2010年高考立体几何专题复习-6

2010年高考立体几何专题复习-6
2010年高考立体几何专题复习-6

2010年高考立体几何专题复习

岱山中学 孙珊瑚 鲁纪伟

高考立体几何试题一般有选择、填空题, 解答题,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合

1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力. 2.判定两个平面平行的方法:

(1)根据定义——证明两平面没有公共点;

(2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那

么它们的交线平行”。

⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。

⑹经过平面外一点只有一个平面和已知平面平行。

以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可直接作为性质定理引用。 4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决.

空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概

念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π??

????

二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].

对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力.

如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以下几种方法:

(1) 根据定义;

(2) 过棱l 上任一点O 作棱l 的垂面,设∩=OA ,∩=OB ,则∠AOB = ;

(3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-;

(4) 设A 为平面外任一点,AB ⊥,垂足为B ,AC ⊥,垂足为C ,则∠BAC =或∠BAC =-; (5) 利用面积射影定理,设平面内的平面图形F 的面积为S ,F 在平面内的射影图形的面积为S ,则cos

=S

S '

. 5.空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线

段的)、平面和它的平行直线、以及两个平行平面之间的距离.求距离的一般方法和步骤是:一作

——作出表示距离的线段;二证——证明它就是所要求的距离;三算——计算其值.此外,我们还常用体积法求点到平面的距离. 6.棱柱的概念和性质

⑴理解并掌握棱柱的定义及相关概念是学好这部分知识的关键,要明确“棱柱 直棱柱 正棱柱”这一系列中各类几何体的内在联系和区别。

⑵平行六面体是棱柱中的一类重要的几何体,要理解并掌握“平行六面体 直平行六面体 长方体

正四棱柱 正方体”这一系列中各类几何体的内在联系和区别。

⑶须从棱柱的定义出发,根据第一章的相关定理对棱柱的基本性质进行分析推导,以求更好地理解、掌握并能正确地运用这些性质。

⑷关于平行六面体,在掌握其所具有的棱柱的一般性质外,还须掌握由其定义导出的一些其特有的性质,如长方体的对角线长定理是一个重要定理并能很好地掌握和应用。还须注意,平行六面体具有一些与平面几何中的平行四边形相对应的性质,恰当地运用平行四边形的性质及解题思路去解平行六面体的问题是一常用的解题方法。

⑸多面体与旋转体的问题离不开构成几何体的基本要素点、线、面及其相互关系,因此,很多问题实质上就是在研究点、线、面的位置关系,与《直线、平面、简单几何体》第一部分的问题相比,唯一的差别就是多了一些概念,比如面积与体积的度量等.从这个角度来看,点、线、面及其位置关系仍是我们研究的重点.

7.经纬度及球面距离

⑴根据经线和纬线的意义可知,某地的经度是一个二面角的度数,某地的纬度是一个线面角的度数,设球O

的地轴为NS ,圆O 是0°纬线,半圆NAS 是0°经线,若某地P 是在东经120°,北纬40°,我们可以作出过P 的经线NPS 交赤道于B ,过P 的纬线圈圆O 1交NAS 于A ,那么则应有:∠AO 1P=120°(二面角的平面角) ,∠POB=40°

(线面角)。

⑵两点间的球面距离就是连结球面上两点的大圆的劣弧的长,因此,求两点间的球面距离的关键就在于求出过这两点的球半径的夹角。

例如,可以循着如下的程序求A 、P 两点的球面距离。

S 球表=4πR 2 V 球=3

4πR 3

⑴球的体积公式可以这样来考虑:我们把球面分成若干个边是曲线的小“曲边三角形”;以球心为顶点,以这些小曲边三角形的顶点为底面三角形的顶点,得到若干个小三棱锥,所有这些小三棱锥的体积和可以看作是球体积的近似值.当小三棱锥的个数无限增加,且所有这些小三棱锥的底面积无限变小时,小三棱锥的体积和就变成球体积,同时小三棱锥底面面积的和就变成球面面积,小三棱锥高变成球半径.由于第n 个小三棱锥的体积=31S n h n (S n 为该小三棱锥的底面积,h n 为小三棱锥高),所以V 球=31S 球面·R =31·4πR 2·R =3

4πR 3. ⑵球与其它几何体的切接问题,要仔细观察、分析、弄清相关元素的位置关系和数量关系,选择最佳角度作出截面,以使空间问题平面化。 二、 空间向量

(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.

(2)空间向量基本定理:如果三个向量,,不共面,那么对空间任一向量,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.

推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P, 都存在唯一的有序实数组

x 、y 、z 使

OC

z OB y OA x OP ++=(这里隐含x+y+z≠1).

(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴

(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a1,a2,a3),),,(321b b b =,则

)

,,(332211b a b a b a ±±±=+,))(,,(321R a a a ∈=λλλλλ,332211b a b a b a ++=? ,

⌒ ⌒

⌒ ⌒ O

A

B

C

D

a ∥)(,,332211R

b a b a b a b ∈===?λλλλ33

2211b a b a b a =

=?

332211=++?⊥b a b a b a b a 。

2

22321a a a ++==(用到常用的向量模与向量之间的转化:

a a =??=

空间两个向量的夹角公式23

22212322213

32211|

|||,cos b b b a a a b a b a b a b a b a b a ++?++++=

??>=<

(a =

123(,,)

a a a ,

b =

123(,,)

b b b )。

②空间两点的距离公式:2

12212212)()()(z z y y x x d -+-+-=.

b.法向量:若向量所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥那么向量叫做平面α的法向量.

c.用向量的常用方法:

①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点

B 到平面α的距离为.

