立体几何专题

合集下载

高考立体几何专题复习公开课获奖课件

高考立体几何专题复习公开课获奖课件
(7)假如一种平面与另一种平面垂线平行, 则这两个平面互相垂直
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

高三立体几何大题专题(用空间向量解决立体几何类问题)

高三立体几何大题专题(用空间向量解决立体几何类问题)

1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。

称为基向量。

2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。

则轴。

则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。

)称为空间直角坐标。

注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。

建立即可。

3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。

121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。

立体几何复习专题及答案-高中数学

立体几何复习专题及答案-高中数学

立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

高中数学《立体几何》专题复习 (3)

高中数学《立体几何》专题复习 (3)

高中数学《立体几何》专题复习 三1.(2017·唐山模拟)正三棱锥的高和底面边长都等于6,则其外接球的表面积为( ) A .64π B .32π C .16π D .8π答案 A解析 如图,作PM ⊥平面ABC 于点M ,则球心O 在PM 上,PM =6,连接AM ,AO ,则OP =OA =R(R 为外接球半径),在Rt △OAM 中,OM =6-R ,OA =R ,又AB =6,且△ABC 为等边三角形,故AM =2362-32=23,则R 2-(6-R)2=(23)2,则R =4,所以球的表面积S =4πR 2=64π.2.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( ) A .16π B .20π C .24π D .32π答案 C解析 由V =Sh ,得S =4,得正四棱柱底面边长为2.画出球的轴截面可得,该正四棱柱的对角线即为球的直径,所以球的半径为R =1222+22+42= 6.所以球的表面积为S =4πR 2=24π.故选C.3.若一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π答案 C解析 设正方体的棱长为a ,则a 3=8.因此内切球直径为2,∴S 表=4πr 2=4π.4.(2017·课标全国Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径长为2的同一个球的球面上,则该圆柱的体积为( ) A .π B.3π4 C.π2 D.π4 答案 B解析 根据已知球的半径长是1,圆柱的高是1,如图,所以圆柱的底面半径r =22-122=32,所以圆柱的体积V =πr 2h =π×(32)2×1=34π.故选B. 5.(2018·安徽合肥模拟)已知球的直径SC =6,A ,B 是该球球面上的两点,且AB =SA =SB =3,则三棱锥S -ABC 的体积为( ) A.324B.924 C.322 D.922答案 D解析 设该球球心为O ,因为球的直径SC =6,A ,B 是该球球面上的两点,且AB =SA =SB =3,所以三棱锥S -OAB 是棱长为3的正四面体,其体积V S -OAB =13×12×3×332×6=924,同理V O -ABC =924,故三棱锥S -ABC 的体积V S -ABC =V S -OAB +V O -ABC =922,故选D.6.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3172B .210 C.132 D .310 答案 C解析 如图,由球心作平面ABC 的垂线,则垂足为BC 的中点M. 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =(52)2+62=132. 7.(2018·广东惠州一模)已知一个水平放置的各棱长均为4的三棱锥形容器内有一小球O(质量忽略不计),现从该三棱锥形容器的顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( ) A.76π B.43πC.23π D.12π 答案 C解析 由题知,没有水的部分的体积是三棱锥形容器的体积的18,三棱锥形容器的体积为13·34·42·63·4=1623,所以没有水的部分的体积为223.设其棱长为a ,则其体积为13×34a 2×63a =223,∴a =2,设小球的半径为r ,则4×13×3×r =223,解得r =66,∴球的表面积为4π×16=23π,故选C.8.如图,ABCD -A 1B 1C 1D 1是棱长为1的正方体,S -ABCD 是高为1的正四棱锥,若点S ,A 1,B 1,C 1,D 1在同一个球面上,则该球的体积为( ) A.25π16 B.49π16 C.81π16 D.243π128答案 C解析 如图所示,O 为球心,设OG 1=x ,则OB 1=SO =2-x ,同时由正方体的性质可知B 1G 1=22,则在Rt △OB 1G 1中,OB 12=G 1B 12+OG 12,即(2-x)2=x 2+(22)2,解得x =78,所以球的半径R =OB 1=98,所以球的表面积S =4πR 2=81π16,故选C. 9.(2018·郑州质检)四棱锥P -ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( )A .9πB .3πC .22πD .12π答案 D解析 该几何体的直观图如图所示,该几何体可看作由正方体截得,则正方体外接球的直径即为PC.由直线EF 被球面所截得的线段长为22,可知正方形ABCD 对角线AC 的长为22,可得正方形ABCD 的边长a =2,在△PAC 中,PC =22+(22)2=23,球的半径R =3,∴S 表=4πR 2=4π×(3)2=12π.10.(2014·湖南)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4答案 B解析 此几何体为一直三棱柱,底面是边长为6,8,10的直角三角形,侧棱为12,故其最大球的半径为底面直角三角形内切圆的半径,故其半径为r =12×(6+8-10)=2,故选B.11.(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 答案 92π解析 设正方体的棱长为a ,则6a 2=18,得a =3,设该正方体外接球的半径为R ,则2R =3a =3,得R =32,所以该球的体积为43πR 3=43π(32)3=92π.12.若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.答案63π解析 设正四面体的棱长为a ,则正四面体的表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 13.已知一圆柱内接于球O ,且圆柱的底面圆的直径与母线长均为2,则球O 的表面积为________. 答案 8π解析 圆柱的底面圆的直径与母线长均为2,所以球的直径为22+22=8=22,即球半径为2,所以球的表面积为4π×(2)2=8π.14.(2017·衡水中学调研卷)已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________. 答案33解析 方法一:先在一个正方体中找一个满足条件的正三棱锥,再利用正方体的性质解题.如图,满足题意的正三棱锥P -ABC 可以是正方体的一部分,其外接球的直径是正方体的体对角线,且面ABC 与体对角线的交点是体对角线的一个三等分点,所以球心到平面ABC 的距离等于体对角线长的16,故球心到截面ABC 的距离为16×23=33.方法二:用等体积法:V P -ABC =V A -PBC 求解).15.(2018·四川成都诊断)已知一个多面体的三视图如图所示,其中正视图与侧视图都是直角边长为1的等腰直角三角形,俯视图是边长为1的正方形,若该多面体的顶点都在同一个球面上,则该球的表面积为________.答案3π解析由三视图知几何体为四棱锥,且四棱锥的一条侧棱垂直于底面,高等于1,其底面是边长为1的正方形,∴四棱锥的外接球即是边长为1的正方体的外接球,∴外接球的直径为3,∴外接球的表面积S=4π×(32)2=3π.16.(2018·河北唐山模拟)已知矩形ABEF所在的平面与矩形ABCD所在平面互相垂直,AD=2,AB=3,AF=332,M为EF的中点,则多面体M-ABCD的外接球的表面积为________.答案16π解析记多面体M-ABCD的外接球的球心为O,如图,过点O分别作平面ABCD和平面ABEF的垂线,垂足分别为Q,H,连接MH并延长,交AB于点N,连接OM,NQ,AQ,设球O的半径为R,球心到平面ABCD的距离为d,即OQ=d,∵矩形ABEF所在的平面与矩形ABCD所在的平面互相垂直,AF=332,M为EF的中点,∴MN=332,∴AN=NB=32,NQ=1,∴R2=(4+92)2+d2=12+(332-d)2,∴d=32,R2=4,∴多面体M-ABCD的外接球的表面积为4πR2=16π.1.(2017·课标全国Ⅱ,文)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为________.答案14π解析依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R,则有2R=14,R=142,因此球O的表面积等于4πR2=14π.2.(2018·湖南长沙一中模拟)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为()A .8π B.25π2C .12π D.41π4答案 D解析 根据三视图得出,几何体是正方体中的一个四棱锥O -ABCD ,正方体的棱长为2,A ,D 为所在棱的中点.根据几何体可以判断,球心应该在过A ,D 的平行于正方体底面的中截面上,设球心到平面BCO的距离为x ,则到AD 的距离为2-x ,所以R 2=x 2+(2)2,R 2=12+(2-x)2,解得x =34,R=414,该多面体外接球的表面积为4πR 2=414π,故选D. 3.(2014·陕西,理)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( ) A.32π3B .4πC .2π D.4π3答案 D解析 因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r =1212+12+(2)2=1,所以V 球=4π3×13=4π3.故选D.4.(2018·洛阳统一考试)如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π答案 D解析 由三视图知,该几何体可以由一个长方体截去3个角后得到,该长方体的长、宽、高分别为5、4、3,所以其外接球半径R 满足2R =42+32+52=52,所以该几何体的外接球的表面积为S =4πR 2=4π×(522)2=50π,故选D.5.(2018·广东清远三中月考)某一简单几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .13πB .16πC .25πD .27π答案 C解析 由三视图可知该几何体是底面为正方形的长方体,底面对角线为4,高为3,设外接球半径为r ,则2r =(22)2+(22)2+32=5,∴r =52,∴长方体外接球的表面积S =4πr 2=25π.6.(2018·福建厦门模拟)已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为32R ,AB =AC =BC =23,则球O 的表面积为( ) A.163π B .16π C.643π D .64π答案 D解析 因为AB =AC =BC =23,所以△ABC 为正三角形,其外接圆的半径r =232sin60°=2,设△ABC 外接圆的圆心为O 1,则OO 1⊥平面ABC ,所以OA 2=OO 12+r 2,所以R 2=(32R)2+22,解得R 2=16,所以球O 的表面积为4πR 2=64π,故选D.7.(2018·四川广元模拟)如图,边长为2的正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将△ADE ,△EBF ,△FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ′,若四面体A ′EFD 的四个顶点在同一个球面上,则该球的半径为________.答案62解析 由题意可知△A ′EF 是等腰直角三角形,且A ′D ⊥平面A ′EF.由于△A ′EF 可以补全为边长为1的正方形,则该四面体必能补全为长、宽、高分别为1,1,2的正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,易知正四棱柱的外接球的直径为12+12+22= 6.故球的半径为62. 8.(2017·德州模拟)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体的体积是________;若该几何体的所有顶点在同一球面上,则球的表面积是________.答案 133π解析 由三视图知该几何体是底面为1的正方形,高为1的四棱锥,故体积V =13×1×1×1=13,该几何体与棱长为1的正方体具有相同的外接球,外接球直径为3,该球表面积S =4π×(32)2=3π,正方体、长方体的体对角线即为外接球的直径.。

