理论力学空间基本力系
合集下载
理论力学 第四章 空间力系

r FR = 0
∑F = 0
x
∑F = 0
y
称为空间汇交力系的平衡方程. 称为空间汇交力系的平衡方程. 空间汇交力系平衡的充要条件:该力系中所有 空间汇交力系平衡的充要条件: 充要条件 各力在三个坐标轴上的投影的代数和分别为零. 各力在三个坐标轴上的投影的代数和分别为零.
例 题 1
求: 绳的拉力和墙体的约束反力 。
=
=
F = F′ = F2 1 1
= F2′ = F3 = F3′
= =
定位矢量 滑移矢量 自由矢量 力偶矩矢是自由矢量 力偶矩相等的力偶等效 (5)力偶没有合力,力偶只能由力偶来平衡. 力偶没有合力,力偶只能由力偶来平衡.
3.空间力偶系的合成与平衡条件
=
=
r r r r r r r r r M 1 = r1 × F1 , M 2 = r2 × F2 ,......, M n = rn × Fn
A
P
c a y
i
j k
O
MO ( P ) = r × P = 0 b 0 0 0 P = Pbi
(2)利用力矩关系
x
α
b
M OA ( P ) = M O ( P ) cos α = Pab a 2 + b2 + c 2
MO(P)
例 题 4
已知:OA=OB=OC =b, OA⊥OB⊥OC. 已知: 求: F 对OA边的中点 之矩在 方向的投影。 边的中点D之矩在 方向的投影。 力 边的中点 之矩在AC方向的投影
3、力对点的矩与力对过该点的轴的矩的关系 r r r r M x ( F ) = M x ( Fx ) + M x ( Fy ) + M x ( Fz ) = Fz ⋅ y − Fy ⋅ z
《理论力学》基本力系

接触点处受到法向约束力的作用。
03
铰链约束
铰链约束是指两个构件通过销钉或铰链连接在一起,并能绕销钉或铰链
相对转动。这种约束只能限制物体沿垂直于销钉轴线的运动,而不能限
制物体绕销钉的转动。
平衡条件及求解方法
平面力系的平衡条件
平面任意力系平衡的充分必要条件是,力系的主矢和主矩都为零。即所有各力在x轴和y轴 上的投影的代数和分别等于零;所有各力对任意一点之矩的代数和也等于零。
汇交力系平衡条件应用
平衡条件
汇交力系平衡的充分必要条件是合力为零,即力多边形自行封闭。
应用
在静力学中,汇交力系平衡条件可应用于求解未知力、判断物体是否平衡等问题 ;在动力学中,可用于分析物体的运动状态及受力情况。
04 平面任意力系简化与平衡
平面任意力系简化方法
向一点简化
选择适当的一点,将力系中的各 力向该点平移,得到一个等效的 平面汇交力系和一个平面力偶系。
主矢和主矩
平面任意力系向作用面内任一点 简化时,一般可得到一个力和一 个力偶,这个力称为该力系的主 矢,这个力偶的矩称为该力系对
简化中心的主矩。
合力矩定理
平面任意力系的合力对作用面内 任一点之矩,等于力系中各分力
对于同一点之矩的代数和。
简化结果分析
当主矩为零时,主矢也为零
01
说明该力系本身是平衡的,或者可以合成为一个合力。
合力矩
主矩表示原力系对物体的 总体转动效应,其大小和 方向由主矩矢量确定。
平衡条件
当且仅当主矢和主矩都为 零时,空间任意力系才处 于平衡状态。
空间任意力系平衡条件应用
静力学问题
利用空间任意力系的平衡条件,可以解决各种静力学问题, 如物体的平衡、刚体的平衡等。
理论力学精品课程第六章空间力系

首先,我们需要明确力的合成和分解的基本原理。然后,根据题目给出的条件,我们可 以将一个力分解为若干个分力,或者将若干个分力合成为一个合力。通过这些操作,我
们可以求出物体所受的合力和分力。
习题三解析
总结词
该题考查了空间力系中力的矩和力矩 的平衡条件,通过构建力矩平衡方程, 可以求出未知的力和力矩。
详细描述
