开关3极管的研究
npn型3极管当开关时的工作原理

npn型3极管当开关时的工作原理
npn型3极管是一种常见的半导体元件,可以用作开关。
它由三个区
域组成:n型(负型)区、p型(正型)区和n型(负型)区。
当它
被接通时,几乎不导电,而当它被关断时,则完全不导电。
在开关电
路中,npn型3极管可以将电路开闭,其工作原理如下:
1. 开关电路中,npn型3极管常常被用作放大器,所以需要一个外部
电压源(VBE)来激活它。
建议电源电压在0.7V以上,这样三极管才能正确工作。
2. 当施加一个偏向电压从基极进入时,由于基极和发射极之间出现了
一个电平差,电子就会从发射极向集电极流动。
这个过程将增强基极
电流,并使三极管进入放大模式。
3. 当基极电压降低或消失时,电子流将停止,三极管将进入关断状态。
在这种情况下,集电极上的电势将变为高阻状态。
4. 这种转换行为使得npn型3极管成为电子电路的重要部分。
当它被用作开关时,它可以在很短的时间内从高电平跳到低电平,使整个电
路被迅速地关闭。
它还可以在电路中扮演一个保护作用,以防止电流
和电压的不稳定性和过载。
5. 确保npn型3极管在开关状态时的散热和耐压性良好,这样它才能正常工作并且长时间使用。
在搭建电路时,应该遵循正确的连接规则,保证电路始终能够处于稳定状态。
总之,npn型3极管是一种受欢迎的半导体元件,用于构建电子电路
的各种组件。
作为一种开关元件,它可以将电路迅速开关,可以在各
种电路中发挥重要作用。
为了保证其正常工作并在电路中发挥正确的
作用,需要熟悉其基本原理及适当的使用方法。
三极管组成的触摸开关电路

三极管组成的触摸开关电路触摸开关是利用人手触碰开关面板上的金属片来完成开关动作,其工作原理大体可分为三种:利用人体导电的体电阻、利用人体感应的杂波信号、利用人体对地的泄漏电流等去触发电路工作。
图1是利用人体导电的体电阻来触发电路工作的触摸音响开关。
VT1、VT2构成电子开关,VT3与变压器T的初级绕组构成典型的电感三点式音频振荡器。
M是一组触摸电极片,当人手未触碰M时,电阻R1上端被悬空,VT1处于截止状态,VT2导通,VT3基极被VT2对地短接,所以振荡器停振不工作。
当人手触碰电极片M时,由于人体电阻的接入使M上下两金属片接通(因间隙很小,人体电阻为几十至几百千欧),VT1获得基流导通,VT2截止,其集电极输出高电平,即触摸开关开通,VT3构成的振荡器起振,扬声器B就发出响亮的“嘟—”音频叫声。
人手离开电极片M,VT1立即由导通态转为截止态,电路回复到起始状态,即触摸开关关闭,B发声停止。
本电路只有在人手按住电极片M时,电路才工作。
故它适宜于儿童游艺玩具,如蒙着眼睛摸画像人的鼻子等游戏,可将电极片粘贴在画像人的鼻子上,当摸中了电路就会发声。
本电路所有元器件无特殊要求,T可用小型晶体管收音机里的输出变压器,M可用罐头马口铁皮剪成圆片状,直径视游戏难度而定,直径愈大就愈容易摸到,然后沿圆片直径剪开成两片,将其粘贴在塑料等绝缘板上,两片电极相距愈近愈好,但不能相碰,绝缘板事先应开孔以便从电极片背后引出导线至电路板。
图2利用人体感应的杂波信号来触发电路工作的延迟型触摸开关。
VT1~VT3组成达林顿管用来放大人体感应的杂波信号,VT4、VT5组成简单的互补型低频振荡器。
延迟电路主要由R1、R2与C1阻容元件构成。
平时,因VT1基极悬空,达林顿管VT1~VT3均处于截止态,VT4因得不到所需的基极偏流,故振荡器停振,B无声。
当人手触碰电极片M时,人体感应的杂波信号(主要是50Hz工频交流信号及无线电磁波信号等)由M送至VT1的基极,信号的正半周作为VT1的基极偏流,使VT1进入放大态,虽然人体感应的杂波信号相当微弱,但达林顿管有着极高的放大倍数,它为3个管子β值的乘积。
三极管的开关特性

三极管的开关特性在脉冲与数字电路中,三极管作为最基本的开关元件得到了普遍的应用。
三极管工作在饱和状态时,其UCES≈0,相当于开关的接通状态;工作在截止状态时,IC≈0,相当于开关的断开状态,因此,三极管可当做开关器件使用。
结型场效应管场效应管(Fjeld Effect Transistor简称FET )是利用电场效应来控制半导体中电流的一种半导体器件,故因此而得名。
场效应管是一种电压控制器件,只依靠一种载流子参与导电,故又称为单极型晶体管。
与双极型晶体三极管相比,它具有输入阻抗高、噪声低、热稳定性好、抗辐射能力强、功耗小、制造工艺简单和便于集成化等优点。