高中数学《立体几何》专题复习 (1)

高中数学《立体几何》专题复习 (1)

高中数学《立体几何》专题复习一1.(2018·安徽东至二中段测)将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆锥D.一个圆柱、两个圆锥答案 D解析把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥.故选D.2.以下关于几何体的三视图的论述中,正确的是()A.正方体的三视图是三个全等的正方形B.球的三视图是三个全等的圆C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆答案 B解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.3.如图所示,几何体的正视图与侧视图都正确的是()答案 B解析侧视时,看到一个矩形且不能有实对角线,故A,D排除.而正视时,有半个平面是没有的,所以应该有一条实对角线,且其对角线位置应为B中所示,故选B.4.一个几何体的三视图如图,则组成该几何体的简单几何体为()A.圆柱和圆锥B.正方体和圆锥C.四棱柱和圆锥D.正方体和球答案 C5.(2018·沧州七校联考)三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB 的长为()A.16 3 B.38C.4 2 D.211答案 C解析由已知中的三视图可得SC⊥平面ABC,且底面△ABC为等腰三角形.在△ABC中,AC=4,AC边上的高为23,所以BC=4.在Rt△SBC中,由SC=4,可得SB=4 2. 6.(2017·衡水中学调研卷)已知一个四棱锥的高为3,其底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为()A.2 2 B.6 2C.1 D. 2答案 A解析因为底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,所以在直角坐标系中,底面是边长为1和3的平行四边形,且平行四边形的一条对角线垂直于平行四边形的短边,此对角线的长为22,所以该四棱锥的体积为V=13×22×1×3=2 2.7.(2018·四川泸州模拟)一个正四棱锥的所有棱长均为2,其俯视图如图所示,则该正四棱锥的正视图的面积为()A. 2B. 3C.2 D.4答案 A解析由题意知,正视图是底边长为2,腰长为3的等腰三角形,其面积为12×2×(3)2-1= 2.8.(2018·湖南郴州模拟)一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()A.①②B.③④C.①③D.②④答案 D解析由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.9.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()答案 D解析依题意,此几何体为组合体,若上、下两个几何体均为圆柱,则俯视图为A;若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若上边的几何体为底面为等腰直角三角形的直三棱柱,下边的几何体为正四棱柱时,俯视图为C;若俯视图为D,则正视图中还有一条虚线,故该几何体的俯视图不可能是D,故选D.10.(2018·江西上馓质检)点M,N分别是正方体ABCD-A1B1C1D1的棱A1B1,A1D1的中点,用过平面AMN和平面DNC1的两个截面截去正方体的两个角后得到的几何体如图,则该几何体的正(主)视图,侧(左)视图、俯视图依次为()A.①②③B.②③④C.①③④D.②④③答案 B解析由直视图可知,该几何体的正(主)视图、侧(左)视图、俯视图依次为②③④,故选B. 11.(2018·四川宜宾期中)某几何体的三视图如图所示,则该几何体最长棱的长度为()A.4 B.3 2C.2 2 D.2 3答案 D解析由三视图可知,该几何体为如图所示的四棱锥P-ABCD,由图可知其中最长棱为PC,因为PB2=PA2+AB2=22+22=8,所以PC2=PB2+BC2=8+22=12,则PC=23,故选D.12.(2018·北京东城区期末)在空间直角坐标系O-xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(0,2,0),(2,2,2).画该四面体三视图中的正视图时,以xOz平面为投影面,则得到的正视图可以为()答案 A解析设S(2,2,2),A(2,2,0),B(0,2,0),C(0,0,2),则此四面体S-ABC如图①所示,在xOz平面的投影如图②所示.其中S′是S在xOz平面的投影,A′是A在xOz平面的投影,O是B在xOz平面的投影,SB 在xOz平面的投影是S′O,并且是实线,CA在xOz平面的投影是CA′,且是虚线,如图③. 13.(2018·江西宜春模拟)某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大为()A.2 2 B.4C.2 3 D.2 6答案 C解析由三视图知该几何体为棱锥S-ABD,其中SC⊥平面ABCD,将其放在正方体中,如图所示.四面体S-ABD的四个面中△SBD的面积最大,三角形SBD是边长为22的等边三角形,所以此四面体的四个面中面积最大为34×8=2 3.故选C.14.(2018·江苏张家港一模)若将一个圆锥侧面沿一条母线剪开,其展开图是半径为2 cm的半圆,则该圆锥的高为________cm.答案 3解析设圆锥的底面圆半径为r cm,则2πr=2π,解得r=1 cm,∴h=22-1= 3 cm. 15.(2018·成都二诊)已知正四面体的俯视图如图所示,其中四边形ABCD是边长为2的正方形,则这个四面体的正视图的面积为________.答案2 2解析由俯视图可得,原正四面体AMNC可视作是如图所示的正方体的一内接几何体,则该正方体的棱长为2,正四面体的正视图为三角形,其面积为12×2×22=2 2.16.(2018·上海长宁区、嘉定区质检)如图,已知正三棱柱的底面边长为2,高为5,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为________.答案13解析将正三棱柱ABC-A1B1C1沿侧棱AA1展开,再拼接一次,如图所示,在展开图中,最短距离是六个矩形形成的大矩形对角线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理得d=122+52=13.17.某几何体的正(主)视图和侧(左)视图如图1,它的俯视图的直观图是矩形O1A1B1C1如图2,其中O1A1=6,O1C1=2,则该几何体的侧面积为________.答案96解析由俯视图的直观图可得y轴与C1B1交于D1点,O1D1=22,故OD=42,俯视图是边长为6的菱形,则该几何体是直四棱柱,侧棱长为4,则侧面积为6×4×4=96. 1.(课本习题改编)如图为一个几何体的三视图,则该几何体是()A.四棱柱B.三棱柱C.长方体D.三棱锥答案 B解析由几何体的三视图可知,该几何体的直观图如图所示,即为一个平放的三棱柱.2.(2018·山东泰安模拟)某三棱锥的三视图如图所示,其侧视图为直角三角形,则该三棱锥最长的棱长等于()A.4 2 B.34C.41 D.5 2答案 C解析根据几何体的三视图,得该几何体是底面为直角三角形,有两个侧面垂直于底面,高为5的三棱锥,最长的棱长等于25+16=41,故选C.3.(2018·安徽毛坦厂中学月考)已知一个几何体的三视图如图所示,则这个几何体的直观图是()答案 C解析A项中的几何体,正视图不符,侧视图也不符,俯视图中没有虚线;B项中的几何体,俯视图中不出现虚线;C项中的几何体符合三个视图;D项中的几何体,正视图不符.故选C.4.(2017·山东德州质检)如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是()答案 C解析此几何体的侧视图是从左边往右边看,故其侧视图应选C.5.(2017·广东汕头中学摸底)如图是一正方体被过棱的中点M,N,顶点A及过N,顶点D,C1的两个截面截去两角后所得的几何体,该几何体的正视图是()答案 B6.(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③,故选B.7.(2014·课标全国Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案 B解析由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱,故选B.8.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()答案 B解析D项为主视图或者侧视图,俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.9.底面水平放置的正三棱柱的所有棱长均为2,当其正(主)视图有最大面积时,其侧(左)视图的面积为()A.2 3 B.3C. 3 D.4答案 A解析当正视图面积最大时,侧视图是一个矩形,一个边长为2,另一边长是三棱柱底面三角形的高为3,故侧视图面积为2 3.10.(2015·北京,文)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2C. 3 D.2答案 C解析将三视图还原成几何体的直观图,如图,由三视图可知,底面ABCD是边长为1的正方形,SB⊥底面ABCD,SB=AB=1,由勾股定理可得SA=SC=2,SD=SB2+DB2=1+2=3,故四棱锥中最长棱的棱长为 3.故选C. 11.(2017·南昌模拟)若一几何体的正视图与侧视图均为边长为1的正方形,则下列图形一定不是该几何体的俯视图的是()答案 D解析 若该几何体的俯视图为选项D ,则其正视图为长方形,不符合题意,故选D. 12.某几何体的正视图与侧视图如图所示,若该几何体的体积为13,则该几何体的俯视图可以是( )答案 D解析 通过分析正视图和侧视图,结合该几何体的体积为13,可知该几何体的底面积应为1,因为符合底面积为1的选项仅有D 选项,故该几何体为一个四棱锥,其俯视图为D. 13.(2018·兰州诊断考试)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中x 的值是( )A .2 B.92 C.32 D .3答案 D解析 由三视图知,该几何体是四棱锥,底面是一个直角梯形,底面积S =12×(1+2)×2=3,高h =x ,所以其体积V =13Sh =13×3x =3,解得x =3,故选D.14.某几何体的三视图如图所示,则该几何体中,最大侧面的面积为( )A.12B.22C.52D.62答案 C解析 由三视图知,该几何体的直观图如图所示.平面AED ⊥平面BCDE ,四棱锥A -BCDE 的高为1.四边形BCDE 是边长为1的正方形,则S △AED =12×1×1=12,S △ABC =S △ABE =12×1×2=22,S △ACD =12×1×5=52,故选C.15.(2017·山东师大附中月考)如图是各棱长均为2的正三棱柱ABC -A 1B 1C 1的直观图,则此三棱柱侧视图的面积为________. 答案 2 3解析 依题意,得此三棱柱的侧视图是边长分别为2,3的矩形BB 1D 1D ,故其面积是2 3.16.(2017·北京西城区期末)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________. 答案 2 3解析 由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3.17.用小立方块搭一个几何体,使它的正视图和俯视图如图所示,则它最多需要______个小立方块.答案14解析本题考查了三视图的有关知识.需要小立方块最多则:第一层最多6个,第二层最多5个,第三层最多3个,故最多用14个.18.(2017·湖南株洲质检)已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()答案 C解析通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求.。

