大家先看清要求,再动手操作,结论写在记录板上平行四边形的性质:A.从边看:B.从角看:C.从对角线看:三、精练反馈1.解决课前提出的实际问题某时刻小刚用量角器量出地面上平行四边形影子的一个内角是60°,就说知道了其余三个内角的度数;又用直尺量出一组邻边的长分别是40cm和55cm,便胸有成竹的说能够计算出这个平行四边形的周长.你知道小刚是如何计算的吗?这样计算的根据是什么?2.如图(1),在ABCD中,已知A=40 ,求其它各个内角的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创设情境:做一做:
将两张全等的三角形纸片,设法找到某一边的中点,记作点 O,将上层的 三角形纸片绕点 O 旋转 180 度,下层的三角形纸片保持不动,此时:
课 内 探 究
(1)两张纸片拼成了怎样的图形? (2)这个图形中有哪些相等的角?有没有互相平行的线段? (3)用简洁的语言刻画这个图形的特征,并与同伴交流.
平行四边形及其性质导学案(1)
编号:
01
课题 平行四边形及其性质 课型 新授 学习目标: 知识与技能:理解平行四边形的概念,掌握平行四边形的边、角性质,并能初步用其来解决实际
问题. 过程与方法:经历探索平行四边形的概念和性质的过程,发展学生探究意识。
情感态度:让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发
中,EF∥BC, GH∥AB, EF 与 GH 相交于点 O,则图 中共有___个平行四边形. D F
(2) (2)课本第 6 页练习 1 (3) (3)课本第 7 页习题第 1 题
(4)在平行四边形 ABCD 中,若∠A:∠B=2:3,求∠C、∠D 的度数 1、在□ABCD 中,E、F 过 AC 中点 O,交 AD、BC 于 E、F,求证:OE=OF. D E O A F B C
2、自学课本例 1
巩固提升: 1.填空: (1)平行四边形___平行,___相等,___相等;
2.如图,四边形 ABCD 是平行四边形,求: (1)∠ADC,∠BCD 的度数; (2)边 AB,BC 的长度
A
B 5 6°
C
D
25
课堂小结:
谈谈本节课的收获
达标检测: (1)如下图□ABCD
A E B H G O C
4.推理:(如何证明上述结论?)
证明:连结 AC ∵四边形 ABCD 是平行四边形 ∴ (平行四边形定义) ∴ (两直线平行,内错角相等) ∵AC=AC ∴△ABC≌△CDA(ASA) ∴ ∠B=∠D ∵∠1=∠3, ∠2=∠4 ∴∠1+∠4=∠2+∠3(等式性质 即 ∴ AD=CB,AB=CD,∠DAB=∠BCD,∠B=∠D 点拨:解决四边形问题的常用方法:转化为三角形的问题 5、几何语言: 性质 1:平行四边形对边相等. ∵四边形 ABCD 是平行四边形 ∴ 性质 2:平行四边形对角相等. ∵四边形 ABCD 是平行四边形 ∴ 6、有效训练,精讲点拨: (1、 )例题:小明用一根 36 米长的绳子围成了一个平行四边形的场地, 其中一条边 AB 长 8 米,其他三条边各长多少? (师生共同完成此题,并重点强调平行四边形性质的几何表述如: )
课 后 延 伸
O
2、平行四边形有哪些性质?请你继续探索并写出来,看谁写的多。
教 ( 学 ) 后 反 思
ቤተ መጻሕፍቲ ባይዱ
交流展示:
活动一 定义探究: 1、观察质疑:平行四边形如何区别于一般的四边形.
(2)归纳定义:________________________________________叫做平行四 边形。 (3) 定义的双重性: 具备__________________的四边形, 才是平行四边形, 反过来,平行四边形就一定具有性质。 (4)几何语言表述: ① ∵ AB∥CD AD∥BC 边形 ∴四边形 ABCD 是平行四
现、积极思考、合作学习的学习态度.
重点:平行四边形的性质 难点:理解并应用平行四边形的性质
内容设计 温故知新: 1、 “三角形的全等” 经常用于几何证明, 试说出证明三角形全等的几种方法。
个性备课
课 前 准 备
2、我们运用三角形的全等可以解决好多数学问题,如:证 证 相等。
相等,
3、平行四边形是特殊的四边形,生活中也常见平行四边形的实例,如 等
②∵四边形 ABCD 是平行四边形 ∴AB∥CD,AD∥BC
(5)平行四边形的表示:平行四边形 ABCD 记作_________,读作___________.
活动二
探究性质:
1.平行四边形的性质 由定义可知平行四边形的对边平行 2、质疑: 平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分 别平行外,还有什么特殊的性质呢 (提示:仿照三角形的学习方法从边和角去探索 第一步:猜想边和角之间的数量关系(对边相等,对角相等) 第二步:小组合作学习探索:画平行四边形,用测量、旋转、平移、推 理等方法验证上面的猜想.) 3、归纳 平行四边形的对边相等 平行四边形的对角相等
相关文档
最新文档