按力的分布范围分类
可分为集中力系和分布力系。
按力的方向分类
可分为同向力系、反向力系和任意方向力系。
空间力系性质
平衡性
力矩的存在性
空间力系在不受外力作用或处于平衡状态 下,合力为零。
空间力系可以产生旋转效应,即力矩。
力线平移定理
力的独立性
空间力系中,通过一定点可以作无数个平 行且等效的力,这些力的作用线均在该点 处与给定的力线重合。
力的平移
力平移定义
01
将力平行移动到刚体的任意点,同时保持力的方向和大小不变。
力平移性质
02
力的平移不改变力对刚体的作用效果,但会改变力矩的大小和
方向。
力平移实例
03
例如,在机械制造中,需要将机床的切削力平移到工件的任意
位置,以保证工件加工的精度和质量。
力在坐标轴上的投影
力在坐标轴上投影定义
将力沿坐标轴方向的分量表示为标量。
首先,我们需要明确力的矩和力矩平 衡条件的基本概念。然后,根据题目 给出的条件,我们可以构建力矩平衡 方程。通过解这个方程,我们可以求 出未知的力和力矩。
感谢您的观看
THANKS
航天器轨道
在航天器轨道分析中,空间力系 用于研究航天器的运动轨迹和受 力情况,以确保航天器的安全和 有效运行。
卫星姿态控制
们可以求出物体所受的合力和分力。
习题三解析
总结词
该题考查了空间力系中力的矩和力矩 的平衡条件,通过构建力矩平衡方程, 可以求出未知的力和力矩。
详细描述
按力的分布范围分类
可分为集中力系和分布力系。
按力的方向分类
可分为同向力系、反向力系和任意方向力系。
空间力系性质
平衡性
力矩的存在性
空间力系在不受外力作用或处于平衡状态 下,合力为零。
空间力系可以产生旋转效应,即力矩。
力线平移定理
力的独立性
空间力系中,通过一定点可以作无数个平 行且等效的力,这些力的作用线均在该点 处与给定的力线重合。
力的平移
力平移定义
01
将力平行移动到刚体的任意点,同时保持力的方向和大小不变。
力平移性质
02
力的平移不改变力对刚体的作用效果,但会改变力矩的大小和
方向。
力平移实例
03
例如,在机械制造中,需要将机床的切削力平移到工件的任意
位置,以保证工件加工的精度和质量。
力在坐标轴上的投影
力在坐标轴上投影定义
将力沿坐标轴方向的分量表示为标量。
首先,我们需要明确力的矩和力矩平 衡条件的基本概念。然后,根据题目 给出的条件,我们可以构建力矩平衡 方程。通过解这个方程,我们可以求 出未知的力和力矩。
感谢您的观看
THANKS
航天器轨道
在航天器轨道分析中,空间力系 用于研究航天器的运动轨迹和受 力情况,以确保航天器的安全和 有效运行。
卫星姿态控制
第三章理论力学

因此,其平衡的解析条件为:
F
x
0
x
F
y
0
y
F
z
0
z
M
0
M
0
M
0
------ 平衡方程
共六个方程,可以求解空间任意力系中的六个未知约束力. 3、空间任意力系的两种特殊情况: 1)空间平行力系的平衡方程
Fy F cos
,
方向:+、-号;
Fz F cos
2)间接投影法(二次投影法) 如果只已知与一根轴的夹 角 ,则通常的做法是:先将 该力向z 轴及其垂面分解(与 垂面的夹角为 90 ),而位于 垂面内的分力,其平面几何关
系比空间几何关系要容易寻找得多,因此只要在该垂面内
找出其与该平面内的两根轴之一的夹角(与另一根轴的夹
第三章
空间力系
注意:本章不作为重点,主要介绍一些基本概念、基本原理 和一些基本方法的应用,但不作为重点练习;个别需 要掌握的内容设有标注,望大家掌握.
一、空间力系:当力系中各分力的作用线分布于 三维空间时,该力系称为空间力 系. 二、空间力系又可根据力系中各分力的作用线的 分布情况划分为:空间汇交力系、空间力偶 系、空间平行力系和空间 任意力系. 三、本章研究的主要问题:力系的简化、合成及 平衡问题.