场效应管有两大类,结型场效应管JFET和绝缘栅型场效应管IGFET,后者性能更为优越,发展迅速,应用广泛。
图Z0121 为场效应管的类型及图形、符号。
一、结构与分类图 Z0122为N沟道结型场效应管结构示意图和它的图形、符号。
它是在同一块N型硅片的两侧分别制作掺杂浓度较高的P型区(用P+表示),形成两个对称的PN结,将两个P区的引出线连在一起作为一个电极,称为栅极(g),在N型硅片两端各引出一个电极,分别称为源极(s)和漏极(d)。
在形成PN结过程中,由于P+区是重掺杂区,所以N一区侧的空间电荷层宽度远大二、工作原理N沟道和P沟道结型场效应管的工作原理完全相同,只是偏置电压的极性和载流子的类型不同而已。
下面以N沟道结型场效应管为例来分析其工作原理。
电路如图Z0123所示。
由于栅源间加反向电压,所以两侧PN结均处于反向偏置,栅源电流几乎为零。
漏源之间加正向电压使N型半导体中的多数载流子-电子由源极出发,经过沟道到达漏极形成漏极电流ID。
1.栅源电压UGS对导电沟道的影响(设UDS=0)在图Z0123所示电路中,UGS <0,两个PN结处于反向偏置,耗尽层有一定宽度,ID=0。
若|UGS| 增大,耗尽层变宽,沟道被压缩,截面积减小,沟道电阻增大;若|UGS| 减小,耗尽层变窄,沟道变宽,电阻减小。
双极型晶体三极管的开关特性

1 0.7 mA 10
0.03mA
iB
3
0.7 10
mA
0.23mA
三极管临界饱和时的基极电流: 而
I BS
VCC uCES
Rc
5 0.3 mA 50 1
0.094 mA
因为0<iB<IBS,三极管工作在放大
状态。iC=βiB=50×0.03=1.5mA,
输出电压:
uo=uCE=UCC-iCRc=5-1.5×1=3.5V
状态称为放大状态。
2.2 双极型晶体三极管的开关特性
(3)三极管的饱和状态和可靠饱和的条件
当输入电压vI增加
:A. iB增加,工作点上移,当工作点上移至Q3点时,三
极管进入临界饱和状态。
B. iB再增加,输出iC将不再明显变化 。
当输入电压vI增加 :C.工作点向上移至Q3点以上,饱和深度增加,进入可
2.2 双极型晶体三极管的开关特性
(4)三极管开关的过渡过程
td:延迟时间,上升到0.1Icmax tr:上升时间, 0.1Icmax到0.9Icmax
ton = td +tr ton开通时间
ts:存储时间,下降到0.9Icmax tf:下降时间,下降到0.1Icmax
toff = ts +tf toff关断时间
iC=βiB
uCE=VCC- iCRc
可变
饱和
iB>IBS 发射结正偏 集电结正偏 uBE>0,uBC>0
iC=ICS uCE=UCES=
0.3V 很小, 相当开关闭合
+VCC Rc iC
Rb b
c
uo
ui
iB
e
iB(μA)
3极管的三种工作状态的条件

3极管的三种工作状态的条件3极管是一种常见的电子元件,具有广泛的应用。
在电子电路中,3极管能够实现放大、开关等功能。
3极管的三种工作状态分别是放大状态、截止状态和饱和状态。
本文将分别介绍这三种状态的条件。
一、放大状态当3极管的输入信号较小,且基极电压与发射极电压之差较小,此时3极管进入放大状态。
放大状态的特点是:输入信号经过放大后,输出信号的幅度比输入信号的幅度大。
放大状态的条件如下:1.3极管的基极电流较大;2.3极管的集电极电压大于发射极电压;3.3极管的输入信号较小。
二、截止状态当3极管的基极电压与发射极电压之差为负值时,3极管进入截止状态。
截止状态的特点是:3极管的集电极电流等于零,此时3极管相当于一个断路。
截止状态的条件如下:1.3极管的基极电压与发射极电压之差为负值;2.3极管的集电极电压不小于电源电压。
三、饱和状态当3极管的集电极电流已经达到最大值,不能再继续增加时,此时3极管进入饱和状态。
饱和状态的特点是:3极管的集电极电流达到饱和值时,此时3极管的输出电压基本上等于其电源电压。
饱和状态的条件如下:1.3极管的输入电压保持不变,达到饱和电压;2.集电极电流达到饱和电流;3.此时,3极管的输出电压一般等于供电电压减去集电极与发射极之间的压降。
综上所述,3极管的三种工作状态分别是放大状态、截止状态和饱和状态。
不同的工作状态有着不同的特点和应用场景。
了解这些工作状态及其条件,可以更好地应用3极管进行电子元器件的设计和电路的布置。
二极管和三极管的开关特性

第一节二极管的开关特性一般而言,开关器件具有两种工作状态:第一种状态被称为接通,此时器件的阻抗很小,相当于短路;第二种状态是断开,此时器件的阻抗很大,相当于开路。