②.异面直线间的距离 ||

||CD n d n ?=

(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12

,l l 间的距离).

③.点B 到平面α的距离

||

||AB n d n ?=

(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈).

④直线AB 与平面所成角

sin

||||AB m

arc AB m β?=(m 为平面α的法向量).

⑤利用法向量求二面角的平面角定理:设21,n 分别是二面角βα--l 中平面βα,的法向量,则21,n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).

二面角l αβ--的平面角

cos

||||m n arc m n θ?=或cos

||||m n

arc m n π?-(m ,n 为平面α,β的法向量).

三、注意事项

1.须明确《直线、平面、简单几何体》中所述的两个平面是指两个不重合的平面。

2.三种空间角,即异面直线所成角、直线与平面所成角。平面与平面所成二面角。它们的求法一般化归为求两条相交直线的夹角,通常“线线角抓平移,线面角找射影,面面角作平面角”而达到化归目的,有时二面角大小出通过cos θ=

射S S 来求。

3.有七种距离,即点与点、点到直线、两条平行直线、两条异面直线、点到平面、平行于平面的直线与该平面、两个平行平面之间的距离,其中点与点、点与直线、点到平面的距离是基础,求其它几种距离一般化归为求这三种距离,点到平面的距离有时用“体积法”来求。 四、考点剖析

考点一:空间几何体的结构、三视图、直观图

【内容解读】了解柱、锥、台、球体及其简单组合体的结构特征,并能运用这些特征描述现实生活中的简单物体的结构。能画出简单空间几何体的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图。能用平行投影与中心投影两种方法画出简单空间几何体的三视图与直观图。了解空间几何体的不同表示形式。会画某建筑物的视图与直观图。

空间几何体的结构与视图主要培养观察能力、归纳能力和空间想象能力,能通过观察几何体的模型和实物,总结出柱、锥、台、球等几何体的结构特征;能识别三视图所表示的空间几何体,会用材料制作模型,培养动手能力。

【命题规律】柱、锥、台、球体及其简单组合体的结构特征在旧教材中出现过,而三视图为新增内容,一般情况下,新增内容会重点考查,从2007年、2008年广东、山东、海南的高考题来看,三视图是出题的热点,题型多以选择题、填空题为主,也有出现在解答题里,如2007年广东高考就出现在解答题里,属中等偏易题。 例1、(2008广东)将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )

解:在图2的右边放扇墙(心中有墙),可得答案A

点评:本题主要考查三视图中的左视图,要有一定的空间想象能力。 例2、(2008江苏模拟)由大小相同的正方体木块堆成的几何体的三视图如图所示,则该几何体中正方体木块的个数是 .

解:以俯视图为主,因为主视图左边有两层,表示俯视图中左边最多有两个木块,再看左视图,可

得木块数如右图所示,因此这个几何体的正方体木块数的个数为5个。 点评:从三视图到确定几何体,应根据主视图和俯视图情况分析,再结合左视图的情况定出几何体,最后便可得出这个立体体组合的小正方体个数。 考点二:空间几何体的表面积和体积

【内容解读】理解柱、锥、台的侧面积、表面积、体积的计算方法,了解它们的侧面展开图,及其对计算侧面积的作用,会根据条件计算表面积和体积。理解球的表面积和体积的计算方法。 把握平面图形与立体图形间的相互转化方法,并能综合运用立体几何中所学知识解决有关问题。

【命题规律】柱、锥、台、球的表面积和体积以公式为主,按照新课标的要求,体积公式不要求记忆,只要掌握表面积的计算方法和体积的计算方法即可。因此,题目从难度上讲属于中档偏易题。 例3、(2007广东)已知某几何体的俯视图是如图5所示的矩形,正视图(或称主 视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视 图)是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ; (2)求该几何体的侧面积S

解: 由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V-ABCD 。

(1) ()1

86464

3V =???=

E F

D

I

A H G

B

C E

F D A

B C

侧视 图1

图2 B

E

A .

B

E

B . B

E

C .

B

E

D .

主视图 左视图 俯视图

(2) 该四棱锥有两个侧面VAD. VBC是全等的等腰三角形,且BC边上的高为

2

2

18442

2h ??

=+= ???, 另两个侧面VAB. VCD 也是全等的等腰三角形,

AB 边上的高为 2

22645

2h ??

=+= ???

因此 11

2(64285)40242

22S =??+??=+点评:在课改地区的高考题中,求几何体的表面积与体积的问题经常与三视图的知识结合在一起,综合考查。

例4、(2008山东)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) A .9π B .10π

C .11π

D .12π

解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的简单几

何体,

其表面及为:22

411221312.S ππππ=?+??+??=,故选D 。

点评:本小题主要考查三视图与几何体的表面积。既要能识别简单几何体的结构特征,又要掌握基本几何体的表面积的计算方法。

例5、(湖北卷3)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )

