第四章计算智能(2)-模糊推理1

合集下载

《模糊推理系统》课件

《模糊推理系统》课件
• 并行化与分布式实现:为了处理 大规模问题,研究并行化与分布 式实现是必要的。
模糊推理系统的发展趋势与展望
更广泛的应用领域
随着模糊推理系统的不断发展和完善,其应用领域将越来越广泛, 例如自然语言处理、智能控制等。
与其他机器学习方法的结合
将模糊推理系统与其他机器学习方法相结合,例如与神经网络、支 持向量机等结合,可以进一步提高分类和预测的准确性。
模糊推理系统广泛应用于各种领域, 如控制系统、医疗诊断、智能机器人 等,以解决复杂的问题和不确定性。
模糊推理系统的基本原理
1 2 3
模糊化
将输入的精确值转换为模糊集合,通过隶属度函 数确定每个输入值属于各个模糊集合的程度。
模糊逻辑规则
基于模糊集合和模糊逻辑运算符(如AND、OR 、NOT等),制定模糊逻辑规则,用于推理和决 策。
参考文献
[请在此处插入参考文献]
[请在此处插入参考文献]
[请在此处插入参考文献]
01
03 02
感谢您的观看
THANKS
其他领域
如金融、物流、农业等, 用于解决各种复杂和不确 定性问题。
02
模糊集合与模糊逻辑
模糊集合的定义与性质
模糊集合的定义
模糊集合是经典集合的扩展,它允许元素具有不明确的边界和隶属度。
模糊集合的性质
模糊集合具有连续性、可数性、可加性和可减性等性质,这些性质使得模糊集合能够更好地描述现实世界中的不 确定性。
更好的解释性
随着可解释机器学习的需求增加,如何提高模糊推理系统的解释性 是一个重要的研究方向。
06
总结与参考文献
本报告的主要内容总结
01
02
03
04
05

计算智能 模糊逻辑和模糊推理

计算智能 模糊逻辑和模糊推理

0 0 0.5 1 0 0.5 0.5 0.5 0.5 0.5 R = 1 1 1 1 1 小大 1 1 1 1 1 1 1 1 1 1
B1 A1 R

小大
0 0 0.5 1 0 0.5 0.5 0.5 0.5 0.5 = 1 0.4 0.2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

语言是人们进行思维和信息交流的重要工具,是一种 符号系统。 语言可分为两种:自然语言和形式语言,通常的计算 机语言是形式语言。 人们日常所用的语言属自然语言。自然语言的突出 特点在于它具有模糊性,如“ 今天是个好天”,“小 王很年轻”等。 在形式逻辑中,推理有直接推理,演绎推理、归纳 推理以及类比推理等形式。在科学研究工作中,最 常用的推理方法是演绎推理中的假言推理。 基本规则是如果已知命题A (即可以分辨真假的陈述 句)蕴含B,即A → B(或A 则B),如今确为A1,则可 得结论为B1。
0.1 0.5 0.5 0.1 1 0.6 0.1 0.1 0.1
0.1 0.4 0.4 0.1 C1 =( A1 B1 )T R 0.1 0.5 1 0.1 0.5 0.5 0.1 0.1 0.1 0.4 0.4 0.1 0.1 C1 0.4 0.5 0.1
(3)模糊条件语句" if A and B then C else D, 则模糊关系 R 为:
T T R = ( A B ) C ( A B ) D
合成:Ci ( Ai Bi )T R

模糊聚类分析

人工智能第四章模糊计算和模糊推理1

人工智能第四章模糊计算和模糊推理1

人工智能第四章模糊计算和模糊推理1人工智能第四章模糊计算和模糊推理1
模糊计算和模糊推理是人工智能领域中一个新兴的分支,它主要应用
于处理难以定义的不确定系统的计算问题。