在数字系统中,晶体管基本上工作于开关状态。
对开关特性的研究,就是具体分析晶体管在导通和截止之间的转换问题。
晶体管的开关速度可以很快,可达每秒百万次数量级,即开关转换在微秒甚至纳秒级的时间内完成。
二极管的开关特性表现在正向导通与反向截止这样两种不同状态之间的转换过程。
二极管从反向截止到正向导通与从正向导通到反向截止相比所需的时间很短,一般可以忽略不计,因此下面着重讨论二极管从正向导通到反向截止的转换过程。
一、二极管从正向导通到截止有一个反向恢复过程在上图所示的硅二极管电路中加入一个如下图所示的输入电压。
在0―t1时间内,输入为+V F,二极管导通,电路中有电流流通。
设V D为二极管正向压降(硅管为0.7V左右),当V F远大于V D时,V D可略去不计,则在t1时,V1突然从+V F变为-V R。
在理想情况下,二极管将立刻转为截止,电路中应只有很小的反向电流。
但实际情况是,二极管并不立刻截止,而是先由正向的I F变到一个很大的反向电流I R=V R/R L,这个电流维持一段时间t S后才开始逐渐下降,再经过t t后,下降到一个很小的数值0.1I R,这时二极管才进人反向截止状态,如下图所示。
通常把二极管从正向导通转为反向截止所经过的转换过程称为反向恢复过程。
其中t S 称为存储时间,t t称为渡越时间,t re=t s+t t称为反向恢复时间。
由于反向恢复时间的存在,使二极管的开关速度受到限制。
二、产生反向恢复过程的原因——电荷存储效应产生上述现象的原因是由于二极管外加正向电压V F时,载流子不断扩散而存储的结果。
当外加正向电压时P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流于,如下图所示。
三极管的工作原理及开关电路
三极管的工作原理三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。
分成NPN和PNP 两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
一、电流放大下面的分析仅对于NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。
这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。
如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic 很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。
这有几个原因。
首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。
当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。
但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。
如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。
pnp型3极管工作原理
pnp型3极管工作原理
PNP型3极管是一种双极性晶体管,由P型基片和N型发射结、基结以及P型集电结构成。
其工作原理如下:
当基极与发射结之间的电压为正向偏置时,发射结被击穿,电流开始流动。
这时,发射结注入P型基片的空穴被N型发射结和P型基片吸收,形成一个非均匀的P型区域。
这使得发射结发射出的电流变得较小。
当集电极与基极之间的电压为正向偏置时,P型基片与集电结之间的空间缩小,从而促使电流在基结中形成一个充足的电子输送区,并从发射结注入到集电极中。
当E(发射极)处于低电平,B(基极)处于高电平时,P型基片与N型发射结之间的反向偏置会导致发射结不被击穿,且P型集电结将无法驱动电流。
因此,此时极端小电流只能通过发射结的一小部分注入P型基片,从而产生很小的电流流过器件。
综上所述,PNP型3极管的工作原理可以简单概括为:当通过基极-发射结电流时,发射结注入空穴到基极,从而减小了发射电流;而通过基极-集电结电流时,电子被注入到集电极,产生了相对较大的电流。
远离正向偏置电压时,极端小电流通过发射结注入基极,而无法形成集电电流。
三极管工作原理图
三极管工作原理图引言概述:三极管是一种常见的电子元件,广泛应用于电子电路中。