A. 38π

B. 328π

C. π28

D. 332π

解:截面面积为π?截面圆半径为1,又与球心距离为1?球的半径是2,

所以根据球的体积公式知

348233R V ππ==

球,故B 为正确答案. 点评:本题考查球的一些相关概念,球的体积公式的运用。

考点三:点、线、面的位置关系

【内容解读】理解空间中点、线、面的位置关系,了解四个公理及其推论;空间两直线的三种位置关系及其判定;异面直线的定义及其所成角的求法。

通过大量图形的观察、实验,实现平面图形到立体图形的飞跃,培养空间想象能力。会用平面的基本性质证明共点、共线、共面的问题。

【命题规律】主要考查平面的基本性质、空间两条直线的位置关系,多以选择题、填空题为主,难度不大。 例6、如图1,在空间四边形ABCD 中,点E 、H 分别是边AB 、AD 的中点,F 、G 分别

是边BC 、CD 上的点,且CF CB =CG CD =2

3,则( )

(A )EF 与GH 互相平行 (B )EF 与GH 异面 (C )EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上

(D )EF 与GH 的交点M 一定在直线AC 上

解:依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,由公理2可

知,E 、F 、G 、H 共面,因为EH =12BD ,FG BD =2

3,故EH ≠FG ,所以,EFGH 是梯形,

EF 与GH 必相交,设

交点为M ,因为点M 在EF 上,故点M 在平面ACB 上,同理,点M 在平面ACD 上,即点M 是平面ACB 与平面ACD 的交点,而AC 是这两个平面的交线,由公理3可知,点M 一定在平面ACB 与平面ACD 的交线AC 上。

俯视图 正(主)视图 侧(左)视图

2 3

2 2

图1

选(D )。

点评:本题主要考查公理2和公理3的应用,证明共线问题。利用四个公理来证明共点、共线的问题是立体几何中的一个难点。

例7、(2008全国二10)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )

A .13

B

.3

C

.3

D .23

解:连接AC 、BD 交于O ,连接OE ,因OE ∥SD.所以∠AEO 为异面直线SD 与AE 所成的角。设侧棱长与底面边长

都等于2,则在⊿AEO 中,OE =1,AO =2,AE=

3122=-, 于是

33

3

11

32)2(1)3(cos 2

22=

=

??-+=∠AEO ,故选C 。

点评:求异面直线所成的角,一般是平移异面直线中的一条与另一条相交构成三角形,再用三角函数的方法或正、余弦定理求解。

考点四:直线与平面、平面与平面平行的判定与性质

【内容解读】掌握直线与平面平行、平面与平面平行的判定与性质定理,能用判定定理证明线面平行、面面平行,会用性质定理解决线面平行、面面平行的问题。

通过线面平行、面面平行的证明,培养学生空间观念及及观察、操作、实验、探索、合情推理的能力。

【命题规律】主要考查线线、面面平行的判定与性质,多以选择题和解答题形式出现,解答题中多以证明线面平行、面面平行为主,属中档题。

例8、(2008安徽)如图,在四棱锥O ABCD -中,底

面ABCD 四边长为

1的菱形,

4ABC π

∠=

, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,

N 为BC 的中点

(Ⅰ)证明:直线MN OCD 平面‖; (Ⅱ)求异面直线AB 与MD 所成角的大小;

(Ⅲ)求点B 到平面OCD 的距离。 方法一:(1)证明:取OB 中点E ,连接ME ,NE

ME CD ME CD

∴,‖AB,AB ‖‖

,NE OC MNE OCD ∴平面平面‖‖MN OCD ∴平面‖

(2)CD ‖AB, MDC ∠∴为异面直线AB 与MD 所成的角(或其补角)

作,AP CD P ⊥于连接MP ⊥⊥平面A B C D ,

∵OA ∴CD MP

,4

ADP π

∠=

∵∴DP

=

MD ==,1cos ,23DP MDP MDC MDP MD π

∠==∠=∠=

∴ 所以 AB 与

MD 所成角的大小为3π

(3)AB 平面∵∴‖OCD,

点A 和点B 到平面OCD 的距离相等,连接OP,过点A 作 AQ OP ⊥ 于点Q ,,,,AP CD OA CD CD OAP AQ CD ⊥⊥⊥⊥平面∵∴∴

N

B

又 ,AQ OP AQ OCD ⊥⊥平面∵∴,线段AQ 的长就是点A 到平面OCD 的距离

OP ====∵,2AP DP ==

2

2

22332

OA AP AQ OP ===∴,所以点B 到平面

OCD 的距离为23

方法二(向量法)

作AP CD ⊥于点P,

如图,分别以AB,AP,AO 所在直线为,

,x y z 轴建立坐标系

(0,0,0),(1,0,0),(0,

((0,0,2),(0,0,1),(122244A B P D O M

N --,

(1)

2222(1,,1),(0,,2),(,2)44222MN OP OD =-

-=-=--

设平面OCD 的法向量为(,

,)n x y z

=,则0,0n OP n OD ==即

2020y

z x y z -=?

?+-=??

取z =解得(0,n =

22(1,,1)(0,4,2)0

MN n =-

-=∵

MN OCD ∴平面‖

(2)设AB 与MD 所成的角为θ,(1,0,0),(1)

22AB MD ==--∵

1cos ,2

3AB MD

AB MD π

θθ===

?∴∴ , AB 与MD 所成角的大小为3π

(3)设点B 到平面OCD 的交流为d ,则d 为OB 在向量(0,n =上的投影的绝对值,

由 (1,0,2)OB =-, 得

23

OB n

d n

?=

=.所以点B 到平面OCD 的距离为2

3

点评:线面平行的证明、异面直线所成的角,点到直线的距离,既可以用综合方法求解,也可以用向量方法求解,后者较简便,但新课标地区文科没学空间向量。 例9、(2008江苏模拟)一个多面体的直观图和三视图如图所示,其中M 、N 分别是AB 、AC 的中点,G 是DF 上的一动点.