模糊计算和模糊推理有助于分
析复杂的非线性系统,建立系统模型,解决不同学科的问题。

模糊推理是利用模糊计算得出的结果作为基础,通过运用模糊逻辑判
断进行决策,从而解决不同学科问题的一种方法。

模糊推理的核心思想是
使用模糊计算将输入信息映射到输出信息,从而形成一个统一的、有序的、易于理解的推理系统。

模糊推理可以用来评估不确实性系统中不同属性的
相关性、可能性以及其他因素,并给出多个可能的输出选择,有效地改善
决策结果的准确性。

模糊计算和模糊推理都可以有效地处理信息中的不确定性,模糊计算
的输入可以是多种格式。

计算智能主要算法概述

计算智能主要算法概述

计算智能主要算法概述摘要:本文主要介绍计算智能中的几种算法:模糊计算、遗传算法、蚂蚁算法、微粒群优化算法(pso),详细描述了这几种算法的发展历史、研究内容及在本研究方向最近几年的应用。

关键字:计算智能模糊计算遗传算法蚂蚁算法 pso计算智能是在神经网络、模糊系统、进化计算三大智能算法分支发展相对成熟的基础上,通过各算法之间的有机融合而形成的新的科学算法,是智能理论和技术发展的一个新阶段,广泛应用于工程优化、模式识别、智能控制、网络智能自动化等领域[1]。

本文主要介绍模糊逻辑、遗传算法、蚂蚁算法、微粒群优化算法(pso)。

1 、模糊计算美国系统工程教授扎德于1965年发表的论文《fuzzy sets》首次提出模糊逻辑概念,并引入隶属度和隶属函数来刻画元素与模糊集合之间的关系,标志着模糊数学的诞生。

模糊计算将自然语言通过模糊计算转变为计算机能理解的数学语言,然后用计算机分析、解决问题。

在古典集合中,对于任意一个集合a,论域中的任何一个x,或者属于a,或者不属于a;而在模糊集合中,论域上的元素可以”部分地属于”集合a,并用隶属函数来表示元素属于集合的程度,它的值越大,表明元素属于集合的程度越高,反之,则表明元素属于集合的程度越低。

与经典逻辑中变元”非真即假”不同,模糊逻辑中变元的值可以是[0,1]区间上的任意实数。

要实现模糊计算还必须引入模糊语言及其算子,把含有模糊概念的语言称为模糊语言,模糊语言算子有语气算子、模糊化算子和判定化算子三类,语言算子用于对模糊集合进行修饰。

模糊逻辑是用if-then规则进行模糊逻辑推理,将输入的模糊集通过一定运算对应到特定输出模糊集,模糊推理的结论是通过将实施与规则进行合成运算后得到的。

模糊逻辑能够很好地处理生活中的模糊概念,具有很强的推理能力,在很多领域得以广泛应用研究,如工业控制、模式识别、故障诊断等领域。

但是大多数模糊系统都是利用已有的专家知识,缺乏学习能力,无法自动提取模糊规则和生成隶属度函数,需要与神经网络算法、遗传算法等学习能力强的算法融合来解决。

人工智能领域中的模糊逻辑推理算法

人工智能领域中的模糊逻辑推理算法

人工智能领域中的模糊逻辑推理算法人工智能(Artificial Intelligence,简称AI)是一门研究如何使计算机能够智能地表现出类似人类的思维和行为的科学。