M x ( F ) M x ( Fx ) M x ( Fy ) M x ( Fz ) Fz y Fy z M y ( F ) M y ( Fx ) M y ( Fy ) M y ( Fz ) Fx z Fz x M z (F ) M z (Fx ) M z (Fy ) M z (Fz ) Fy x Fx y
理论力学---第三章 空间力系

B
P
Fz 0 : F cos P 0
E
C
D FD
F
C
z
A y
F
x
P
12
B
3.2 力对点的矩和力对轴的矩
3.2.1 力对点的矩以矢量表示-力矩矢 空间力对点的矩的作用效果取决于: MO(F)
z B F
(1)力矩的大小 (2)转向 (3)力矩作用面方位。
h 这三个因素可用一个矢量 M O (F ) 表示。 x 矢量的方位:与作用平面法线 大小: M O (F ) Fh
例1 重为P的物体用杆AB和位于同一水平面的绳索AC与AD支承,如图。
= 45° 已知:P=1000N,CD=AC=AD,E为CD中点,
不计杆重;求绳索的拉力和杆所受的力。 解:以铰A为研究对象,受力如图。
E
C
D
A
Fx 0 : FC sin FD sin 0
Fy 0: FC cos FD cos F sin 0
齿轮的啮合角(螺旋角) β 和压力角 ,试求力 Fn 沿 x,y 和 z 轴的分力。
6
解: 将力Fn向 z 轴和Oxy 平面投影
Fz Fn sin ,
将力Fxy向x,y 轴投影
Fxy Fn cos
Fx Fxy sin Fn cos sin Fy Fxy cos Fn cos cos
z Fz F B Fy
M z (F ) M O (Fxy ) M O (Fx ) M O ( Fy )
xFy yFx
5 理论力学--空间任意力系

O
M (F ) ,k M
z O
结 论
空间任意力系向任一点简化后,一般得到一个 力和一个力偶 。 这个力作用于简化中心,其力矢等于原力系的主矢。 这个力偶的力偶矩矢等于原力系对简化中心的主矩。 空间任意力系的主矢与简化中心的位置无关,而 主矩一般随简化中心位置的改变而改变,与简化中心 的位置有关。
z z
F
O
F A
B
d
A x
x
O d
y a F x
y
y
Fy
b
Fx
图5-2
力F对z轴的矩,就等于力F在垂直于z轴的Oxy平面 上的投影Fxy对z轴与该平面的交点O的矩(见图5-2)
M z ( F ) M O (Fxy ) Fxy d 2Oab
力对轴的矩是一个代数量。 正负号规定:右手螺旋规则。
z
任选O点为简化中心,将各力
平行搬移到O点(见图5-4)。 根据力线平移定理,将各力 平行搬移到O点,得到一空间汇 交力系;和一附加力偶系。
F1 ' F1 , F2 ' F2 , , Fn ' Fn ;
M1 M O (F1 ), M 2 M O (F2 ), , M n M O (Fn ) .
x 2 Ax
y 1 Ay
C
F2
x 0
z
1
Az
FAy
1
2
y
x
z
1
2
z
图5-9
解得
FAx 100kN FAy 200kN FAz 400kN M x 600kN m M y 500kN m M z 400kN m
例5-3 如图5-10(a)所示板ABCDEF由六根链杆支承,正方形 ABCD位于水平面内,EF平行于CD。试求沿AD方向作用有力F时, 六根杆的内力。 B 4 C 3 a 解: 取悬臂刚架ABCDEFG为研究 F 5 2 对象,受力如图5-10(b)所示。 D a
理论力学3—空间力系
r r ur
uur uur r
i jk
M O (F ) r Fuur = x y z
z MO(F)
kr Oj
ih x
Fx Fy Fz
r
r
ur
( yFz zFy )i (zFx xFz ) j (xFy yFx )k
B F
A(x,y,z) y
3.2.1 力对点的矩以矢量表示-力矩矢
力矩矢MO(F)在三个坐标轴上的投
偶系,如图。
z F1
z M2
z
Fn O
x F2
= M1
y
O
x F'n
F'1
= MO
Mn y
O
F'2
x
F'R y
uur uur
uFuri Fuiur uur
M i M O (Fi ) (i 1, 2,L , n)
3.4.1 空间力系向一点的简化