(1)求证:;AC GN ⊥

(2)当FG=GD 时,在棱AD 上确定一点P ,使得GP//平面FMC,并给出证明.

证明:由三视图可得直观图为直三棱柱且底面ADF 中AD ⊥DF,DF=AD=DC (1)连接DB ,可知B 、N 、D 共线,且AC ⊥DN 又FD ⊥AD FD ⊥CD ,∴FD ⊥面ABCD ∴FD ⊥AC ∴AC ⊥面FDN FDN GN 面? ∴GN ⊥AC (2)点P 在A 点处

证明:取DC 中点S ,连接AS 、GS 、GA G 是DF 的中点,∴GS//FC,AS//CM ∴面GSA//面FMC GSA GA 面?

∴GA//面FMC 即GP//面FMC

点评:证明线面平行,在平面内找一条直线与平面外的直线平行,是证明线面平行的关键。 考点五:直线与平面、平面与平面垂直的判定与性质

【内容解读】掌握直线与平面垂直、平面与平面垂直的判定与性质定理,能用判定定理证明线线垂直、线面垂直、面面垂直,会用性质定理解决线面垂直、面面垂直的问题。

通过线面垂直、面面垂直的证明,培养学生空间观念及及观察、操作、实验、探索、合情推理的能力。

【命题规律】主要考查线线、面面垂直的判定与性质,多以选择题和解答题形式出现,解答题中多以证明线线垂直、线面垂直、面面垂直为主,属中档题。 例10、(2008广东五校联考)正方体ABCD —A1B1C1D1中O 为正方形ABCD 的中心,M 为BB1的中点,求证: (1)D1O//平面A1BC1; (2)D1O ⊥平面MAC. 证明: (1)连结11

,BD B D 分别交

11

,AC A C 于

1

,O O 在正方体

1111ABCD A B C D -中,对角面

11BB D D

为矩形

1

,O O 分别是11

,BD B D 的中点

11

//BO D O ∴

∴四边形11BO D O 为平行四边形11//BO D O ∴

1D O ?

平面

11A BC ,1BO ?平面11A BC 1//D O ∴平面11A BC

(2)连结MO ,设正方体1111

ABCD A B C D -的棱长为a ,

在正方体

1111

ABCD A B C D -中,对角面

11BB D D

为矩形且1,2BB a BD a ==

,O M 分别是1

,BD BB 的中点

2,22a BM BO OD a

∴=== 122BM BO OD DD ∴==

1ODD Rt MBO Rt ???

1BOM DD O

∴∠=∠

在1ODD Rt ?中,1190

DD O D OD ∠+∠= 190BOM D OD ∴∠+∠=,即1D O MO ⊥

在正方体1111

ABCD A B C D -中

1DD ⊥

平面ABCD 1DD AC

∴⊥

又AC BD ⊥,1

DD BD D

= AC ∴⊥平面11BB D D

1D O ?

平面

11BB D D

1AC D O ∴⊥ 又AC MO O = 1D O ∴⊥平面MAC

点评:证明线面垂直,关键是在平面内找到两条相交直线与已知直线垂直,由线线垂直推出线面垂直,证明线

线垂直有时要用勾股定理的逆定理.

例11、(2008广东中山模拟)如图,四棱锥P —ABCD 中, PA ⊥平面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,CD ⊥AD ,CD=2AB ,E 为PC 中点. (I) 求证:平面PDC ⊥平面PAD ; (II) 求证:BE//平面PAD .

证明:(1)由PA ⊥平面ABCD

????

?

?

=?⊥⊥A

AD PA CD PA )AD (CD 已知

???

?

?⊥PAD CD PAD CD 面面 ?平面

PDC ⊥平面PAD ;

(2)取PD 中点为F ,连结EF 、AF ,由E 为PC 中点, 得EF 为△PDC 的中位线,则EF//CD ,CD=2EF . 又CD=2AB ,则EF=AB .由AB//CD ,则EF ∥AB . 所以四边形ABEF 为平行四边形,则EF//AF . 由AF ?面PAD ,则EF//面PAD .

点评:证明面面垂直,先证明线面垂直,要证线面垂直,先证明线线垂直.

例12、(2008广东深圳模拟)如图,四棱锥ABCD S -的底面是正方形,⊥SA 底面ABCD ,E 是SC 上一点. (1)求证:平面⊥EBD 平面SAC ;

(2)设4=SA ,2=AB ,求点A 到平面SBD 的距离; (1)证明: ⊥SA 底面ABCD BD SA ⊥∴

且AC BD ⊥ ∴SAC 平面⊥BD ∴平面⊥EBD 平面SAC

(2)解:因为ABD

-S SBD -A V V =,且

232221

S SBD

??=?,

可求得点A 到平面SBD 的距离为34

点评:求点到面的距离,经常采用等体积法,利用同一个几何体,体积相等,体现了转化思想. 考点六:空间向量

【内容解读】用空间向量解决立体几何问题的“三步曲”

(1)用空间向量表示问题中涉及的点、直线、平面,建立立体图形与空间向量的联系,从而把立体几何问题转化为向量问题(几何问题向量化);

(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间的距离和夹我有等问题(进行向量

A

B

C

D E

P

E

D C

B

A

S

运算);

(3)把向量的运算结果“翻译”成相应的几何意义(回归几何问题).