在人工智能领域中,模糊逻辑推理算法是一种重要的方法,其可以有效地处理现实世界中存在的不确定性和模糊性问题。

本文将介绍人工智能领域中的模糊逻辑推理算法及其应用。

一、模糊逻辑推理算法概述模糊逻辑推理算法是基于模糊逻辑的推理方法,模糊逻辑是对传统的布尔逻辑的扩展,允许命题的真值在完全为真和完全为假之间存在连续的可能性。

模糊逻辑推理算法通过模糊化输入和输出,使用模糊规则进行推理,最终得到模糊结果。

模糊逻辑推理算法主要包括以下几个步骤:1. 模糊化:将输入的精确值转化为模糊化的值,反映出其模糊性和不确定性。

2. 模糊规则匹配:根据模糊规则库,匹配输入的模糊值和规则库中的规则。

3. 推理:根据匹配到的规则进行推理,得到模糊输出。

4. 解模糊化:将模糊输出转化为精确值,以便进行后续的处理和决策。

二、模糊逻辑推理算法的应用领域1. 专家系统专家系统是一种能够模拟人类专家的思维和行为的计算机程序。

在专家系统中,模糊逻辑推理算法可以用于处理专家知识中存在的模糊性和不确定性,帮助系统作出正确的决策和推理。

2. 模式识别模式识别是通过对事物特征进行抽象和分类,从而识别和理解事物的过程。

在模式识别中,模糊逻辑推理算法可以用于处理存在模糊性和不确定性的模式,提高模式识别的准确性和鲁棒性。

3. 数据挖掘数据挖掘是从大量的数据中发现潜在的、有效的信息,并进行模式的分析和提取的过程。

在数据挖掘中,模糊逻辑推理算法可以用于处理数据中存在的模糊性和不确定性,挖掘出更多有意义的信息。

4. 控制系统控制系统是指对某个对象或过程进行控制的系统。

在控制系统中,模糊逻辑推理算法可以用于处理控制对象的模糊输入和输出,实现对控制系统的智能化控制。

三、模糊逻辑推理算法的发展趋势随着人工智能领域的不断发展,模糊逻辑推理算法也在不断演化和完善。

人工智能本科习题

人工智能本科习题
(a)初始布局(b)目标布局
图8.22机械手堆积木规划问题
8-8指出你的过程结构空间求得的图8.23问题的路径,并叙述如何把你在上题中所得结论推广至包括旋转情况。
图8.23一个寻找路径问题
第一章绪论
1-1.什么是人工智能?试从学科和能力两方面加以说明。
1-2.在人工智能的发展过程中,有哪些思想和思潮起了重要作用?
1-3.为什么能够用机器(计算机)模仿人的智能?
1-4.现在人工智能有哪些学派?它们的认知观是什么?
1-5.你认为应从哪些层次对认知行为进行研究?
1-6.人工智能的主要研究和应用领域是什么?其中,哪些是新的研究热点?
3-16下列语句是一些几何定理,把这些语句表示为基于规则的几何证明系统的产生式规则:
(1)两个全等三角形的各对应角相等。
(2)两个全等三角形的各对应边相等。
(3)各对应边相等的三角形是全等三角形。
(4)等腰三角形的两底角相等。
第四章计算智能(1):神经计算模糊计算
4-1计算智能的含义是什么?它涉及哪些研究分支?
5-2试述遗传算法的基本原理,并说明遗传算法的求解步骤。
5-3如何利用遗传算法求解问题,试举例说明求解过程。
5-4用遗传算法求的最大值
5-5进化策略是如何描述的?
5-6简述进化编程的机理和基本过程,并以四状态机为例说明进化编程的表示。
5-7遗传算法、进化策略和进化编程的关系如何?有何区别?
5-8人工生命是否从1987年开始研究?为什么?
2-10试构造一个描述你的寝室或办公室的框架系统。
第三章搜索推理技术
3-1什么是图搜索过程?其中,重排OPEN表意味着什么,重排的原则是什么?
3-2试举例比较各种搜索方法的效率。

人工智能模糊推理案例

人工智能模糊推理案例

人工智能模糊推理案例一、确定模糊变量在模糊推理中,我们需要确定模糊变量。

这些变量可以是输入变量、输出变量或中间变量。

模糊变量的值称为模糊数,它用一个模糊集合来表示。

例如,假设我们的输入变量是温度,那么我们可以将温度分为“高”、“中”、“低”三个模糊集合,分别用H、M、L表示。

二、建立模糊集合在确定了模糊变量之后,我们需要建立模糊集合。

模糊集合是对该变量的所有可能值的隶属度进行定义的集合。

隶属度是一个介于0和1之间的实数,表示该值属于该集合的程度。

例如,对于温度的三个模糊集合,我们可以定义如下隶属度:●H:当温度大于等于25度时,隶属度为1;当温度小于20度时,隶属度为0;介于20度和25度之间的温度隶属度为线性插值。