立体几何中的组合体问题专题(有答案)

立体几何中的组合体问题专题(有答案)

立体几何中的组合体问题专题(有答案)例1.正方体与球问题:正方体的棱长为1.求球的半径:⑴若正方体的八个顶点都在球面上,⑵若球内切于正方体;⑶12条棱组成一个正方体,一充气球在正方体内,求球的最大半径.例2.正四面体与球问题:正四面体的棱长为1.求球的半径:⑴若正四面体的四个顶点都在球面上,⑵若球内切于正四面体;⑶6条棱组成一个正四面体,一充气球在正四面体内,求球的最大半径.例3.四球问题:四个球的半径都为1.⑴桌面放两两相切的3个球,这3个球上面放一个球,求这个球的最高点离桌面的距离;⑵求与上述4个球都相切的小球的半径.例4.圆锥、圆柱与球⑴底面半径为1cm高为10cm的圆柱内,可以放几个半径为0.5cm的小球?⑵圆锥底面半径为3,高为4,一个球内切于圆锥,求球的半径;⑶圆锥底面半径为3,高为4,两个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑷圆锥底面半径为3,高为4,三个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑸圆锥底面半径为3,内接于一个半径为4的球,求圆锥的高.例5.圆锥与正四棱柱⑴圆锥底面半径为3,高为4,正四棱柱的高为3,且内接于圆锥,求正四棱柱的底面边长;⑵圆锥底面半径为3,高为4,正四棱柱的高为x,且内接于圆锥,求正四棱柱的体积.练习一、补(补成长方体或正方体)1. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为A 、3πB 、4πC 、33πD 、6π2. 在正三棱锥ABC S -中,M 、N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱32=SA ,则正三棱锥ABC S -外接球的表面积是( ) A .π12 B .π32 C .π36 D .π483. 点P 在直径为6的球面上,过P 作两两互相垂直的三条弦(两端点均在球面上的线段),若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是 A .6B .435C .2215D .210554. 一个正方体的体积是8,则这个正方体的内切球的表面积是( )A .8πB .6πC .4πD .π 5. 设正方体的棱长为233,则它的外接球的表面积为( )A .π38B .2πC .4πD .π346. 已知三棱锥S ABC -的三条侧棱两两垂直,且2,4SA SB SC ===,则该三棱锥的外接球的半径为 A .3 B .6 C .36 D .97. 已知长方体1111ABCD A B C D -的外接球的表面积为16,则该长方体的表面积的最大值为A .32B .36C .48D .648. 长方体1111ABCD A B C D -的各个顶点都在表面积为16π的球O 的球面上,其中1::2:1:3AB AD AA =,则四棱锥O ABCD -的体积为A .263 B . 63C .23D .3 9.【山东省潍坊一中2013届高三12月月考测试数学文】四棱锥P ABCD 的三视图如右图所示,四棱锥P ABCD 的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为22,则该球表面积为A .12B .24C .36D .4810. (河南省豫东、豫北十所名校2013届高三阶段性测试四)已知四面体ABCD 中,AB =AD =6,AC =4,CD =213,AB 丄平面ACD ,则四面体 ABCD 外接球的表面积为A . π36B . π88C . π92D . π12811. 正方体1111ABCD A B C D -的棱长为6,一个球与正方体的棱长都相切,则这个球的半径是____________.12. 三棱锥A -BCD 中,侧棱AB 、AC 、AD 两两垂直,ΔABC ,ΔACD , ΔADB 的面积分别为,222,则三棱锥A -BCD 的外接球的体积为. ______13. 四面体ABCD 中,共顶点A 的三条棱两两相互垂直,且其长分别为361、、,若四面体的四个顶点同在一个球面上,则这个球的表面积为 。