【命题规律】空间向量的问题一般出现在立体几何的解答题中,难度为中等偏难. 例13、如图1,直三棱柱111ABC A B C -中,1CA CB ==,

90BCA ∠=°,棱12AA M N =,,分别是111A B A A ,的中点.

求BN 的长; 求

11

cos BA CB ,的值.

解:如图1,建立空间直角坐标系O xyz -. (1)依题意,

得(010)(101)B N ,,,,,,222(10)(01)(10)3BN =-+-+-=∴.

(2)依题意,得11(102)(010)(000)(012)A B C B ,,,,,,,,,,,, 11(112)(012)

BA CB =-=,,,,,∴.

1111365

BA CB BA CB ===,,∴·.

111111

30

cos BA CB BA CB BA CB =

=

,·∴.

点评:本题主要考查了空间向量的概念及坐标运算的基本知识,考查了空间两向量的夹角、长度的计算公式.解题的关键是恰当地建立空间直角坐标系和准确地表示点的坐标

例14、如图2,在四棱锥-P ABCD ,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE EC ⊥.已知

1

222PD CD AE ===

,,.求:

异面直线PD 与EC 的距离; 二面角E PC D --的大小.

解:以D 为坐标原点,DA

DC DP ,,所在直线分别为x y z ,,轴,建立空间直角坐标

系, 并

DA a

=,则

1(00)(20)(020)(000)(002)02A a B a C D P E a ??

?

??,,,,,,,,,,,,,,,,,.

(1)PE CE ⊥∵,0PE

CE =∴·,解得3

a =

.0DE

CE =∴·,即DE CE ⊥, 又DE PD ⊥,故DE 是异面直线PD 与EC 的公垂线. 而

1

DE =,即异面直线PD 与EC 的距离为1.

(2)作DG PC ⊥,并设(0)G y z ,,,

(0)(022)DG y z PC ==-,,,,,∵,且0DG PC =·, 则2z y =,∴可取(012)DG =,,.

再作EF PC ⊥于F ,并设(0)F m n ,,,

31

2EF m n ??=-- ? ???,,∵,

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

2021高考数学立体几何专题

专题09立体几何与空间向量选择填空题历年考题细目表 题型年份考点试题位置 单选题2019 表面积与体积2019年新课标1理科12 单选题2018 几何体的结构特征2018年新课标1理科07 单选题2018 表面积与体积2018年新课标1理科12 单选题2017 三视图与直观图2017年新课标1理科07 单选题2016 三视图与直观图2016年新课标1理科06 单选题2016 空间向量在立体几何中的应 用2016年新课标1理科11 单选题2015 表面积与体积2015年新课标1理科06 单选题2015 三视图与直观图2015年新课标1理科11 单选题2014 三视图与直观图2014年新课标1理科12 单选题2013 表面积与体积2013年新课标1理科06 单选题2013 三视图与直观图2013年新课标1理科08 单选题2012 三视图与直观图2012年新课标1理科07 单选题2012 表面积与体积2012年新课标1理科11 单选题2011 三视图与直观图2011年新课标1理科06 单选题2010 表面积与体积2010年新课标1理科10 填空题2017 表面积与体积2017年新课标1理科16 填空题2011 表面积与体积2011年新课标1理科15 填空题2010 三视图与直观图2010年新课标1理科14 历年高考真题汇编 1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为() A.8πB.4πC.2πD.π 2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()

2015届高三数学立体几何专题训练及详细答案

2015届高三数学立体几何专题训练 1.(2013·高考新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( ) A .16+8π B .8+8π C .16+16π D .8+16π 解析:选A. 原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为V =4×2×2+1 2 π×22×4=16+8π. 2.(2013·高考新课标全国卷Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( ) A.500π3 cm 3 B.866π3 cm 3 C.1 372π3 cm 3 D.2 048π3 cm 3 解析:选A. 如图,作出球的一个截面,则MC =8-6=2(cm), BM =12AB =1 2 ×8=4(cm). 设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42,∴R =5, ∴V 球=43π×53=500π 3 (cm 3). 3.(2013·高考新课标全国卷Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ?α,l ?β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥β

C .α与β相交,且交线垂直于l D .α与β相交,且交线平行于l 解析:选D. 根据所给的已知条件作图,如图所示. 由图可知α与β相交,且交线平行于l ,故选D. 4.(2013·高考大纲全国卷)已知正四棱柱ABC D-A 1B 1C 1D 1中,AA 1=2AB ,则C D 与平面B D C 1所成角的正弦值等于( ) A.23 B.33 C.23 D.13 解析:选A.法一: 如图,连接AC ,交B D 于点O ,由正四棱柱的性质,有AC ⊥B D.因为CC 1⊥平面ABC D ,所以CC 1⊥B D.又CC 1∩AC =C ,所以B D ⊥平面CC 1O .在平面CC 1O 内作CH ⊥C 1O ,垂足为H ,则B D ⊥CH .又B D ∩C 1O =O ,所以CH ⊥平面B D C 1,连接D H ,则D H 为C D 在平面B D C 1上的射影,所以∠C D H 为C D 与平面B D C 1所成的角.设AA 1=2AB =2.在Rt △COC 1中,由 等面积变换易求得CH =23.在Rt △C D H 中,s in ∠C D H =CH CD =2 3 . 法二: 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D(0,0,0),C (0,1,0), B (1,1,0), C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→ =(0,1,2). 设平面B D C 1的法向量为n =(x ,y ,z ),则 n ⊥DB →,n ⊥DC 1→ ,所以有????? x +y =0,y +2z =0, 令y =-2,得平面B D C 1的一个法向量为n =(2, -2,1). 设C D 与平面B D C 1所成的角为θ,则s in θ=|co s n ,DC → =???? ??n ·DC →|n ||DC →|=23. 5.(2013·高考大纲全国卷)已知正四棱柱ABC D-A 1B 1C 1D 1中,AA 1=2AB ,则C D 与平面B D C 1所成角的正弦值等于( ) A.23 B.33