空间汇交力系可合成一合力F'R:
uur uur uur FR Fi Fi
如图所示,长方体棱长为a、b、c,力F沿BD,求力F对AC之矩。
解:
uur uur uur M AC (F ) M C (F ) AC
uur uur
M C (F ) F cos a
Fba
a2 b2
B
C
F
D
c
A
a
b
uur uur uur
M AC (F ) M C (F ) cos
Fabc a2 b2 a2 b2 c2
(F ) uur
[M O (F )]y M y (F )
uur uur
uur
[M O (F )]z M z (F )
理论力学-空间力系
空间 力矩 三要 素
力矩在该平面内的转向 力矩大小
4.3 空间力系的平衡方程
如图4-5三要素可用这样一个矢量表示:矢量的模
表示力对点之矩的大小;矢量的方位与该力和矩心构
成平面的法线方位相同;矢量的指向按右手螺旋法则
确定,该矢量称为力对点之矩矢,简称力矩矢,记作
MO(F )
MO(F) Fh 2AOAB
2.1 平面汇交力系合成与平衡的几何法
4.1.2 间接投影法
若力F 与坐标轴x、y间的夹角不易确定,可 将力F先投影到坐标平面Oxy上,得到力F 在坐标 平面Oxy上的投影Fxy,然后再将Fxy投影到x、y
4.3 空间力系的平衡方程
如图4-2所示,已知力F与z轴正向的夹角为γ,投影Fxy 与x轴正向的夹角为φ,则由二次投影法,力F在三个坐标轴
x
y
z
cosα=Fx/F
cosβ=Fy/F
cosγ=Fz/F (4-3)
4.3 空间力系的平衡方程
例4-2
设力F 作用于长方体的顶点C,其作用线沿长方体对角线,
如图4-4所示。若长方体三个棱边长为AB=a,BC =b,BE
=c,试求力在图示直角坐标轴上的投影。
解:F 在z Fz=Fcosγ=
c
F
a2 b2 c2
采用二次投影法,得F在x、y
F x=F sinγcosφ= F y=F sinγsinφ=
F a2 b2
b
b
F
a2 b2 c2 a2 b2 a2 b2 c2
a2 b2
a
a
F
a2 b2 c2 a2 b2
a2 b2 c2
4.3 空间力系的平衡方程
4.2.1 空间力对点之矩矢 力与矩心构成平面的方位
理论力学第三章 空间力系
z
A
F DA
D E
F CA
B
F BA
W
F y
W
C
x
已知:CE=ED=c=1.5m, EB=a=2m, EF=b=3m, AF=h=2.5m
(a b) 2 h 2 AE 31.25 sin AD 33.5 (a b) 2 h 2 c 2
AF h 2.5 sin 2 AB 15.25 b h2
F
' R
MO
最后结果为一合力.合力作用线距简化中心为 d
MO FR
M O d FR M O ( FR ) M O ( F )
合力矩定理:合力对某点之矩等于各分力对同一点之矩的矢 量和. 合力对某轴之矩等于各分力对同一轴之矩的代数和.
(2)简化为一个力偶
当 FR 0, MO 0 时,最后结果为一个合力偶。此时与简化 中心无关。
Fx F sin cos
Fy F sin sin
Fz F cos
C A B
2、空间汇交力系的合成与平衡条件 空间汇交力系的合力 合矢量(力)投影定理
FR F i
FRx Fix Fx
FRz Fiz Fz
合力的大小
方向余弦
FRy Fiy Fy
FR ( Fx )2 ( Fy )2 ( Fz )2
F cos( F , i )
R x
FR
cos( FR , j )
Fy FR
空间汇交力系的合力等于各分力的矢量和,合力的作用线通 过汇交点.
Fz cos( FR , k ) FR
A
F DA
D E
F CA
B
F BA
W
F y
W
C
x
已知:CE=ED=c=1.5m, EB=a=2m, EF=b=3m, AF=h=2.5m
(a b) 2 h 2 AE 31.25 sin AD 33.5 (a b) 2 h 2 c 2
AF h 2.5 sin 2 AB 15.25 b h2
F
' R
MO
最后结果为一合力.合力作用线距简化中心为 d
MO FR
M O d FR M O ( FR ) M O ( F )
合力矩定理:合力对某点之矩等于各分力对同一点之矩的矢 量和. 合力对某轴之矩等于各分力对同一轴之矩的代数和.
