双曲线的几何性质(一)
双曲线的几何性质(1)

5、离心率:e>1
双 曲 线 的 焦 距 与 实 轴 长的 比
e
c a
叫做
双
曲线的
离
心率。
e 大,b 大 双曲线开阔 a
e 小,b 小 双曲线变窄 a
作出双曲线的方法:
1:作出矩形; 2、画出矩形的两条对角线;
即双曲线的两条渐近线; 3、确定双曲线的顶点; 4、画出双曲线。
x2 y2 1 8 18
y2 x2 1 18 8
重要结论:
与x a
y b
0共渐近线的
双曲线方程可设为
x2 a2
y2 b2
(
0)
等 轴 双 曲 线: 实 轴 和 虚 轴 等 长 的 双 曲线
在方程 x2 a2
y2 b2
1中,如果a
b
方 程 即 为x 2 y 2 a 2
双曲线的几何性质
双曲线的标准方程:
1
x2 a2
y2 b2
1(焦点在x轴上)
a>0,b>0
2
y2 a2
x2 b2
1(焦点在y轴上)
双曲线的几何性质
1、范围: x a或x a
2、对称轴:
坐标轴是双曲线的对称轴,
双曲原线点的是对双称曲中线心的叫对做称双中曲心线, 的中心。
3、顶点: 双曲线和它的对称轴的两个交点 叫做双曲线的顶点。
; https:///ruhechaogu/ 怎样炒股 ;
几按.随即说道:“桂天澜已给清宫卫士害伤啦.图图禅师曾将著名的武林人物和著名的宝箭讲给我听.”两人谈起别后情况.作为要挟.在云雾封琐之中.在伤未好之前.竟把佛橡的手臂切了下来.他禁不住又几次
双曲线的几何性质(一)

线段B1B2叫做双曲线的虚轴
其中B1(0,-b)、 B2(0, b)
4.渐近线
y N M B2 A1
Q
N
M
O B1
A2
X
2 y x b 两条直线 y a x 叫做双曲线 2 2 1 的 a b 2
渐近线.
5.离心率 c 双曲线的焦距与实轴长的比 e 叫做双曲线的离心率.
B1
a
o
A1 F2
b
B2
X
4、轴:实轴 A1A2 ; 虚轴 B1B2
y x 5、渐近线方程: 2 2 0 a b
2 2
c e 6、离心率: a
例题: 1.双曲线 9y2-16x2 = 144 的实半
轴长是
4
, 虚半轴长
(0, -5) 、(0, 5)
3
,
焦点坐标是
,
5 离心率为 4 ,渐近线方程 4 y x . 是 3
a
双曲线的离心率的取值范围是 (1, +∞).
焦点在y轴上的双曲线的几何性质
双曲线性质:
y2 x2 双曲线标准方程: 2 2 1(a 0, b 0) a b y
F2 A2
1、 范围: y≥a,或y≤-a
2、对称性: 关于x轴,y轴,原点对称。
3、顶点 A1(0,-a),A2(0,a)
1. 范围 双曲线在不等式 x≤-a与 x≥a所表示 的区域内.
X=-a X=a
2. 对称性 双曲线关于坐标轴和原点都是对称的, 坐标轴是双曲线的对称轴, 原点是双曲线 的对称中心. 双曲线的对称中心叫做双曲线的中心.
3.顶点
双曲线和它的对称轴有两个交点, 它们 叫做双曲线的顶点. 顶点坐标 A1 (-a, 0), A2 (a,0) 线段A1A2叫做双曲线的实轴
双曲线的几何性质(一)

x 2 2 2 1,即x a a x a, x a
2、对称性
2
y
(-x,y)
-a
(x,y)
o a
x
(-x,-y)
(x,-y)
关于x轴、y轴和原点都是对称。 x轴、y轴是双曲线的对称轴,原点是对称中心, 又叫做双曲线的中心。
3、顶点
(1)双曲线与对称轴的交点,叫做双曲线的顶点
x2 y 2 25 设双曲线方程为 2 2 1(b 0, ), 点C (13, y ). B/ 12 b 132 y 2 25 2 ( y 55) 2 则点B(25, y 55), 2 1或 2 1. 2 2 12 b 12 b
B
5b 联立方程组解得, y (负值舍去) 12
3 思考:一个双曲线的渐近线的方程为: y x ,它的 4
离心率为
.
例3 双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转 所成的曲面,它的最小半径为12m,上口半径为13m,下口半径为25m, 高55m,选择适当的坐标系,求出双曲线方程. y 13 建立如图直角坐标系,使小圆直径AA'在x 轴 C/ 解: C ', 上,圆心与原点重合,这时上、下口的直径CC 12 BB'平行于x轴。 A/ O A x 且 | CC'| 13 2(m), | BB'| 25 2(m).
MF ( x c ) y ,
2 2
MF c ∴ , 依题意 d a
( x c )2 y 2 a2 x c
c ①, a
x y 令 c a b ,方程②化为 2 2 1 这就是所求的轨迹方程. a b
2 2 2
双曲线的简单几何性质课件