高考立体几何大题20题汇总情况

高考立体几何大题20 题汇总情况 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(2012江西省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5, BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体C DEFG 的体积。 2012,山东(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 2012浙江20.(本题满分15分)如图,在侧棱锥垂直 底面的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中 点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (第20题图) F E C 1 B 1 D 1A 1 A D B C

(2010四川)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; 2010辽宁文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。

立体几何(小题)专题 历年高考真题模拟题汇总(解析版)

立体几何 一、年考试大纲 二、新课标全国卷命题分析 三、典型高考试题讲评 2011—年新课标全国(1卷、2卷、3卷)理科数学分类汇编——11.立体几何 一、考试大纲 1.空间几何体 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图. (3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. (4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). (5)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 2.点、直线、平面之间的位置关系 (1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. 公理2:过不在同一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理. 理解以下判定定理. 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明. 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行. 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行. 垂直于同一个平面的两条直线平行. 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. 3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题. 4.空间直角坐标系 (1)了解空间直角坐标系,会用空间直角坐标表示点的位置. (2)会推导空间两点间的距离公式. 二、新课标全国卷命题分析 立体几何小题常考的题型包括:(1)球体;(2)多面体的三视图、体积、表面积或角度,包括线线角、

高考立体几何文科大题及标准答案

高考立体几何大题及答案 1.(2009全国卷Ⅰ文)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD , 2AD =,2DC SD ==,点M 在侧棱SC 上,o ∠ABM=60。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.(2009全国卷Ⅱ文)如图,直三棱柱ABC-A 1B 1C 1中,AB ⊥AC,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BD-C 为60°,求B 1C 与平面BCD 所成的角的大小 3.(2009浙江卷文)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====, 120ACB ∠=o ,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平 面ABE 所成角的正弦值. A C B A 1 B 1 C 1 D E

4.(2009北京卷文)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB = 且E 为PB 的中点时,求 AE 与平面PDB 所成的角的大小. 5.(2009江苏卷)如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1A C 的中点,点D 在11B C 上,11A D B C ⊥。 求证:(1)EF ∥平面ABC ;(2)平面1A FD ⊥平面11BB C C .

6.(2009安徽卷文)如图,ABCD 的边长为2的正方形,直线l 与平面ABCD 平行,g 和F 式l 上的两个不同点,且EA=ED ,FB=FC , 和是平面ABCD 内的两点,和都与平面ABCD 垂直,(Ⅰ)证明:直线垂直且平分线段AD :(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多 面体ABCDEF 的体积。 7.(2009江西卷文)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球 面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 8.(2009四川卷文)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 O A P B M D

高三立体几何专题复习

高三立体几何专题复习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考立体几何专题复习 一.考试要求: (1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。 (2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。 (3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。 (4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。 (5)会用反证法证明简单的问题。 (6)了解多面体的概念,了解凸多面体的概念。 (7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。 (8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。 (9)了解正多面体的概念,了解多面体的欧拉公式。 (10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。 二.复习目标: 1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用. 2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力. 3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力. 4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力. 5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力. 三.教学过程: (Ⅰ)基础知识详析 重庆高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立

2010年高考立体几何专题复习-6

2010年高考立体几何专题复习 岱山中学 孙珊瑚 鲁纪伟 高考立体几何试题一般有选择、填空题, 解答题,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力. 2.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可直接作为性质定理引用。 4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概 念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?? ???? , 二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力. 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面,设∩=OA ,∩=OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥,垂足为B ,AC ⊥,垂足为C ,则∠BAC =或∠BAC =-; (5) 利用面积射影定理,设平面内的平面图形F 的面积为S ,F 在平面内的射影图形的面积为S ,则cos =S S ' . 5.空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线

高中立体几何大题20题汇总

(2012江西省)(本小题满分12分) 如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=42,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合与 点G,得到多面体CDEFG. (1)求证:平面DEG⊥平面CFG; (2)求多面体CDEFG的体积。 【解析】(1)由已知可得AE=3,BF=4,则折叠完后EG=3,GF=4,又因为EF=5,所以可得EGGF又因为CF底面EGF,可得CFEG,即EG面CFG所以平面DEG⊥ 平面CFG. (2)过G作GO垂直于EF,GO即为四棱锥G-EFCD的高,所以所求体积为 1112 S正方形GO5520 DECF 335 Word资料

2012,山东(19)(本小题满分12分) 如图,几何体EABCD是四棱锥,△ABD为正三角形, CBCD,ECBD. (Ⅰ)求证:BEDE; (Ⅱ)若∠BCD120,M为线段AE的中点,求证:DM∥平面BEC. 解:设BD中点为O,连接OC,OE,则由BCCD知,COBD, 又已知CEBD,所以BD平面OCE. 所以BDOE,即OE是BD的垂直平分线, 所以BEDE. (II)取AB中点N,连接MN,DN, ∵M是AE的中点,∴MN∥BE,∵△ABD是等边三角形,∴DNAB. 由∠BCD=120°知,∠CBD=30°,所以∠ABC=60°+30°=90°,即BCAB,所以ND∥BC, 所以平面MND∥平面BEC,故DM∥平面BEC. Word资料