●M:当温度在20度到30度之间时,隶属度为1;其它情况隶属度为0。

●L:当温度小于等于15度时,隶属度为1;当温度大于等于20度时,隶属度为0;介于15度和20度之间的温度隶属度为线性插值。

三、确定模糊关系在建立了模糊集合之后,我们需要确定模糊关系。

模糊关系是一个二维的隶属度函数,表示输入变量和输出变量之间的模糊关系。

例如,假设我们的输出变量是风力,那么我们可以定义如下模糊关系:●当温度为H时,风力为强(用S表示)。

●当温度为M时,风力为中(用M表示)。

●当温度为L时,风力为弱(用W表示)。

四、进行模糊推理在确定了模糊变量、建立了模糊集合、确定了模糊关系之后,我们就可以进行模糊推理了。

模糊推理是按照一定的推理规则进行的,例如“IF A THEN B”。

在我们的例子中,我们可以使用如下推理规则:●IF 温度 = H THEN 风力 = S.●IF 温度 = M THEN 风力 = M.●IF 温度 = L THEN 风力 = W.五、反模糊化处理经过模糊推理后,我们得到了一个模糊输出值。

这个值是一个模糊集合,不能直接用于控制风力。

因此,我们需要进行反模糊化处理。

反模糊化处理是将模糊输出值转换为实际数值的过程。

4.1.4 模糊逻辑与模糊推理(1).

4.1.4 模糊逻辑与模糊推理(1).

4.1.4.2 模糊逻辑
模糊命题
模糊命题具有如下特点:
3)模糊命题的一般形式为“A:e is F”,其中e是模糊 变量,或简称变量;F是某一个模糊概念所对应的模糊 集合。模糊命题的真值就由该变量对模糊集合的隶属 程度来表示。
4.1.4.2 模糊逻辑
模糊逻辑
研究模糊命题的逻辑称为模糊逻辑。其真值 在[0,1]之间连续取值,它是建立在模糊集合 和二值逻辑概念基础上的无限多值逻辑。
+零+负小+负较小+负中+负较大+负大} 语义规则M指模糊子集的隶属函数;
4.1.4 模糊逻辑与模糊推理 4.1.4.1 精确逻辑与精确推理 4.1.4.2 模糊逻辑 4.1.4.3 人工语言与自然(模糊)语言 4.1.4.4 模糊条件语句 4.1.4.5 模糊推理 4.1.4.6 模糊决策
0.7
0.3 0.5 0.7
R

R1T
C


1 0.1

0.3
0.5
1

0.3 0.1
0.5 0.1
1 0.1
0.4 0.4
0.3 0.4 0.4


if A 1 0.4 and B 0.1 0.7 1 , then C 0.3 0.5 1
x1 x2
y1 y2 y3
z1 z2 z3
蕴含的模糊关系(采用Mamdani法)
求解步骤一
R1=A×B 求解步骤二
把R1排成向量R1T ;
求解步骤三
计算R= R1T ×C;
4.1.4.4 模糊条件语句
1
0.7 1 0.3 0.1
R 0.60.7 1 0.3 0.1 0.6 0.6 0.3 0.1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊计算和模糊推理
经典二值(布尔)逻辑