千题百炼- 立体几何综合大题必刷100题(原卷版)

千题百炼- 立体几何综合大题必刷100题(原卷版)

专题20 立体几何综合大题必刷100题任务一:善良模式(基础)1-30题1.在棱长为1的正方体1111ABCD A B C D -中,E 为线段11A B 的中点,F 为线段AB 的中点.(1)求点B 到直线1AC 的距离;(2)求直线FC 到平面1AEC 的距离.2.如图,正方形11ABB A 的边长为2,11,AB A B 的中点分别为C ,1C ,正方形11ABB A 沿着1CC 折起形成三棱柱111ABC A B C -,三棱柱111ABC A B C -中,1,AC BC AD AA λ⊥=.(1)证明:当12λ=时,求证:1DC ⊥平面BCD ;(2)当14λ=时,求二面角1D BC C --的余弦值.3.如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的正切值.4.如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90.BAC ∠=︒点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(1)求证://MN 平面BDE ;(2)求二面角C EM N --的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE ,求线段AH 的长.5.已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的余弦值.6.如图所示,已知四棱锥P ABCD -中,四边形ABCD 为正方形,三角形PAB 为正三角形,侧面PAB ⊥底面ABCD ,M 是棱AD 的中点.(1)求证:PC BM ⊥;(2)求二面角B PM C --的正弦值.7.已知点E ,F 分别是正方形ABCD 的边AD ,BC 的中点.现将四边形EFCD 沿EF 折起,使二面角C EF B --为直二面角,如图所示.(1)若点G ,H 分别是AC ,BF 的中点,求证://GH 平面EFCD ;(2)求直线AC 与平面ABFE 所成角的正弦值.8.已知如图1所示,等腰ABC 中,4AB AC ==,BC =D 为BC 中点,现将ABD 沿折痕AD 翻折至如图2所示位置,使得3BDC π∠=,E 、F 分别为AB 、AC 的中点.(1)证明://BC 平面DEF ;(2)求四面体BCDE 的体积.9.在三棱柱ABC -A 1B 1C 1中,AB =2,BC =BB 1=4,1AC AB ==BCC 1=60°.(1)求证:平面ABC 1⊥平面BCC 1B 1:(2)设二面角C -AC 1-B 的大小为θ,求sinθ的值.10.如图,四棱锥P ABCD -中,底面ABCD 是直角梯形,//AD BC ,∠BAD =90°,已知PA PC ==,2,3AD AB BC ===.(1)证明:AC PD ⊥;(2)若二面角P AC B --的余弦值为13,求四棱锥P ABCD -的体积.11.如图,四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 和侧面BCC 1B 1都是矩形,E 是CD 的中点,D 1E ⊥CD ,AB =2BC =2.(1)求证:平面CC 1D 1D ⊥底面ABCD ;(2)若平面BCC 1B 1与平面BED 1所成的锐二面角的大小为3π,求线段ED 1的长度.12.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,平面PAD ⊥平面ABCD ,PAD △是斜边PA 的长为E ,F 分别是棱PA ,PC 的中点,M 是棱BC 上一点.(1)求证:平面DEM ⊥平面PAB ;(2)若直线MF 与平面ABCD E DM F --的余弦值.13.如图所示,四棱锥E ABCD -的底面ABCD 是边长为2的正方形,侧面EAB ⊥底面ABCD ,EA EB =,F 在侧棱CE 上,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ;(2)求点D 到平面ACE 的距离.14.在三棱锥B -ACD 中,平面ABD ⊥平面ACD ,若棱长AC =CD =AD =AB =1,且∠BAD =30°,求点D 到平面ABC 的距离.15.如图,在长方体1111ABCD A B C D -中,1AB BC ==,12BB =,E 为棱1AA 的中点.(1)证明:BE ⊥平面11EB C ;(2)求二面角1B EC C --的大小.16.如下图,在四棱锥S ABCD -中,底面ABCD 是正方形,平面SAD ⊥平面ABCD ,2SA SD ==,3AB =.(1)求SA 与BC 所成角的余弦值;(2)求证:AB SD ⊥.17.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.18.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.19.如图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点(I )求证BC PAC ⊥平面;(II )设//.Q PA G AOC QG PBC ∆为的中点,为的重心,求证:平面20.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,点E 在线段AD 上,且CE AB ∥.(Ⅰ)求证:CE ⊥平面PAD ;(Ⅰ)若1==PA AB ,3AD =,CD =,45CDA ∠=︒,求四棱锥P ABCD -的体积.21.如图,直三棱柱ABC A B C '''-,90BAC ∠=,,AB AC AA λ'==点M ,N 分别为A B '和B C ''的中点. (∠)证明:MN ∠平面A ACC '';(∠)若二面角A MN C '--为直二面角,求λ的值.22.如图,在三棱锥S ABC -中, 侧面SAB 与侧面SAC 均为等边三角形,90,BAC ∠=︒O 为BC 中点. (∠)证明:SO ⊥平面;ABC(∠)求二面角A SC B --的余弦值.23.如图,在四棱锥P—ABCD 中,底面是边长为ⅠBAD =120°,且PAⅠ平面ABCD ,PA =M ,N 分别为PB ,PD 的中点.(1)证明:MNⅠ平面ABCD ;(2) 过点A 作AQⅠPC ,垂足为点Q ,求二面角A—MN—Q 的平面角的余弦值.24.如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====∠O 为AC 的中点. ∠1)证明:PO ⊥平面ABC ∠∠2)若点M在棱BC上,且2,求点C到平面POM的距离.MC MB25.如图,在三棱锥P∠ABC中,P A∠AB∠P A∠BC∠AB∠BC∠P A∠AB∠BC∠2∠D为线段AC的中点,E为线段PC上一点.(1)求证:P A∠BD∠(2)求证:平面BDE∠平面P AC∠(3)当P A∠平面BDE时,求三棱锥E∠BCD的体积.26.如图,在四棱锥P-ABCD中,PAⅠCD,ADⅠBC,ⅠADC=ⅠPAB=90°,BC=CD=1AD.2(Ⅰ)在平面PAD 内找一点M ,使得直线CMⅠ平面PAB ,并说明理由;(Ⅰ)证明:平面PABⅠ平面PBD .27.如图,在三棱台ABC–DEF 中,平面BCFEⅠ平面ABC ,ⅠACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BFⅠ平面ACFD ;(Ⅰ)求直线BD 与平面ACFD 所成角的余弦值.28.如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE 平面A 1C 1F ;(2)平面B 1DEⅠ平面A 1C 1F.29.如图,在三棱锥111ABC A B C -中,11BAC 90AB AC 2,4,A AA ∠====,在底面ABC 的射影为BC 的中点,D 为11B C 的中点.∠1)证明:11D A BC A ⊥平面∠∠2)求直线1A B 和平面11B C B C 所成的角的正弦值.30.