BC2012浙江20.(本题满分15分)如图,在侧棱锥垂直 底面的四棱锥ABCDA1B1C1D1中,AD//BC,AD A D FE AB,AB2,AD2,BC4,AA2,E是DD的中点,F 11 是平面B1C1E与直线AA1的交点。A1 B1 D1 (第20题图) C1 (Ⅰ)证明:(i)E F//A 1D1;(ii)BA1平面B1C1EF; (Ⅱ)求B C与平面 1 B CEF所成的角的正弦值。 11 解析:本题主要考查空间点、线、面位置关系,线面所成角等基础知识,同时考查空间想象能力和推理认证能力。 (Ⅰ)(i)因为C1B1//A1D1,C1D1平面ADD1A1,所以C1B1//平面A1D1DA. 又因为平面B1C1EFI平面A1D1DAEF,所以C1B1//EF, 所以A1D1//EF. (ii)因为BB1平面A1B1C1D1,所以BB1B1C1. 又因为B1C1B1A1,所以B1C1平面ABB1A1,所以B1C1BA1. 2 在矩形ABB1A1中,F是AA1的中点,tanA1B1FtanAA1B, 2 即A1B1FAA1BBA1B1F. 所以BA1平面B1C1EF. A B C D (Ⅱ)设BA1与B1F交点为H,连接C1H, 由(Ⅰ)知BA1平面B1C1EF. F E H B1 A1 D1 C1

立体几何(高考真题)专题

立体几何(高考真题+模拟新题)专题训练 1、[2011·四川卷]l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( ) A .l 1⊥l 2,l 2⊥l 3?l 1∥l 3 B .l 1⊥l 2,l 2∥l 3?l 1⊥l 3 C .l 1∥l 2∥l 3?l 1,l 2,l 3共面 D .l 1,l 2,l 3共点?l 1,l 2,l 3共面 2、[2011·南京质检]平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ?α,a ∥β C .存在两条平行直线a 、b ,a ?α,b ?β,a ∥β,b ∥α D .存在两条异面直线a 、b ,a ?α,b ?β,a ∥β,b ∥α 3、[2011·北京崇文一模] 已知m ,n 是两条不同直线,α,β,γ是三个不同平面,则下列命题中正确的为 ( ) A .若α⊥γ,β⊥γ,则α∥β B .若m ∥α,m ∥β,则α∥β C .若m ∥α,n ∥α,则m ∥n D .若m ⊥α,n ⊥α,则m ∥n 4、[2011·宁波二模]已知a ,β表示两个互相垂直的平面,a ,b 表示一对异面直线,则a ⊥b 的一个充分条件是( ) A .a ∥α,b ⊥β B .a ∥α,b ∥β C .a ⊥α,b ∥β D .a ⊥α,b ⊥β 5、[2011·泸州二诊] 如图K40-4,在正三棱柱ABC -A 1B 1C 1中,AB =1.若二面角C -AB -C 1的大小为60°,则点C 到平面C 1AB 的距离为( ) A.34 B.12 C.3 2 D .1 6、[2011·大连一模]已知三棱锥底面是边长为1的等边三角形,侧棱长均为2,则侧棱与底面所成角的余弦值为( ) A.32 B.12 C.33 D.36 7、 [2011·深圳调研] 在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( ) A .30° B .45° C .60° D .90° 8、 [2011·沈阳模拟] 设A ,B ,C ,D 是空间不共面的四个点,且满足AB →·AC →=0,AD →·AC → =0,AD →·AB →=0,则△BCD 的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .无法确定 9、大纲理数11.G8[2011·全国卷]已知平面α截一球面得圆M ,过圆心M 且与α成60°二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( ) A .7π B .9π C .11π D .13π 10、大纲文数12.G8[2011·全国卷] 已知平面α截一球面得圆M ,过圆心M 且与α成60°二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( ) A .7π B .9π C .11π D .13π 11、课标文数7.G8[2011·湖北卷] 设球的体积为V 1,它的内接正方体的体积为V 2,下列说法中最合适的是( ) A .V 1比V 2大约多一半 B .V 1比V 2大约多两倍半 C .V 1比V 2大约多一倍 D .V 1比V 2大约多一倍半 12、大纲理数6.G5、G11[2011·全国卷]已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足.点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( ) A.23 B.33 C.6 3 D .1 12、[2011·全国卷] 已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则CD =( ) A .2 B. 3 C. 2 D .1 13、课标理数4.G5[2011·浙江卷] 下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β 14、大纲理数6.G5、G11[2011·全国卷]已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足.点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( ) A.23 B.33 C.6 3 D .1 15、大纲理数9.G11[2011·重庆卷] 高为2 4 的四棱锥S -ABCD 的底面是边长为1的正方形,点 S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( ) A.24 B.2 2C .1 D. 2 16、大纲理数16.G11[2011·全国卷]已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1、CC 1 上,且B 1E =2EB ,CF =2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于________. 17、课标理数12.G8[2011·辽宁卷] 已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( ) A .3 3 B .2 3 C. 3 D .1 18、课标理数15.G8[2011·课标全国卷] 已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,B C =23,则棱锥O -ABC D 的体积为________. 18、大纲文数15.G8[2011·四川卷] 如图1-3,半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是________. 4 19、[2011·北京卷] 如图,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 别是棱AP ,AC ,BC ,PB 的中点. (1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形; (3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明理由. 20、[2011·北京卷] 如图1-6,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.