在经典二值(布尔)逻辑体系中,所有的分类 都被假定为有明确的边界;(突变) 任一被讨论的对象,要么属于这一类,要么不 属于这一类; 一个命题不是真即是假,不存在亦真亦假或非 真非伪的情况。(确定)
1
天气冷热
雨的大小
风的强弱
人的胖瘦
年龄大小
个子高低
2
模糊数学
•模糊概念 模糊概念:从属于该概念到不属于该概念之间 无明显分界线 年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨。 模糊数学就是用数学方法研究模糊现象。
3
模糊数学的产生与基本思想
•产生 1965年,L.A. Zadeh(扎德) 发表了文章《模糊集 》
5
IEEE 系列杂志 主要杂志25种,涉及模糊内容20,000余种 • 国际会议 IFSA (Int. Fuzzy Systems Association) EUFIT、NAFIP、Fuzzy-IEEE、IPMU • 涉及学科 模糊代数,模糊拓扑,模糊逻辑,模糊分析, 模糊概率,模糊图论,模糊优化等模糊数学分支 分类、识别、评判、预测、控制、排序、选择;
并以此数作为 R1°R2 第i行第j列的元素。
R2=
0.2 0.4 0.6
0.8 0.6 0.4
求 R1°R2
42
模糊推理
模糊命题 模糊概念 1 张三是一个年轻人。 2 李四的身高为1.75m左右。模糊数据 3 他考上大学的可能性在60%左右。 对相应事件发生 的可能性或确信 4 明天八成是个好天气。 程度作出判断。 5 今年冬天不会太冷的可能性很大。
33
模糊二元关 系R是以 U×V为论域 的一个模糊 子集,序偶 (u,v)的隶属 度为uR(u,v)
34
3 模糊关系
对于有限论域U={u1, u2 ,…, um }, V={v1, v2 ,…, vn },则U对V的模糊关系的隶属函数 可以用m×n阶模糊矩阵R来表示,即 R=(rij)m×n
35
(Fuzzy Sets,Information and Control, 8, 338-353 )
•基本思想 用属于程度代替属于或不属于。 某个人属于秃子的程度为0.8, 另一个人属于 秃子的程度为0.3等.
4
模糊数学的发展
1975年之前,发展缓慢;1980以后发展迅速; 1990-1992 Fuzzy Boom • 杂志种类 1978年,Int. J. of Fuzzy Sets and Systems 每年1卷共340页,1999年8卷每卷480页 Int. J. of Approximate Reasoning Int. J. Fuzzy Mathematics Int. J. Uncertainty, Fuzziness, knowledge-based Systems
6
人工智能、控制、决策、专家系统、医学、土木、 农业、气象、信息、经济、文学、音乐 • 模糊产品 洗衣机、摄象机、照相机、电饭锅、空调、电梯
7
国内状况
1976年传入我国 1980年成立中国模糊数学与模糊系统学 会 1981年创办《模糊数学》杂志 1987年创办《模糊系统与数学》杂志 我国已成为全球四大模糊数学研究中心 之一(美国、西欧、日本、中国)
31
2 普通集合上的“关系”
例3、设U={ 红桃,方块,黑桃,梅花 } V={ A,1,2,3,4,5,6,7,8,9, 10,J, Q, K } 求U×V 解: U×V = { ( 红桃, A) ,(红 桃 , 2 ), …… , (梅花, K) },共52个元素。
32
3 模糊关系
在普通集合上定义的“关系”都是确定 性关系,u和v或者有某种关系,或者没 有这种关系。 但是,在现实世界中,很多事物的关系 并不是十分明确的,如:人与人之间的 相像关系,人与事物之间的爱好关系等。
39
40
模糊关系的合成
设 R1 与 R2 分别是 U×V 及 V×W 上的两个模糊 关系,则R1与R2的合成是指从U到W的一个模 糊关系,记为:R1°R2 其隶属函数为
μR1°R2 (u,w)= { μR1 (u,v) μR2 (v,w) }
41
例:设有如下两个模糊关系: 方法: 0.4 0.5 0.1 取R1的第i行元素分别与R2 的第j列的对应元素相比 R1= 0.2 0.6 0.2 较,两个数中取其小者, 然后再在所得的一组最 小数中取最大的一个, 0.5 0.3 0.2
2 3
也不是表示相加,它只是一个记号。
18
μF(ui)/ ui 表示 ui 对模糊集 F的隶属度。当 某个隶属度为0时,可以略去不写。 如: A=1/ u1+0.7/ u2+ 0/ u3+0.5/ u4 B=1/ u1+0.7/ u2+0.5/ u4 它们是相同的模糊集。
19