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,,,60,AB AD AC CD ABC PA AB BC ⊥⊥∠===,E 是PC 的中点.(∠)证明CD AE ⊥;(∠)证明PD ⊥平面ABE ;--的大小.(∠)求二面角A PD C任务二:中立模式(中档)30-70题31.如图,在四棱锥P-ABCD中,底面ABCD为菱形,△P AD为正三角形,平面P AD⊥平面ABCD,E,F 分别是AD,CD的中点.(1)证明:BD⊥PF;(2)若AD=DB=2,求点C到平面PBD的距离;32.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠P AD为正三角形,平面P AD⊥平面ABCD,E,F 分别是AD,CD的中点.(1)证明:BD⊥PF;(2)若∠BAD=60°,求直线PC与平面PBD所成角的正弦值;33.如图,在四棱锥E -ABCD 中,AB ⊥CE ,AE ⊥CD ,BC AD ∥,AB =3,CD =4,AD =2BC =10.(1)证明:∠AED 是锐角;(2)若AE =10,求二面角A -BE -C 的余弦值.34.如图,在直四棱柱1111ABCD A B C D -中,12A E EA =(1)若F 为1BB 的中点,试在11A B 上找一点P ,使//PF 平面1CD E ;(2)若四边形ABCD 是正方形,且1BB 与平面1CD E ,求二面角1E D C D --的余弦值.35.如图1,已知ADE 为等边三角形,四边形ABCD 为平行四边形,1,2,BC BD BA ===ADE 沿AD 向上折起,使点E 到达点P 位置,如图2所示;且平面PAD ⊥平面PBD .(1)证明:PA BD ⊥;(2)在(1)的条件下求二面角A PB C --的余弦值.36.如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,四边形ABCD 为梯形,//AB CD ,3AB =,1CD =,AD =60ABC ∠=,30BAD ∠=,点E 在AB 上,满足AD DE ⊥.(1)求证:平面PAD ⊥平面PBC ;(2)若点F 为PA 的中点,求平面PCD 与平面DEF 所成角的余弦值.37.在四棱锥P ABCD -中,PA ⊥平面ABCD ,22PA AB ==,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,E 为PD 的中点,在平面PCD 内作EF PC ⊥于点F .(1)求证:平面AEF ⊥平面PAC ;(2)求二面角P AC E --的余弦值.38.在正方体1111ABCD A B C D -中,点E 、F 分别在AB 、BC 上,且13AE AB =,13BF BC =.(1)求证:11A F C E ⊥;(2)求直线1A F 与平面1B EF 所成角的正弦值.39.如图,在多面体1111ABCD A B C D -中,1111,,,AA BB CC DD 均垂直于平面ABCD ,//AD BC ,11=2AB BC CD AA CC ====,1=1BB ,14AD DD ==.(1)证明:11A C ⊥平面11CDD C ;(2)求1BC 与平面11AA B B 所成角的余弦值.40.某商品的包装纸如图1,其中菱形ABCD 的边长为3,且60ABC ∠=︒,AE AF ==BE DF ==E ,F ,M ,N 汇聚为一点P ,恰好形成如图2的四棱锥形的包裹.(1)证明PA ⊥底面ABCD ;(2)设点T 为BC 上的点,且二面角B PA T --,试求PC 与平面P AT 所成角的正弦值.41.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,侧面PAB ⊥底面ABCD ,且P A =AB ,90PAB ∠=.(1)证明:PC BD ⊥;(2)若60ABC ∠=,求直线PC 与平面PBD 所成角的正弦值.42.1.如图,正方形ABCD 所在平面与等边ABE △所在平面成的锐二面角为60,设平面ABE 与平面CDE 相交于直线l .(1)求证://l CD ;(2)求直线DE 与平面BCE 所成角的正弦值.43.如图,在四棱锥P ABCD -中,//AD BC ,AB AD ⊥,平面APD ⊥平面ABCD ,点E 在AD 上,且AB BC AE ED ===,PA PD ==.(1)求证:CE PD ⊥.(2)设平面PAB ⋂平面PCD l =,求二面角E l A --的余弦值.44.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ADC =∠︒,4BC =,M ,N 分别为BC ,PC 的中点,1,,CD PD DC PM MD =⊥⊥.(1)证明:BC PM ⊥;(2)若PA =BN 与平面PDC 所成角的正弦值.45.如图,已知点P 在圆柱1OO 的底面圆O 上,120AOP ∠=,圆O 的直径4AB =,圆柱的高13OO =.(1)求点A到平面1A PO的距离;--的余弦值大小.(2)求二面角1A PB O46.如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=AA1=2,点P为棱B1C1的中点,点Q为线段A1B上的一动点.(1)求证:当点Q为线段A1B的中点时,PQ⊥平面A1BC;BA,试问:是否存在实数λ,使得平面A1PQ与平面B1PQ(2)设BQ=λ1在,求出这个实数λ;若不存在,请说明理由.47.如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90ABC ∠=︒,2PA =,AC =(1)求证:平面PBC ⊥平面PAB ;(2)若二面角P BC A --的大小为45︒,过点A 作AN PC ⊥于N ,求直线AN 与平面PBC 所成角的大小.48.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2PA AB ==,60BAD ∠=︒.(1)求证:直线BD ⊥平面PAC ;(2)设点M 在线段PC 上,且二面角C MB A --的余弦值为57,求点M 到底面ABCD 的距离.49.如图,在三棱锥P ABC -中,底面ABC 是边长2的等边三角形,PA PC ==F 在线段BC 上,且3FC BF =,D 为AC 的中点,E 为的PD 中点.(Ⅰ)求证:EF //平面PAB ;(Ⅱ)若二面角P AC B --的平面角的大小为2π3,求直线DF 与平面PAC 所成角的正弦值.50.如图,直四棱柱1111ABCD A B C D -的底面是菱形,侧面是正方形,60DAB ∠=︒,经过对角线1AC 的平面和侧棱1BB 相交于点F ,且12B F BF =.(1)求证:平面1AC F ⊥平面11BCC B ;(2)求二面角1F AC C --的余弦值.51.直角梯形11AA B B 绕直角边1AA 旋转一周的旋转的上底面面积为9π,下底面面积为36π,侧面积为,且二面角111B AA C --为90,P ,Q 分别在线段1CC ,BC 上.(∠)若P ,Q 分别为1CC ,BC 中点,求1AB 与PQ 所成角的余弦值;(∠)若P 为1CC 上的动点、Q 为BC 的中点,求PQ 与平面11AAC C 所成最大角的正切值,并求此时二面角Q AP C --的余弦值.52.正多面体也称柏拉图立体,被喻为最有规律的立体结构,其所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形,且每一个顶点所接的面数都一样,各相邻面所成二面角都相等).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正四面体QPTR 和一个正八面体AEFBHC 的棱长都是a (如图),把它们拼接起来,使它们一个表面重合,得到一个新多面体.(1)求新多面体的体积;(2)求二面角A BF C --的余弦值;(3)求新多面体为几面体?并证明.53.中国是风筝的故乡,南方称“鹞”,北方称“鸢”,如图,某种风筝的骨架模型是四棱锥P ABCD -,其中AC BD ⊥于O ,4OA OB OD ===,8OC =,PO ⊥平面ABCD .