它具有非常重要的作用,可以放大电流和控制电流的流动。
本文将详细介绍三极管的工作原理图,包括三极管的结构、工作原理和应用。
一、三极管的结构1.1 发射区:发射区是三极管的主要区域,它通常由n型半导体材料构成。
发射区有两个接触点,分别是发射极和基极。
发射极是电流的输入端,基极则用于控制电流的流动。
1.2 基区:基区是三极管的中间区域,通常由p型半导体材料构成。
基区的宽度决定了三极管的放大能力,它与发射区和集电区相隔一定距离。
1.3 集电区:集电区是三极管的输出端,通常由n型半导体材料构成。
它与发射区相隔一定距离,用于控制电流的输出。
二、三极管的工作原理2.1 放大作用:当电流从发射极进入基极时,通过基区的扩散作用,将电流放大,并从集电极输出。
这种放大作用使得三极管能够在电子电路中扮演放大信号的角色。
2.2 控制作用:三极管的基极通过控制电流的大小和方向,能够控制集电极的电流流动。
通过改变基极电流,可以实现对输出电流的控制,从而实现对电路的开关控制。
2.3 双极性特性:三极管具有双极性特性,即它既可以放大正向电流,也可以放大反向电流。
这使得三极管在电子电路中具有更广泛的应用。
三、三极管的应用3.1 放大器:三极管的放大作用使得它成为放大器电路的重要组成部份。
通过合理的电路设计和三极管的工作原理,可以实现对信号的放大,满足不同应用场景的需求。
3.2 开关:三极管的控制作用使得它可以作为开关使用。
通过控制基极电流的开关状态,可以实现电路的开关控制,如调光灯、电子开关等。
3.3 振荡器:三极管还可以用于振荡器电路的设计。
通过合理的电路结构和三极管的特性,可以实现信号的产生和放大,实现振荡器的功能。
四、三极管的特性4.1 饱和区:当三极管的基极电流较大时,三极管处于饱和区。
此时,集电极电流达到最大值,三极管的放大作用最好。
4.2 放大区:当三极管的基极电流适中时,三极管处于放大区。
一个实用三极管开关电路的分析
一个实用三极管开关电路的分析
一、电路概述
三极管开关电路是由三极管、电阻和电容构成的电路,它可以实现一
个单向的开关控制,即控制电路中的电流及电压。
本电路是一个标准的三
极管开关电路,控制在三极管的基极,通过三极管的发射极控制电路中的
电流及电压,当三极管处于导通状态时,电路中可以流过电流,从而控制
电压电流的大小。
二、三极管开关电路结构
这里采用的是三极管NPN型开关,电源电压为5V,其中R1,R2分别
是2.2k和1k的电阻,C1是一个电容,用来控制三极管的开关时间,其
它部件和电路参数的参数也如上图所示。
三、电路工作原理
当电路处于关闭状态时,电源供电至R1和R2,由R2引出的电流流
过三极管,到达三极管的基极,此时由于基极电压太低,使得三极管处于
非导通状态,三极管的发射极及接口端不能连接,此时电路处于关断状态,此时电流不能流过电路,实现控制电流和电压的功能。
当电路处于导通状态时,当接口端通过按钮接入信号信号时,三极管
的基极电压会升高,使得三极管处于导通状态,此时发射极可以和接口端
连接,从而形成一个闭合电路,电流可以流过电路,电压可以较大或较小,实现控制电流和电压的功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三极管开关电路设计引言三极管除了可以当做交流信号放大器之外,也可以做为开关之用。
严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。
图1所示,即为三极管电子开关的基本电路图。
由图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。
输入电压Vin则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。
详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。
同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。
1 三极管开关电路的分析设计由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。
通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。
(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。
欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。
欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。
在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为:因此,基极电流最少应为:上式表出了IC和IB之间的基本关系,式中的β值代表三极管的直流电流增益,对某些三极管而言,其交流β值和直流β值之间,有着甚大的差异。
欲使开关闭合,则其Vin值必须够高,以送出超过或等于(式1)式所要求的最低基极电流值。
由于基极回路只是一个电阻和基射极接面的串联电路,故Vin可由下式来求解:一旦基极电压超过或等于(式2)式所求得的数值,三极管便导通,使全部的供应电压均跨在负载电阻上,而完成了开关的闭合动作。
总而言之,三极管接成图1的电路之后,它的作用就和一只与负载相串联的机械式开关一样,而其启闭开关的方式,则可以直接利用输入电压方便的控制,而不须采用机械式开关所常用的机械引动(mechanical actuator)﹑螺管柱塞(solenoid plunger)或电驿电枢(relay armature)等控制方式。
为了避免混淆起见,本文所介绍的三极管开关均采用NPN三极管,当然NPN三极管亦可以被当作开关来使用,只是比较不常见罢了。
试解释出在图2的开关电路中,欲使开关闭合(三极管饱和)所须的输入电压为何﹖并解释出此时之负载电流与基极电流值解﹕由2式可知,在饱和状态下,所有的供电电压完全跨降于负载电阻上,因此由方程式(1)可知:因此输入电压可由下式求得﹕图2 用三极管做为灯泡开关欲利用三极管开关来控制大到1.5A的负载电流之启闭动作,只须要利用甚小的控制电压和电流即可。
此外,三极管虽然流过大电流,却不须要装上散热片,因为当负载电流流过时,三极管呈饱和状态,其VCE趋近于零,所以其电流和电压相乘的功率之非常小,根本不须要散热片。
2 三极管开关与机械式开关的比较截至目前为止,我们都假设当三极管开关导通时,其基极与射极之间是完全短路的。
事实并非如此,没有任何三极管可以完全短路而使VCE=0,大多数的小信号硅质三极管在饱和时,VCE(饱和)值约为0.2伏特,纵使是专为开关应用而设计的交换三极管,其VCE(饱和)值顶多也只能低到0.1伏特左右,而且负载电流一高,VCE(饱和)值还会有些许的上升现象,虽然对大多数的分析计算而言,VCE(饱和)值可以不予考虑,但是在测试交换电路时,必须明白VCE(饱和)值并非真的是0。
虽然VCE(饱和)的电压很小,本身微不足道,但是若将几个三极管开关串接起来,其总和的压降效应就很可观了,不幸的是机械式的开关经常是采用串接的方式来工作的,如图3(a)所示,三极管开关无法模拟机械式开关的等效电路(如图3(b)所示)来工作,这是三极管开关的一大缺点。
图3 三极管开关与机械式开关电路幸好三极管开关虽然不适用于串接方式,却可以完美的适用于并接的工作方式,如图4所示者即为一例。
三极管开关和传统的机械式开关相较,具有下列四大优点﹕(1)三极管开关不具有活动接点部份,因此不致有磨损之虑,可以使用无限多次,一般的机械式开关,由于接点磨损,顶多只能使用数百万次左右,而且其接点易受污损而影响工作,因此无法在脏乱的环境下运作,三极管开关既无接点又是密封的,因此无此顾虑。
(2)三极管开关的动作速度较一般的开关为快,一般开关的启闭时间是以毫秒(ms)来计算的,三极管开关则以微秒(μs)计。
(3)三极管开关没有跃动(bounce)现象。
一般的机械式开关在导通的瞬间会有快速的连续启闭动作,然后才能逐渐达到稳定状态。
(4)利用三极管开关来驱动电感性负载时,在开关开启的瞬间,不致有火花产生。
反之,当机械式开关开启时,由于瞬间切断了电感性负载样上的电流,因此电感之瞬间感应电压,将在接点上引起弧光,这种电弧非但会侵蚀接点的表面,亦可能造成干扰或危害。
图4 三极管开关之并联联接3 三极管开关的测试三极管开关不像机械式开关可以光凭肉眼就判断出它目前的启闭状态,因此必须利用电表来加以测试。
在图5所示的标准三极管开关电路中,当开关导通时,VEC的读值应该为0,反之当开关切断时,VCE应对于VCC。
三极管开关在切断的状况下,由于负载上没有电流流过,因此也没有压降,所以全部的供应电压均跨降在开关的两端,因此其VCE值应等于VCC,这和机械式开关是完全相同的。
如果开关本身应导通而未导通,那就得测试Vin的大小了。