1(λ≠0,-b2<λ<a2).
x2 y2
x2 y2
(4) 与 双 曲 线 a2 - b2 = 1 具 有 相 同 渐 近 线 的 双 曲 线 方 程 可 设 为 a2 - b2 =
λ(λ≠0).
(5)渐近线为 ax±by=0 的双曲线方程可设为 a2x2-b2y2=λ(λ≠0).
求满足下列条件的双曲线的标准方程. (1)以直线 2x±3y=0 为渐近线,过点(1,2);
b
b
b2
程求解,另一种方法是消去 c 转化成含a 的方程,求出a 后利用 e= 1+a2 求
离心率.
2.求离心率的范围技巧 (1)根据条件建立 a,b,c 的不等式. (2)通过解不等式得ca 或ba 的范围,求得离心率的范围.
(2)双曲线离心率对曲线形状有何影响? x2 y2
提示:以双曲线a2 -b2 =1(a>0,b>0)为例.
c
a2+b2
b2
b
b
e=a = a = 1+a2 ,故当a 的值越大,渐近线 y=a x 的斜率越大,双
曲线的开口越大,e 也越大,所以 e 反映了双曲线开口的大小,即双曲线的离心
率越大,它的开口就越大.
巧设双曲线方程的方法与技巧
x2 y2 (1)焦点在 x 轴上的双曲线的标准方程可设为a2 -b2 =1(a>0,b>0).
y2 x2 (2)焦点在 y 轴上的双曲线的标准方程可设为a2 -b2 =1(a>0,b>0).
x2
y2
x2
y2
(3) 与 双 曲 线 a2 - b2 = 1 共 焦 点 的 双 曲 线 方 程 可 设 为 a2-λ - b2+λ =
B.y=±34 x
双曲线的简单几何性质(经典)

双曲线的简单几何性质【知识点1】双曲线22a x -22b y =1的简单几何性质(1)范围:|x |≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x 轴、y 轴及原点中心对称.(3)顶点:两个顶点:A 1(-a,0),A 2(a,0),两顶点间的线段为实轴长为2a ,虚轴长为2b ,且(4)=1中的1(5)(6)e =2(7)注意:且λ(2)与椭圆2a +2b =1(a >b >0)共焦点的曲线系方程可表示为λ-2a -λ-2b =1(λ<a 2,其中b 2-λ>0时为椭圆,b 2<λ<a 2时为双曲线)(3)双曲线的第二定义:平面内到定点F(c,0)的距离和到定直线l :x =c a 2的距离之比等于常数e =a c(c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =c b 2,与椭圆相同.1、写出双曲线方程1254922-=-y x 的实轴长、虚轴的长,顶点坐标,离心率和渐近线方程2、已知双曲线的渐近线方程为x y 43±=,求双曲线的离心率3、求以032=±y x 为渐近线,且过点p (1,2)的双曲线标准方程4、已知双曲线的中心在原点,焦点在y 轴上,焦距为16,离心率为43,求双曲线的标准方程。
5、求与双曲线221169x y -=共渐近线,且经过()23,3A -点的双曲线的标准方及离心率.【知识点2】弦长与中点弦问题(1).直线和圆锥曲线相交时的一般弦长问题:一般地,若斜率为k 的直线被圆锥曲线所截得的弦为AB ,A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则弦长]4))[(1(1212212122x x x x k x x k AB -++=-⋅+=]4)[()11(11212212122y y y y ky y k -+⋅+=-⋅+=,这里体现了解析几何“设而不求”的(2)设A(x 1;对于y 2【变1变4】7、过双曲线2212y x -=的右焦点F 作直线l 交双曲线于A,B 两点,若|AB|=4,这样的直线有几条?【题型2】双曲线离心率的求法一、根据离心率的范围,估算e :即利用圆锥的离心率的范围来解题,有时可用椭圆的离心率e ∈()01,,双曲线的离心率e >1,抛物线的离心率e =1来解决。
双曲线的简单几何性质(一)导学案