(1)求证:PD AC ⊥;(2)试验表明,当12PO OA =时,风筝表现最好,求此时直线PD 与平面PBC 所成角的正弦值.54.在陕西汉中勉县的汉江河与定军山武侯坪一带,经常出土有铜、铁扎马钉等兵器文物.扎马钉(如题21图(1))是三国时蜀汉的著名政治家、军事家诸葛亮所发明的一种对付骑兵的武器,状若荆刺,故学名蒺藜,有铜、铁两种.扎马钉有四个锋利的尖爪,随手一掷,三尖撑地,一尖直立向上,推倒上尖,下尖又起,始终如此,使触者不能避其锋而被刺伤.即总有一个尖垂直向上,三尖对称支承于地.简化扎马钉的结构,如图(2),记组成该“钉”的四条等长的线段公共点为O ,钉尖为i A (1,2,3,4i =).(Ⅰ)判断四面体1234A A A A -的形状特征; (Ⅱ)若某个出土的扎马钉因年代久远,有一尖爪受损,其长度仅剩其他尖爪长度的23(即4123OA OA '=),如图(3),将2A ,3A ,4A '置于地面,求1OA 与面234A A A '所成角θ的正弦值.55.正多面体也称柏拉图立体,被誉为最有规律的立体结构,其所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形,且每一个顶点所接的面数都一样,各相邻面所成二面角都相等).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正四面体QPTR 和一个正八面体AEFBHC 的棱长都是a (如图),把它们拼接起来,使它们一个表面重合,得到一个新多面体.(1)求新多面体的体积;(2)求正八面体AEFBH 中二面角A BF C --的余弦值;(3)判断新多面体为几面体?(只需给出答案,无需证明)56.如图,已知在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,AB CD =,E 为棱PB 上一点,AC 与BD 交于点O ,且AC BD ⊥,1AD =,3BC PC PB ===,PO =(1)证明:AC DE ⊥;(2)是否存在点E ,使二面角B DC E --E 点位置,若不存在,请说明理由.57.如图,在三棱柱111ABC A B C ﹣中点,E 在棱1BB 上,点F 在棱CC 1上,且点,E F 均不是棱的端点,1,AB AC BB ⊥=平面,AEF 且四边形11AA B B 与四边形11AAC C 的面积相等.(1)求证:四边形BEFC 是矩形;(2)若2,AE EF BE ==ABC 与平面AEF 所成角的正弦值.58.如图,在三棱台111ABC A B C -中,11190,4,2,BAC AB AC A A A B ∠=︒====侧棱1A A ⊥平面,ABC 点D 在棱1CC 上,且1CD CC λ=(1)证明:1BB ⊥平面1AB C ;(2)当二面角C BD A --的余弦值为,求λ的值.59.在直四棱柱1111ABCD A B C D -中,底面ABCD 为平行四边形,1,45AB BC ABC ∠===,点M 在棱1CC 上,点N 是BC 的中点,且满足1AM B N ⊥.(1)证明:AM ⊥平面11A B N ;(2)若M 是1CC 的中点,求二面角111A B N C --的正弦值.60.在四棱锥P ABCD -中,四边形ABCD 是边长为4的菱形,PB BD PD ===PA =(1)证明:PC ⊥平面ABCD ;(2)如图,取BC 的中点为E ,在线段DE 上取一点F 使得23DF FE =,求二面角F PA C --的大小.61.如图,在底面是菱形的四棱柱1111ABCD A B C D -中,60ABC ∠=,1112,AA AC A B A D ====E 在1A D 上.(1)求证:1AA ⊥平面ABCD ;(2)当E 为线段1A D 的中点时,求点1A 到平面EAC 的距离.62.已知四棱锥P ABCD -的底面是菱形,对角线AC 、BD 交于点O ,4OP OA ==,3OB =,OP ⊥底面ABCD ,设点M 满足()01PM MC λλ=<<.(1)若三棱锥P MBD -体积是169,求λ的值;(2)若直线PA 与平面MBD λ的值.63.光学器件在制作的过程中往往需要进行切割,现生产一种光学器件,有一道工序为将原材料切割为两个部分,然后在截面上涂抹一种光触媒化学试剂,加入纳米纤维导管后粘合.在如图所示的原材料器件直三棱柱ABC﹣A'B'C'中,AB⊥AC,AB=AC=AA'=a,现经过AB作与底面ABC所成角为θ的截面,且截面与B'C',A'C'分别交于不同的两点E,F.(1)试求截面面积S随θ变化的函数关系式S(θ);(2)当E和F分别为B C''和A C''的中点时,需要在线段AF上寻找一个点Q,用纳米纤维导管连接EQ,使得EQ与AB'所在直线的夹角最小,试求出纤维导管EQ的长.64.如图,四棱锥P﹣ABCD的底面ABCD为菱形,∠ABC=60°,P A⊥平面ABCD,且E,M分别为BC,PD的中点,点F为棱PC上一动点.(1)证明:平面AEF ⊥平面P AD .(2)若AB =P A ,在线段PC 上是否存在一点F ,使得二面角F ﹣AE ﹣M 定F 的位置;若不存在,说明理由.65.如图,三棱柱111ABC A B C -中,111AA B C =,11120BB C ∠=︒,1190AB C ∠=︒.(1)求证:ABC 为等腰三角形;(2)若11111AB C B AC ∠=∠,11B AB B BA ∠=∠,点M 在线段11B C 上,设111102B M B C λλ⎛⎫=<< ⎪⎝⎭,若二面角11A CM C --λ的值.66.如图,四棱锥P ABCD -中,底面ABCD 为菱形,2AB AD ==,60ABC ∠=︒,PA ⊥平面ABCD ,PA =(1)点E 在线段PC 上,37PE PC =,点F 在线段PD 上,35PF PD =,求证:PC ⊥平面AEF ; (2)设M 是直线AC 上一点,求CM 的长,使得MP 与平面PCD 所成角为45︒.67.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,侧棱PA ⊥底面ABCD ,1AB =,2PA =,E 为PB 的中点,点F 在棱PC 上,且PF PC λ=.(1)求直线CE 与直线PD 所成角的余弦值;(2)当直线BF 与平面CDE 所成的角最大时,求此时λ的值.68.如图,在四棱锥P ABCD ﹣中,四边形ABCD 为直角梯形,//AD BC ,90BAD ∠=︒,且1AB BC ==,2AD =,PA PD =,M 为AD 的中点,平面PAD ⊥平面ABCD ,直线PB 与平面ABCD 所成角的正切值为(1)求四棱锥PABCD ﹣的体积;(2)在棱CD 上(不含端点)是否存在一点Q ,使得二面角C AP Q --?若存在,请确定点Q 的位置;若不存在,请说明理由.69.已知四棱锥P ABCD -P 中,底面ABCD 是平行四边形,PA AB =,PAD BAD ∠=∠,,E F 分别是,AB DC 的中点,2,3,AD PF PE ===(1)求证:AD ⊥平面PAB ;(2)若PB =B PC A --的余弦值.70.如图,矩形ABCD 中,AB ADλ=()1λ>,将其沿AC 翻折,使点D 到达点E 的位置,且二面角C AB E --为直二面角.(1)求证:平面ACE ⊥平面BCE ;(2)设F 是BE 的中点,二面角E AC F --的平面角的大小为θ,当[]2,3λ∈时,求cos θ的取值范围.任务三:邪恶模式(困难)70-100题71.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为,PA BD 中点,2PA PD AD ===.(1)求证://EF 平面PBC ;(2)求二面角E DF A --的余弦值;(3)在棱PC 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由.72.请从下面三个条件中任选一个,补充在下面的横线上,并作答.∠()0BA PA PD ⋅+=;∠PC ∠点P 在平面ABCD 的射影在直线AD 上.如图,平面五边形PABCD 中,PAD △是边长为2的等边三角形,//AD BC ,22AB BC ==,AB BC ⊥,将PAD △沿AD 翻折成四棱锥P ABCD -,E 是棱PD 上的动点(端点除外),F M 、分别是AB CE 、的中点,且___________.