高三数学立体几何专题复习课程

高三数学立体几何专 题

专题三 立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空 间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三 视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等. 【例题解析】 题型1 空间几何体的三视图以及面积和体积计算 例1(2008高考海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 A . 22 B . 32 C . 4 D . 52 分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的 高宽高分别为,,m n k = =1n ?=, a = b =,所以22(1)(1)6a b -+-= 228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4 a b ?+≤当且仅当2a b ==时取等号.

浙江省历年高考立体几何大题总汇题目及答案

AC?ABCPACABC为斜边的等腰直角三是以1.(本题满分15分)如图,平面,⊥平面 10PC?16,PA?PA,PB,PCAC?E,F,O的中点,角形。。分别为BOE//OCCPC设是平面的中点,证明:;(I).s.5.u.c.o.m w.w.w.OBABOMFMBOEMOA?的距内存在一点,使到(II)证明:在⊥平面,,并求点离。z y -CD中,P是侧棱CC上的一点,,ABCD2.如图,在棱长为1的正方体CP=mAB1111123所成角的正切值为D(Ⅰ)试确定m,使得直线AP与平面BDB;11上的射影Q在平面APDmC上是否存在一个定点Q,使得对任意的,D(Ⅱ)在线段A1111垂直于AP,并证明你的结论。

的三等分CAC靠近B、分别为ABC是边长为6的等边三角形,E,DAB、如图甲,△3. 使平面沿ED翻折,交线段AGED于F点,将△AED为点,点GBC边的中点.线段形成如图乙所示的几何体。ACAB、、AGBCDEAED⊥平面,连接⊥平面AFG;I ()求证BC D的余 弦值.--)求二面角(IIBAE . BC?AC??DBEA,平面ABC,ABC,所4在如图示的几何体中,平面AE2BC?BD?AC?的中点.M 是AB,EM?CM D;(1)求证:所成的角CM与平面CDE(2)求E CA M B CF∥ABCDBEFCBE,,面互相垂图,矩形和梯形直所在平5. 如 3?AD2?EF90??BCF??CEF,,. D ∥AEDCF A 平面(Ⅰ)求证:;C 60C?A?EFAB?的长为何值时,二面角的大小为(Ⅱ)当B F E

题)(第18 2.?FD4沿直AD,上,AE=EB=AF=FABCD6. 如图,在矩形中,点E,分别在线段AB 3??EFA'AEF,'AEF?BEF. 使平面翻折成将线EF平面CA'?FD?)求二面角的余弦值;I (C 向上翻折,使将四边形BC上,若沿直线MNMNCD,分别在线段,)点(IIMNFD'A. 与FM重合,求线段的长 7. 如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2 (Ⅰ)证明:AP⊥BC; (Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-B为直二面角?若存在,求出AM 的长;若不存在,请说明理由。

高考立体几何大题及答案理

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

高考数学专题 立体几何专题

专题三 立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力与运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点就是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等.【例题解析】 题型1 空间几何体的三视图以及面积与体积计算 例 1 某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影就是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别就是长为a 与b 的线段,则a b +的最大值为 A. 22 B. 32 C. 4 D. 5 2分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为,,m n k ,由题意得2227m n k ++=,226m k +=1n ?=, 21k a +=,21m b +=,所以22(1)(1)6 a b -+-=228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4a b ?+≤当且仅当2a b ==时取等号. 点评:本题就是高考中考查三视图的试题中难度最大的一个,我们通过移动三个试图把问题归结为长方体的一条体对角线在三个面上的射影,使问题获得了圆满的解决. 例2下图就是一个几何体的三视图,根据图中数据,可得该几何体的表面积就是 A.9π B.10π C.11π D.12π

2017年高考立体几何大题

2017年高考立体几何大题(文科) 1、(2017新课标Ⅰ文数)(12分) 如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o (1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为 83 ,求该四棱锥的侧面积.

如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2 AB BC AD BAD ABC ==∠=∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积.

如图,四面体ABCD中,△ABC是正三角形,AD=CD. (1)证明:AC⊥BD; (2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.

如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点. (Ⅰ)求证:PA⊥BD; (Ⅱ)求证:平面BDE⊥平面PAC; (Ⅲ)当PA∥平面BD E时,求三棱锥E–BCD的体积.

由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD. A O∥平面B1CD1; (Ⅰ)证明: 1 (Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.

如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC.

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 棱柱的分类 棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成图1-2 长方体

的角分别是α、β、γ,那么: cos2α + cos2β + cos2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶ 长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 棱柱的侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S直棱柱侧面 = c·h (c为底面周长,h为棱柱的高) S直棱柱全 = c·h+ 2S底 V棱柱 = S底·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线 为旋转轴,其余各边旋转而形成的曲面所围成 的几何体叫圆柱。 图1-3 圆柱 2-2 圆柱的性质 ⑴上、下底及平行于底面的截面都是等圆; ⑵过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 2-4 圆柱的面积和体积公式 S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高) S圆柱全= 2π r h + 2π r2 V圆柱 = S底h = πr2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴棱锥:有一个面是多边形,其余各面是 有一个公共顶点的三角形,由这些面所围成 的几何体叫做棱锥。

相关文档
最新文档