无论论域是有限的还是无限的,连续的 还是离散的,扎德都用如下记号作为模 糊 子集的一般表示形式:
讨论某一概念的外延时总离不开一定的范围。 这个讨论的范围,称为“论域”,论域中的每 个对象称为“元素”。
11
模糊数学理论
表示集合的几种方法
(1)列举法:
列写出集合中的全体元素。
适用于元素有限的集合。
(2)定义法:
以集合中元素的共性来描述集合的一种方法。
适用于有许多元素而不能一一列举的集合。
12
模糊数学理论
44
模糊推理
模糊语言值是指表示大小、长短、多少等程度的一 些词汇。如:极大、很大、相当大、比较大。模糊 语言值同样可用模糊集描述。 模糊数:如果实数域R上的模糊集A的隶属函数μA(u) 在R上连续且具有如下性质: (1)A是正规模糊集,即存在u属于R,使得μA(u)=1。 (2)A是凸模糊集,即对于任意实数x,a<x<b,有 μA(x)>=min{μA(a), μA(b)}。 直观上看,模糊数的隶属函数的图形是单峰的,在 在峰顶是隶属度达到1。
45
模糊知识的表示
(1)模糊产生式规则的一般形式是: IF E THEN H (CF,λ) 其中,E是用模糊命题表示的模糊条件;H是用模糊命题表示的 模糊结论;CF是知识的可信度因子,它既可以是一个确定 的数,也可以是一个模糊数或模糊语言值。λ是匹配度的阈 值,用以指出知识被运用的条件。例如: IF x is A THEN y is B (CF,λ) (2)推理中所用的证据也用模糊命题表示,一般形式为 x is A’ 或者 x is A’ (CF) (3)模糊推理要解决的问题:证据与知识的条件是否匹配;如 果匹配,如何利用知识及证据推出结论。
8
为什么研究模糊数学
•人工智能的要求
• 取得精确数据不可能或很困难 •没有必要获取精确数据
模糊数学的产生不仅形成了一门崭新的数学学科, 而且也形成了一种崭新的思维方法,它告诉我们存 在亦真亦假的命题,从而打破了以二值逻辑为基础 的传统思维,使得模糊推理成为严格的数学方法。 随着模糊数学的发展,模糊理论和模糊技术将对于 人类社会的进步发挥更大的作用。
29
A=0.3/u1+0.7/u2+1/u3+0.6/u4+0.5/u5
解: (1)λ截集 A1={ u3 } A0.6={ u2,u3,u4 } A0.5={ u2,u3,u4,u5 } A0.3={ u1,u2,u3,u4,u5 } (2)核、支集 KerA={ u3 } SuppA={ u1,u2,u3,u4,u5 }
30
2 普通集合上的“关系”
笛卡尔乘积(直积,代数积) 设U与V是两个集合,则称 U×V={ (u,v) | u∈U, v∈V } 为U与V的笛卡尔乘积。 若R是U×V上的一个子集,则称R为从U到V的 一个关系。记为: 对于U×V中的元素(u,v) ,若(u,v) ∈R,则 称u与v有关系R,否则,称U与v没有关系R。
24
A=0.3/ u1+0.8/ u2+0.6/ u3
B=0.6/ u1+0.4/ u2+0.7/ u3
解:
A∩B =0.3 / u1+0.4 / u2+0.6 / u3 A∪B =0.6 / u1+0.8 / u2+0.7 / u3
A =(1-0.3) / u1+(1-0.8) / u2+(1-0.6) / u3
这里的积分号不是数学中的积分,也不 是求和,只是表示论域中各元素与其隶 属度对应关系的总括,是一个记号。
20
A (u) B (u)
A (u) B (u)
21
22
0.5
23
例:设U={ u1,u2,u3 }
A=0.3/ u1+0.8/ u2+0.6/ u3 B=0.6/ u1+0.4/ u2+0.7/ u3 求:A∩B, A∪B及 A
43
模糊推理
模糊命题
含有模糊概念、模糊数据的语句称为模糊命题。它 的一般表示形式为: x is A 或者 x is A (CF) 其中,A是模糊概念或者模糊数,用相应的模糊集 及隶属函数刻画; x是论域上的变量,用以代表所 论述对象的属性; CF是该模糊命题的可信度,它既 可以是一个确定的数,也可以是一个模糊数或者模 糊语言值。
集合的特征函数:设A是论域U上的一个集合, u U 对任意 ,令
1 CA (u) 0 如果 u A 如果 u A
则称CA(u)为集合A的特征函数。
13
例:设有论域:U={ 1,2,3,4,5 },A={ 1,3,5 }, 求其特征函数。 解:特征函数如下: 1 当u=1,3,5 CA(u)= 0 当u=2,4
对 于 一 般 的ቤተ መጻሕፍቲ ባይዱ模 糊 子 集 A 可 表 示 为 A={μ1, μ2, …,μn },其中μi表示论域中第i个元素 对A的隶属度。
相关文档
最新文档