(1)求证:AB FM ⊥;(2)当EF 与平面PAD 所成角最大时,求平面ACE 与平面PAD 所成的锐二面角的余弦值.注:如果选择多个条件分别解答,按第一个解答计分.73.蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.74.2022年北京冬奥会标志性场馆——国家速滑馆的设计理念来源于一个冰和速度结合的创意,沿着外墙面由低到高盘旋而成的“冰丝带”,就像速度滑冰运动员高速滑动时留下的一圈圈风驰电掣的轨迹,冰上划痕成丝带,22条“冰丝带”又象征北京2022年冬奥会.其中“冰丝带”呈现出圆形平面、椭圆形平面、马鞍形双曲面三种造型,这种造型富有动感,体现了冰上运动的速度和激情这三种造型取自于球、椭球、椭圆柱等空间几何体,其设计参数包括曲率、挠率、面积体积等对几何图形的面积、体积计算方法的研究在中国数学史上有过辉煌的成就,如《九章算术》中记录了数学家刘徽提出利用牟合方盖的体积来推导球的体积公式,但由于不能计算牟合方盖的体积并没有得出球的体积计算公式直到200年以后数学家祖冲之、祖眶父子在《缀术》提出祖暅原理:“幂势既同,则积不容异”,才利用牟合方盖的体积推导出球的体积公式原理的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.(Ⅰ)利用祖暅原理推导半径为R 的球的体积公式时,可以构造如图②所示的几何体M ,几何体M 的底面半径和高都为R ,其底面和半球体的底面同在平面α内.设与平面α平行且距离为d 的平面β截两个几何体得到两个截面,请在图②中用阴影画出与图①中阴影截面面积相等的图形并给出证明;(Ⅱ)现将椭圆()222210x y a b a b+=>>所围成的椭圆面分别绕其长轴、短轴旋转一周后得两个不同的椭球A ,B (如图),类比(Ⅰ)中的方法,探究椭球A 的体积公式,并写出椭球A ,B 的体积之比.75.如图,已知边长为2的正方形材料ABCD ,截去如图所示的阴影部分后,可焊接成一个正四棱锥的封闭容器.设FCB θ∠=.(1)用θ表示此容器的体积;(2)当此容器的体积最大时,求tan θ的值.76.如图,在四面体ABCD 中,AB AC ⊥,平面ACD 与平面BCD 垂直且CD =(1)若2AB AC ==,证明:45BCD ∠<︒;(2)若33AB AC ==,当ACD △与BCD 面积之和最大时,求二面角C AB D --的余弦值.77.某人设计了一个工作台,如图所示,工作台的下半部分是个正四棱柱ABCD ﹣A 1B 1C 1D 1,其底面边长为4,高为1(1)当圆弧E 2F 2(包括端点)上的点P 与B 1的最短距离为DB 1Ⅰ平面D 2EF .(2)若D 1D 2=3.当点P 在圆弧E 2E 2(包括端点)上移动时,求二面角P ﹣A 1C 1﹣B 1的正切值的取值范围.78.平面凸六边形11MBB NC C 的边长相等,其中11BB C C 为矩形,1190BMC B NC ∠=∠=︒.将BCM ,11B C N △分别沿BC ,11B C 折至ABC ,111A B C ,且均在同侧与平面11BB C C 垂直,连接1AA ,如图所示,E ,G 分别是BC ,1CC 的中点.(1)求证:多面体111ABC A B C -为直三棱柱;(2)求二面角1A EG A --平面角的余弦值.79.如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是,PA PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.80.已知,图中直棱柱1111ABCD A B C D -的底面是菱形,其中124AA AC BD ===.又点,,,E F P Q 分别在棱1111,,,AA BB CC DD 上运动,且满足:BF DQ =,1CP BF DQ AE -=-=.(1)求证:,,,E F P Q 四点共面,并证明EF Ⅰ平面PQB .(2)是否存在点P 使得二面角B PQ E --?如果存在,求出CP 的长;如果不存在,请说明理由.81.如图1,ADC ∆与ABC ∆是处在同-个平面内的两个全等的直角三角形,30ACB ACD ︒∠=∠=90ABC ADC ︒∠=∠=,2AB =,连接是,BD E 边BC 上一点,过E 作// EF BD ,交CD 于点F ,沿EF 将CEF ∆向上翻折,得到如图2所示的六面体,P ABEFD -(1)求证:;BD AP ⊥(2)设),(BE EC R λλ=∈若平面PEF ⊥底面ABEFD ,若平面PAB 与平面PDF λ的值;(3)若平面PEF ⊥底面ABEFD ,求六面体P ABEFD -的体积的最大值.82.设三棱锥P ABC -的每个顶点都在球O 的球面上,PAB ∆是面积为AC BC ⊥,AC BC =,且平面PAB ⊥平面ABC .(1)确定O 的位置(需要说明理由),并证明:平面POC ⊥平面ABC .(2)与侧面PAB 平行的平面α与棱AC ,BC ,PC 分别交于D ,E ,F ,求四面体ODEF 的体积的最大值.83.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 是AB 的中点,BC AC =,2AB DC ==,14AA =.(Ⅰ)求证:1//BC 平面1A CD ;(Ⅰ)求平面11BCC B 与平面1A CD 所成锐二面角的平面角的余弦值.84.如图,P 为圆锥的顶点,O 是圆锥底面的圆心,AC 为底面直径,ABD △为底面圆O 的内接正三角E 在母线PC 上,且1,AE CE EC BD ==⊥.(1)求证:平面BED ⊥平面ABD ;(2)设线段PO 上动点为M ,求直线DM 与平面ABE 所成角的正弦值的最大值.85.如图,三棱柱111ABC A B C -的底面是边长为4的正三角形,侧面11ACC A ⊥底面ABC ,且侧面11ACC A 为菱形,160A AC ∠=.(1)求二面角1A AB C 所成角θ的正弦值.(2),M N 分别是棱11A C ,11B C 的中点,又2AP BP =.求经过,,M N P 三点的平面截三棱柱111ABC A B C -的截面的周长.86.如图,在三棱台111ABC A B C -中,底面ABC 是边长为2的正三角形,侧面11ACC A 为等腰梯形,且1111AC AA ==,D 为11A C 的中点.(1)证明:AC BD ⊥;(2)记二面角1A AC B --的大小为θ,2,33ππθ⎡⎤∈⎢⎥⎣⎦时,求直线1AA 与平面11BB C C 所成角的正弦值的取值范围.87.如图,在四棱锥P ABCD -中,M ,N 分别是AB ,AP 的中点,AB BC ⊥,MD PC ⊥,//MD BC ,1BC =,2AB =,3PB =,CD =PD =(Ⅰ)证明://PC 平面MND ;(Ⅱ)求直线PA 与平面PBC 所成角的正弦值.88.设P 为多面体M 的一个顶点,定义多面体M 在点P 处的离散曲率为12231111()2k k k Q PQ Q PQ Q PQ Q PQ π--∠+∠++∠+∠,其中Q i (i =1,2,…,k ,k ≥3)为多面体M 的所有与点P 相邻的顶点,且平面Q 1PQ 2,平面Q 2PQ 3,…,平面Q k ﹣1PQ k 和平面Q k PQ 1遍历多面体M 的所有以P 为公共点的面.(1)如图1,已知长方体A 1B 1C 1D 1﹣ABCD ,AB =BC =1,1AA =P 为底面A 1B 1C 1D 1内的一个动点,则求四棱锥P ﹣ABCD 在点P 处的离散曲率的最小值;(2)图2为对某个女孩面部识别过程中的三角剖分结果,所谓三角剖分,就是先在面部取若干采样点,然后用短小的直线段连接相邻三个采样点形成三角形网格.区域α和区域β中点的离散曲率的平均值更大的是哪个区域?(确定“区域α”还是“区域β”)89.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,3PA PB ==.(1)证明:PAD PBC ∠=∠;(2)当直线PA 与平面PCD 所成角的正弦值最大时,求此时二面角P AB C 的大小.90.北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在各顶点的曲率为233πππ-⨯=,故其总曲率为4π.(1)求四棱锥的总曲率;(2)若多面体满足:顶点数-棱数+面数2=,证明:这类多面体的总曲率是常数.91.已知四棱锥T ABCD -的底面是平行四边形,平面α与直线AD ,TA ,TC 分别交于点P ,Q ,R 且AP TQ CRx AD TA CT===,点M 在直线TB 上,N 为CD 的中点,且直线//MN 平面α.(1)设TA a =,TB b =,TC c =,试用基底{},,a b c 表示向量TD ;(2)证明,四面体T ABC -中至少存在一个顶点从其出发的三条棱能够组成一个三角形;(3)证明,对所有满足条件的平面α,点M 的线段上.92.如图,在四棱台ABCD -A 1B 1C 1D 1中,底面ABCD 是菱形,ⅠABC =3π,ⅠB 1BD =6π,11,B BA B BC ∠=∠11122,3AB A B B B ===。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何专题