欲保证三极管导通,其基极的Vin电压值就必须够高,如果Vin值过低,则问题就出自信号源而非三极管本身了。
假使在Vin的准位够高,驱动三极管导通绝无问题时,而负载却仍未导通,那就要测试电源电压是否正常了。
在导通的状态下,硅三极管的VBE值约为0.6伏特,假使Vin值够高,而VBE值却高于和低于0.6伏特,例如VBE为1.5伏特或0.2伏特,这表示基射极接面可能已经损坏,必须将三极管换掉。
当然这一准则也未必百分之百正确,许多大电流额定的功率三极管,其VBE值经常是超过1伏特的,因此即使VBE的读值达到1.5伏特,也未必就能肯定三极管的接面损坏,这时候最好先查阅三极管规格表后再下断言。
一旦VBE正常且有基极电流流动时,便必须测试VCE值,假使VCE趋近于VCC,就表示三极管的集基接面损坏,必须换掉三极管。
假使VCE趋近于零伏特,而负载仍未导通,这可能是负载本身有开路现象发生,因此必须检换负载。
图5 三极管开关电路,各主要测试电的电压图当Vin降为低电压准位,三极管理应截止而切断负载,如果负载仍旧未被切断,那可能是三极管的集基极和集射极短路,必须加以置换。
3.1 基本三极管开关之改进电路有时候,我们所设定的低电压准位未必就能使三极管开关截止,尤其当输入准位接近0.6伏特的时候更是如此。
想要克服这种临界状况,就必须采取修正步骤,以保证三极管必能截止。
图6就是针对这种状况所设计的两种常见之改良电路。
图6 确保三极管开关动作,正确的两种改良电路图6(a)的电路,在基射极间串接上一只二极管,因此使得可令基极电流导通的输入电压值提升了0.6伏特,如此即使Vin值由于信号源的误动作而接近0.6伏特时,亦不致使三极管导通,因此开关仍可处于截止状态。
图6(b)的电路加上了一只辅助-截止(hold-off)电阻R2,适当的R1,R2及Vin值设计,可于临界输入电压时确保开关截止。
由图6(b)可知在基射极接面未导通前(IB0),R1和R2形成一个串联分压电路,因此R1必跨过固定(随Vin而变)的分电压,所以基极电压必低于Vin值,因此即使Vin接近于临界值(Vin=0.6伏特),基极电压仍将受连接于负电源的辅助-截止电阻所拉下,使低于0.6伏特。
由于R1,R2及VBB值的刻意设计,只要Vin在高值的范围内,基极仍将有足够的电压值可使三极管导通,不致受到辅助-截止电阻的影响。
3.1.1 加速电容器在要求快速切换动作的应用中,必须加快三极管开关的切换速度。
图7为一种常见的方式,此方法只须在RB电阻上并联一只加速电容器,如此当Vin由零电压往上升并开始送电流至基极时,电容器由于无法瞬间充电,故形同短路,然而此时却有瞬间的大电流由电容器流向基极,因此也就加快了开关导通的速度。
稍后,待充电完毕后,电容就形同开路,而不影响三极管的正常工作。
图7 加了加速电容器的电路一旦输入电压由高准位降回零电压准位时,电容器会在极短的时间内即令基射极接面变成反向偏压,而使三极管开关迅速切断,这是由于电容器的左端原已充电为正电压,因此在输入电压下降的瞬间,电容器两端的电压无法瞬间改变仍将维持于定值,故输入电压的下降立即使基极电压随之而下降,因此令基射极接面成为反向偏压,而迅速令三极管截止。
适当的选取加速电容值可使三极管开关的切换时间减低至几十分之微秒以下,大多数的加速电容值约为数百个微微法拉(pF)。
有时候三极管开关的负载并非直接加在集电极与电源之间,而是接成图8的方式,这种接法和小信号交流放大器的电路非常接近,只是少了一只输出耦合电容器而已。
这种接法和正常接法的动作恰好相反,当三极管截止时,负载获能,而当三极管导通时,负载反被切断,这两种电路的形式都是常见的,因此必须具有清晰的分辨能力。
图8 将负载接于三极管开关电路的改进接法3.1.2 图腾式开关假使图8的三极管开关加上了电容性负载(假定其与RLD并联),那么在三极管截止后,由于负载电压必须经由RC电阻对电容慢慢充电而建立,因此电容量或电阻值愈大,时间常数(RC)便愈大,而使得负载电压之上升速率愈慢,在某些应用中,这种现象是不容许的,因此必须采用图9的改良电路。
图9 图腾式三极管开关图腾式电路是将一只三极管直接迭接于另一三极管之上所构成的,它也因此而得名。
欲使负载获能,必须使Q1三极管导通,同时使Q2三极管截断,如此负载便可经由Q1而连接至VCC上,欲使负载去能,必须使Q1三极管截断,同时使Q2三极管导通,如此负载将经由Q2接地。
由于Q1的集电极除了极小的接点电阻外,几乎没有任何电阻存在(如图9所示),因此负载几乎是直接连接到正电源上的,也因此当Q1导通时,就再也没有电容的慢速充电现象存在了。