(2)简化为一个力偶
当 FR 0, MO 0 时,最后结果为一个合力偶。此时与简化 中心无关。
Fx F sin cos
Fy F sin sin
Fz F cos
C A B
2、空间汇交力系的合成与平衡条件 空间汇交力系的合力 合矢量(力)投影定理
FR F i
FRx Fix Fx
FRz Fiz Fz
合力的大小
方向余弦
FRy Fiy Fy
FR ( Fx )2 ( Fy )2 ( Fz )2
F cos( F , i )
R x
FR
cos( FR , j )
Fy FR
空间汇交力系的合力等于各分力的矢量和,合力的作用线通 过汇交点.
Fz cos( FR , k ) FR
理论力学 第4章-空间力系
mx (P) m y (P) mz (P)
6. 空间力矩的平衡:
M
o
(R) 0 m m m
x
0 0 0
空间力矩的平衡方程
y
z
§4-4 空间一般力系的简化和合成
1. 空间一般力系向一点O简化:
1) O点的空间汇交力系: ( P , P , P , P ); 2) 空间附加力偶系: ( m ( P ), m ( P ), m ( P ), m
2. 力偶系的合成:
1) 合力偶矩定理:空间上力偶系的合力偶矩等于各 (几何法) 个分力偶矩的矢量和 I l
2) 合力偶矩投影定理: 空间上力偶系的合力偶矩在 (解析法) 一根轴上的投影等于各个合力偶矩在同 一 轴上的投影的代数和
Lx Ly Lz
l l l
x
y
z
3. 力偶系的平衡
x0 y0 z0 N A B c o s c o s T1 0 N A B c o s sin T 2 0 N A B sin Q 0
3. 求解 :
cos s in cos 80
2
60
2
145 105 145 80 100 4 5 ;
方向余弦; 方向余弦;
Lx Ly Lz
3. 空间一般力系的再生成:
合成为合力:
当 R 0 , L 0 或 R L 时 大 小: 方向: 作 用 线 : 由 空 间 作 用 线 函 数 方 程 确 定 ; 或 简 单 地 在 L 作 用 面 内 , 以 d=| L R | 及 L 转 向 来 确 定 作 用 线 位 于 R 左 侧 或 右 侧 的 位 置 . R=R 可合为一合力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故求这两力在y轴和 z轴上的投影时,须先将 它们投影到Oyz 平面上。
§5–3 空间共点力系合成的解析法及其平衡的解析条件
例题 5-3
DB z
A
F' F3
F2 αα β
x
O
yC F1
力F2 在平面Oyz上的投影为:
FF2cos
并与 z 轴成β角。
F
2F' z
β
F1
y
O
F
故力F2在y,z 轴上的投影分别为: -F2 cosαsinβ 和 F2 cosαcosβ。
Fy β α
19.6kN
力F的方向
cosFx 4.50.22,0764'1
F 1.962 717'
F 1.96
cosFx 180.91,9 23
F 1.96
例题 5-1
§5–3 空间共点力系合成的 解析法及其平衡的解析条件
合力投影定理 空间共点力系平衡的充要条件
Fx 0, F 2si nF 3si n0 Fy 0,
F 1 F 2 co si s n F 3 co si s n 0
F
Fz 0,
F 2 co cs o F 3 c so cs o F s 0
点O,其上作用有铅直载荷F。钢丝OA和OB所构成的平面垂直于铅直平面 Oyz,并与该平面相交于OD,而钢丝OC则沿水平轴y。已知OD与轴z间的夹
角为β,又∠AOD = ∠BOD = α,试求各钢丝中的拉力。
例题 5-3
§5–3 空间共点力系合成的解析法及其平衡的解析条件
例题 5-3
A
D
Bz F3
FFcos x
FB
A
α
x
a
b
x
§5–2 力在轴上和平面上的投影
平 行 六 面 体 规 则
§5–2 力在轴上和平面上的投影
力的分解 设将力F按坐标轴x,y,z方向分解为空间三正交分量:
Fx,Fy,Fz。
则 FFxFyFz
引入 x,y,z 轴单位矢 i, j,k。则可
Fx Fxi Fy Fy j Fy Fyk
Fx 0 Fy 0 Fz 0