1. (北京文) (18) (本小题 14 分)
如图,在四棱锥 P-ABCD 中,底面 ABCD 为矩形, 平面 PAD⊥平面 ABCD , PA⊥ PD , PA=PD , E , F 分别为 AD , PB 的中点.
( Ⅰ ) 求证: PE ⊥BC ; (Ⅱ)求证:平面 PAB ⊥平面 PCD ; (Ⅲ) 求证: EF∥平面 PCD.
2. (北京理) (16) (本小题 14 分)
如图, 在三棱柱 ABC- A 1B 1C 1 中, CC 1 」平面 ABC , D , E , F , G 分别为 AA 1,AC , A 1C 1,
BB 1 的中点, AB=BC= 5, AC= AA 1 =2.
( Ⅰ ) 求证: AC⊥平面 BEF ; ( Ⅱ ) 求二面角B-CD-C 1 的余弦值; (Ⅲ) 证明: 直线 FG 与平面 BCD 相交.
3. (江苏) (15) (本小题满分 14 分)
在平行六面体ABCD 一 A B C D 中,AA = AB, AB 」B C .
求证: (1) AB∥平面A B C; (2) 平面ABB A 」平面A BC.
4. (浙江) (19) (本题满分 15 分)如图,已知多面体 ABCA1B1C1,A1A, B1B, C1C
均垂直于平面 ABC,∠ABC=120°, A1A=4, C1C=1, AB=BC=B1B=2.
(Ⅰ)证明:AB1 ⊥平面A1B1C1;
(Ⅱ)求直线 AC1 与平面 ABB1 所成的角的正弦值.
1 1 1 1 1 1 1 1 1 1 1 1 1
第 2 页共 10 页
5. (天津文) (17)(本小题满分 13 分)
如图,在四面体 ABCD 中,△ABC 是等边三角形,平面 ABC⊥平面 ABD,点 M 为棱AB 的中点, AB=2, AD= 2 3 ,∠BAD=90°.
( Ⅰ )求证:AD⊥BC;( Ⅱ ) 求异面直线 BC 与 MD 所成角的余弦值;
(Ⅲ)求直线 CD 与平面 ABD 所成角的正弦值.
6. (天津理) (17)(本小题满分 13 分)
如图,AD∥BC 且 AD=2BC,AD 」CD , EG∥AD且 EG=AD,CD∥FG 且 CD=2FG,DG 」平面ABCD, DA=DC=DG=2.
(I)若 M 为 CF 的中点, N 为 EG 的中点,求证:MN∥平面CDE;
(II)求二面角E BC F 的正弦值;
(III)若点 P 在线段 DG 上,且直线 BP 与平面 ADGE 所成的角为60°,求线段 DP 的长.
7. (全国卷一文)(18)(12 分)
如图, 在平行四边形 ABCM 中, AB = AC = 3, ∠ACM = 90, 以 AC 为折痕 将△ ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA. (1)证明:平面 ACD ⊥平面 ABC ;
(2) Q 为线段 AD 上一点, P 在线段 BC 上, 且 BP = DQ = DA , 求三棱锥
3
Q ABP 的体积.
8. (全国卷一理)(18)(12 分)
如图, 四边形 ABCD 为正方形, E, F 分别为 AD, BC 的中点, 以 DF 为折 痕把 △DFC 折起,使点 C 到达点 P 的位置,且 PF 」BF . (1)证明:平面 PEF 」平面 ABFD ; (2)求 DP 与平面 ABFD 所成角的正弦值 .
2
9. (全国卷二文)( 19) (12 分)
如图,在三棱锥P ABC 中,AB = BC = 2 2,PA = PB = PC = AC = 4,O为AC 的中点.
(1)证明:PO 」平面ABC;
(2)若点M 在棱 BC 上,且MC = 2MB,求点C 到平面POM 的距离.
10. (全国卷二理)(20)(12分)
如图,在三棱锥P ABC 中,AB = BC = 2 2,PA = PB = PC = AC = 4,O 为AC 的中点.
(1)证明:PO 」平面ABC;
(2) 若点M 在棱BC 上,且二面角M PA C 为30,求PC 与平面 PAM 所
成角的正弦值.
P
O
A C
M
B
11. (全国卷三文)(19)(12分)
如图,矩形ABCD所在平面与半圆弧 CD 所在平面垂直,M 是CD 上异于C, D 的点.
(1)证明:平面AMD⊥平面BMC;
(2)在线段AM 上是否存在点 P ,使得MC∥平面PBD ?说明理由.
12. (全国卷三理)(19)(12分)
如图,边长为 2 的正方形ABCD所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C, D 的点.
(1)证明:平面 AMD⊥平面BMC;
(2) 当三棱锥M ABC 体积最大时,求面 MAB 与面MCD所成二面角的
正弦值.
13. (12 分)
如图,四棱锥 P-ABCD 中,侧面 PAD 为等比三角形且垂直于底面 ABCD,1
AB = BC = AD, 三BAD = 三ABC = 90o , E 是 PD 的中点.
2
(1) 证明:直线CE/ / 平面 PAB
(2) 点 M 在棱 PC 上,且直线 BM 与底面 ABCD 所成锐角为45o ,求二面角 M-AB-D 的余弦值
14. (12 分)如图,在四棱锥 P-ABCD 中, AB//CD,且三BAP = 三CDP = 90
(1)证明:平面 PAB⊥平面PAD;
(2)若 PA=PD=AB=DC, 三APD = 90 ,求二面角 A-PB-C 的余弦值.
15. (12 分)如图,四面体 ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD= ∠CBD,AB=BD.
(1) 证明:平面ACD⊥平面 ABC;
(2) 过 AC 的平面交 BD 于点 E,若平面 AEC 把四面体 ABCD 分成体积相等的两部分,求二面角 D –AE –C 的余弦值.
16.如图,在四棱锥 P-ABCD 中,底面 ABCD 为正方形,平面PAD⊥平面 ABCD,点 M
在线段 PB 上, PD//平面 MAC, PA=PD= 6, AB=4.
(I)求证: M 为 PB 的中点;
(II)求二面角 B-PD-A 的大小;
(III)求直线 MC 与平面 BDP 所成角的正弦值.
17.如图,在三棱锥 P-ABC 中,PA⊥底面 ABC,三BAC = 90o .点 D, E, N 分别为棱PA, PC, BC 的中点, M 是线段 AD 的中点, PA=AC=4, AB=2.
(Ⅰ)求证: MN∥平面BDE;
(Ⅱ)求二面角 C-EM-N 的正弦值;
7
(Ⅲ) 已知点 H 在棱 PA 上,且直线 NH 与直线 BE 所成角的余弦值为,求线段 AH
21
的长.
18.
如图,几何体是圆柱的一部分,它是由矩形
为旋转轴旋转得到的,是的中点.
(Ⅰ)设是(Ⅱ)当上的一点,且,求的大小;
,,求二面角的大小.
(及其内部) 以边所在直线
19. (本题满分 15 分)如图,已知四棱 P–ABCD,△PAD 是以 AD 为斜边的等腰直角三角形,BC∥AD,D⊥AD, PC=AD=2DC=2CB, E 为 PD 的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.。

相关文档
最新文档