1标准方程 错误!-错误!=1 (a 〉0,b>0) 错误!-错误!=1(a 〉0,b 〉0) a ,b,c 关系 a 2+b 2=c 2 a 2+b 2=c 2
渐近
线
探究点二由性质求标准方程(定型→设方程→定量→作答)
例2 求满足下列条件的双曲线的标准方程:
(1)双曲线的焦点为(2,0),右顶点为(错误!,0); (2)实半轴长为8,离心率为错误!;
变式:求满足下列条件的双曲线方程
(1)双曲线C的焦点为(0,5),虚轴长为4; (2)实轴长为2,离心率为2;
四、巩固提高(链接高考):
1、(2013陕西卷)双曲线x2
16
-错误!=1的离心率为______,两条渐近线的方程为_____.
2、(2011年高考安徽卷)双曲线2x2-y2=8的实轴长是
3、(2011年高考江西卷)若双曲线错误!-错误!=1的离心率e=2,则m=__ __.
4、思考:若a=b,则渐近线的方程为_____,离心率e=
五、小结(方法总结):
(1)双曲线的简单性质(2)应用:①方程→性质②性质→方程
六、作业:1、P835 2、补充:求适合下列条件的双曲线的标准方程:
(1)焦点分别为F1(-3,0),F2(3,0),离心率e= 3
(2)虚轴长为12,离心率为4
5
;。
双曲线的简单几何性质 (一) - 浙江省桐乡

双曲线的简单几何性质 (一)高二数学 方蕾教学目标:1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质.2.用双曲线的方程去研究其几何性质,进一步反应了解析几何的特点,并用图像帮助理解双曲线的几何性质,解决一些相关问题.2.通过类比椭圆的简单几何性质的方法来研究双曲线的简单几何性质,在老师引导下让学生积极讨论、归纳,培养学生的观察、研究能力,增强他们的自信心. 教学重点:双曲线的简单几何性质 教学难点:渐近线的求法及理解 授课类型:新授课 课时安排:1课时教 具:多媒体、三角板 内容分析:本节知识是讲完了双曲线及其标准方程之后,反过来利用双曲线的方程研究双曲线的几何性质. 它是教学大纲中要求学生必须掌握的内容,也是高考的一个考点 用坐标法研究几何问题,是数学中一个很大的课题,这里主要是对双曲线的几何性质的讨论以及利用性质解决相关数学问题.本节内容类似于“椭圆的简单的几何性质”,教学中也可以与其类比讲解,主要应指出它们的联系与区别.教学流程: (一)复习引入1. 双曲线的定义及其标准方程平面内到两定点21,F F 的距离的差的绝对值为常数(大于0且小于21F F )的动点的轨迹叫双曲线。
即a MF MF 221=-(0<2a <21F F )焦点在x 轴上时:()0,012222>>=-b a b y a x 焦点在y 轴上时:()0,012222>>=-b a b x a y(注:双曲线是根据项的正负来判断焦点所在的位置)c b a ,,的关系:222b a c +=0>>a c ,c 最大,b a ,可以a =2.椭圆的简单几何性质以()012222>>=+b a bya x为例⑴范围: b y b a x a ≤≤-≤≤- ,⑵对称性:以坐标轴为对称轴,原点为对称中心⑶顶点坐标:()()()(),b ,B ,-b , B a,,A a,A 00002121-长轴:线段21A A 长为2a ,a 短轴:线段21B B 长为2b ,b ⑷离心率:()1,0 ,∈=e ac e探究:类比椭圆几何性质的研究,你认为应研究双曲线的哪些性质?应如何研究这些性质? (二)新课讲解利用双曲线的方程研究双曲线的几何性质以焦点坐标在x 轴上的标准方程为例,()0,012222>>=-b a by ax1.范围由标准方程12222=-b y a x 可得112222≥+=b y a x ,即22a x ≥,当a x ≥时,y 才有实数值,这说明双曲线在不等式a x -≤与a x ≥所表示的区域内;对于y 的任何值,x 都有实数值 这说明从横的方向来看,直线a x a x =-=和之间没有图象,从纵的方向来看,随着x的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线2.对称性:类比研究椭圆对称性的研究方法,容易得到,双曲线关于x 轴、y 轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线的对称中心.双曲线的对称中心叫做双曲线的中心. 2.顶点在双曲线方程12222=-b y a x 中,令讲解:结合图形,讲解顶点和轴的概念,0=y 得a x ±=,故它与x 轴有两个交点),0,(1a A()0,2a A -,且x 轴为双曲线12222=-b y a x 的对称轴,所以()0,),0,(21a A a A -为其对称轴的交点,称为双曲线的顶点(一般而言,曲线的顶点均指与其对称轴的交做双曲线12222=-by ax 的实轴,它点),而对称轴上位于两顶点间的线段21A A 叫的长是2a .在方程12222=-by a x 中令0=x 得22b y -=,这个方程没有实数根,说明双曲线和y 轴没有交点。
2020高中数学 2.2.2 双曲线的简单几何性质(1)(含解析)