§5–3 空间共点力系合成的解析法及其平衡的解析条件
例题 5-2
例5-2 如图所示圆柱斜齿轮,其上受啮合力Fn的作用。 已知斜齿轮的啮合角(螺旋角) β 和压力角α,试求力Fn沿x,y 和 z 轴的分力。
例题 5-2
§5–3 空间共点力系合成的解析法及其平衡的解析条件
空间共点力系平衡的充要的几何条件是这力系的多边 形自行闭合,即力系中各力的矢量和等于零。
FR Fi 0
§5–2 力在轴上和平面 上的投影
力在轴上的投影 力在平面上的投影
§5–2 力在轴上和平面上的投影
1.力在轴上的投影 在空间情况下,力F在x轴上投影,与平面情形相似,
等于这个力的模乘以这个力与x轴正向间夹角α的余弦。
§5–3 空间共点力系合成的解析法及其平衡的解析条件
1. 合力投影定理
共点力系的 合力在某一轴上的 投影,等于力系中 所有各力在同一轴 上投影的代数和。
§5–3 空间共点力系合成的解析法及其平衡的解析条件 2. 空间共点力系平衡的充要条件 力系中各力在三个坐标轴中每一轴上的投影之和分别等于零。
空间共点力系的平衡方程
静力学
§5– 1 空间共点力系合成的几何法及其
第
平衡的几何条件
五
章
§5–2 力在轴上和平面上的投影
空
§5–3 空间共点力系合成的解析法及其
间
平衡的解析条件
基
本
§5–4 力 偶 矩 矢
力
系 §5–5 空间力偶系的合成和平衡条件
目录
§5– 1 空间共点力系合成的 几何法及其平衡的几何条件
空间共点力系合成的几何法 空间共点力系平衡的几何条件
FFxiFyjFyk
§5–2 力在轴上和平面上的投影
2.力在平面上的投影
由力矢F的始端A和末端B向投影平面oxy引垂线,由垂足A′到B′所构成的矢量A′B′ , 就是力F在平面Oxy上的投影,记为Fxy。
力Fxy的大小:
F Fcos xy
FB
A
y
Fxy
A′
O
B′
x
注意 力在轴上的投影是一代数量。 力在一平面上的投影仍是一矢量。
F2 αα β
x
O
解: 取O点为研究对象,受力分析 如图所示,这些力构成了空间共 点力系。
yC F1
F
§5–3 空间共点力系合成的解析法及其平衡的解析条件
例题 5-3
力F2 ,F3的方向通过 α角和β角来表示,α是这 两 力 各 自 对 坐 标 平 面 Oyz
的倾角,β是这两力在坐
标平面Oyz上的投影对z轴 的偏角。
§5– 1 空间共点力系合成的几何法及其平衡的几何条件 1.空间共点力系合成的几何法
结论:空间共点力系 的合力等于力系中的 各个力的矢量和。 或者说,合力是由这 个力系的力多边形的 闭合边来表示。
公式
FR Fi
§5– 1 空间共点力系合成的几何法及其平衡的几何条件 2. 空间共点力系平衡的几何条件
FxFxysin Fncossin FyFxycosFncoscos
沿各轴的分力为
Fx (Fn cossin) i Fy (Fn coscos ) j Fz (Fn sin) k
§5–3 空间共点力系合成的解析法及其平衡的解析条件
例题 5-3
例5-3 如图所示为空气动力天平上测定模型所受阻力用的一个悬挂节
例题 5-2
运 动 演 示
§5–3 空间共点力系合成的解析法及其平衡的解析条件
解: 将力Fn向 z 轴和Oxy 平面投影
例题 5-2
Fz Fn sin Fxy Fn cos
§5–3 空间共点力系合成的解析法及其平衡的解析条件
例题 5-2
Fz Fn sin Fxy Fn cos
将力Fxy向x,y 轴投影
力F3的投影可用同样方法求出。
§5–3 空间共点力系合成的解析法及其平衡的解析条件
例题 5-3
力F2与x轴之间的 夹角为90o-α,故它在 该轴上的投影为:
F2x F2sin
§5–3 空间共点力系合成的解析法及其平衡的解析条件
列平衡方程
例题 5-3
A
DB
F'
F3
z
F2 αα β
x
O
yC F1
§5–2 力在轴上和平面上的投影
二次投影法
§5–2 力在轴上和平面上的投影
例题 5-1
例5-1 已知车床在车削一圆棒时,由测力计测得刀具承受 的力F的三个正交分量 Fx,Fy,Fz的大小各为4.5 kN,6.3 kN, 18 kN。试求力F的大小和方向。
解: 力F的大小
A Fx
x
FF x2F y2F z24.526.32128