课时作业16 双曲线的简单几何性质(1)知识点一由双曲线的标准方程研究几何性质1。
若直线x=a与双曲线错误!-y2=1有两个交点,则a的值可以是( )A。
4 B.2C。
1 D.-2答案A解析∵双曲线错误!-y2=1中,x≥2或x≤-2,∴若x=a与双曲线有两个交点,则a>2或a<-2,故只有A选项符合题意.2.双曲线错误!-错误!=1的焦点到渐近线的距离为( )A.2错误!B.2C.错误!D。
1答案A解析不妨取焦点(4,0)和渐近线y=3x,则所求距离d=错误!=2错误!。
故选A.3.求双曲线4x2-y2=4的顶点坐标、焦点坐标、实半轴长、虚半轴长、离心率和渐近线方程.解把方程化为标准形式为错误!-错误!=1,由此可知,实半轴长a=1,虚半轴长b=2。
顶点坐标是(-1,0),(1,0).c=错误!=错误!=错误!,∴焦点坐标是(-5,0),(错误!,0).离心率e=错误!=错误!,渐近线方程为错误!±错误!=0,即y=±2x。
知识点二求双曲线的离心率4。
下列方程表示的曲线中离心率为错误!的是()A.错误!-错误!=1 B.错误!-错误!=1C.错误!-错误!=1 D。
错误!-错误!=1答案B解析∵e=ca,c2=a2+b2,∴e2=错误!=错误!=1+错误!=错误!2=错误!。
故错误!=错误!,观察各曲线方程得B项系数符合,应选B。
5.已知F1,F2是双曲线错误!-错误!=1(a>0,b>0)的两个焦点,PQ 是经过F1且垂直于x轴的双曲线的弦,如果∠PF2Q=90°,求双曲线的离心率.解设F1(c,0),将x=c代入双曲线的方程得错误!-错误!=1,∴y =±错误!。
由|PF2|=|QF2|,∠PF2Q=90°,知|PF1|=|F1F2|,∴b2a=2c.∴b2=2ac.∴c2-2ac-a2=0.∴错误!2-2·错误!-1=0.即e2-2e-1=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线的几何性质(一)
教学目标
1.掌握双曲线的几何性质
2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. 教学重点
双曲线的几何性质 教学难点
双曲线的渐近线 教学过程 I.复习回顾:
双曲线的标准方程、研究椭圆的几何性质的方法与步骤 II.讲授新课: 1.范围:
双曲线在不等式x ≥a 与x ≤-a 所表示的区域内. 2.对称性:
双曲线关于每个坐标轴和原点都对称, 这时,坐标轴是双曲线的对称轴,原点是 双曲线的对称中心,双曲线的对称中心叫 双曲线的中心。
3.顶点:
双曲线和它的对称轴有两个交点A 1(-a ,0)、A 2(a ,0),它们叫做双曲线的顶点.
线段A 1A 2叫双曲线的实轴,它的长等于2a ,a
叫做双曲线的实半轴长;
线段B 1B 2叫双曲线的虚轴,它的长等于2b ,b 叫做双曲线的虚半轴长. 4.渐近线
①我们把两条直线y=±
x a
b
叫做双曲线的渐近线; ②从图可以看出,双曲线122
22=-b
y a x 的各支向
外延伸时,与直线y =±x a
b
逐渐接近. ③“渐近”的证明:略 ④等轴双曲线:
实轴和虚轴等长的双曲线叫做等轴双曲线.
⑤ 利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图.具体做法是:画出双曲线的渐近线,先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线.
注意:⑴求渐近线方程的简便方法:令方程左边等于零即0b
y a x 22
22=-
⑵等轴双曲线一般可设为k y x 22=-
等轴双曲线的性质:①离心率为2
②等轴双曲线的相伴矩形是正方形 ③渐近线方程为y =±x 且互相垂直
④两条渐近线平分双曲线实轴和虚轴所成的角。
5.离心率:
双曲线的焦距与实轴长的比e =a
c
,叫双曲线的离心率. 注意:①由c >a >0可得e >1;
②双曲线的离心率越大,它的开口越阔.
例1 求双曲线9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程. 解:把方程化为标准方程.
13
422
22=-x y 由此可知,实半轴长a =4,虚半轴长b =3.
5342222=+=+=b a c . 焦点的坐标是(0,-5),(0,5). 离心率4
5
==
a c e . 渐近线方程为
y x 43±
=,即x y 3
4±= III.课堂练习:
(1)写出第二种形式的标准方程所对应的双曲线性质. (2)课本P 113练习 1 课堂小结
通过本节学习,要求大家熟悉并掌握双曲线的几何性质,尤其是双曲线的渐近线方程及其“渐近”性质的证明,并能简单应用双曲线的几何性质. 课后作业
P 113-114 习题8.4 1、4 、5、6。