因子分析法

合集下载

因子分析法

因子分析法

因子分析法因子分析法是一种基于统计学的方法,用于探索数据中潜在的隐藏结构,以确定变量之间的相关关系。

它在社会科学研究中被广泛应用,用于探究研究对象的潜在变量结构。

因子分析法可以通过把原始变量组合成新的具有含义的变量,来降低数据中的冗余信息,有助于研究者全面理解研究对象特征,以及作出正确的判断和决策,从而更好地为解决社会实际问题服务,有着重要的学术意义与社会意义。

一、因子分析法的历史溯源因子分析法最早起源于美国社会心理学家凯尔(Charles Spearman),在20世纪早期,他研究生物化学的统计学,用于检验的普遍水平尺度和特定水平尺度的可能性,他发现,当把一个变量与另一个变量之间的关系抽象化时,它会隐藏在变量的值中,于是形成了一种新的统计手段,即因子分析法。

之后,此方法被广泛应用于科学研究及其他领域,以确定变量之间的相互联系,并识别出潜在结构、趋势及关联关系。

二、因子分析法的基本原理因子分析法基于把多个变量按变量特征和变量之间的相互关系组合在一起,把多个变量转换成少量几个变量,这些变量也称为因子。

它们是导致原始变量所反映出的潜在结构的原因,可能是变量内在的差异,也可能是变量之间的关系。

因子分析法在实际应用中,最重要的是理解变量之间的关系,而不仅仅是观察原始变量之间的差异,因此,它可以在研究中更有效地发现因素,有助于更精确地描述研究对象。

三、因子分析法的主要方法因子分析法有诸多方法,最基本的是相关分析,但诸如因子模式分解、因子结构分析、多元统计分析等,也是开展因子分析的有力工具,可以辅助分析师更全面地探究变量之间的关系。

因子模式分解(FMA)是因子分析法的一种,它可以让分析师发现一组变量中潜在的结构和模式,同时考虑变量之间的不同关系,以揭示潜在变量结构。

当需要组合多组变量时,可以通过多元统计分析来检验两个或多个因子之间的差异及其关系,以便发现数据关系,检验是否有潜在的结构。

四、因子分析法的应用领域因子分析法在社会科学研究中有着广泛的应用,它可以将原始变量组合成新的有含义的变量,以发现数据之间的隐含关系,并理解一个研究事件的潜在结构。

因子分析法详细步骤

因子分析法详细步骤

因子分析法详细步骤1.研究设计:-确定研究目的和问题,并确定应用因子分析的数据集。

-确定所需要的变量类型和测量方式。

2.数据收集:-确定数据收集方式和样本大小。

-通过合适的数据收集工具,收集相关变量的数据。

3.数据预处理:-检查数据质量,包括数据完整性、异常值、缺失值等。

-进行数据清洗,如删除无关变量、处理异常值、填充缺失值等。

4.相关性分析:-对每个变量计算相关系数矩阵,用于评估变量之间的相关性。

-检查相关系数矩阵的变量之间的线性关系。

5.适度性检验:- 对数据进行测试适用性检验,可以使用统计方法如列总和测验、Bartlett检验等。

-如果样本适应性检验通过,则可以进行因子分析;否则需要重新考虑数据或模型。

6.因子提取:-使用适当的因子提取方法,如主成分分析、极大似然估计等,将多个变量转化为少数几个无关的因子。

-利用特征值、特征向量、共同度等指标,确定需要提取的因子数量。

7.因子旋转:-在因子提取后,进行因子旋转,以获得更简单的解释和解释性。

- 常用的因子旋转方法包括正交旋转(如Varimax旋转)和斜交旋转(如Oblique旋转)。

8.因子解释:-根据因子载荷、因子结构矩阵等指标,解释每个因子代表的含义和解释率。

-确定每个因子代表的潜在变量特征。

9.因子命名:-为每个因子命名,以便更好地理解和解释。

-命名应根据因子载荷权重和因子在数据集中的重要性进行。

10.因子得分:-使用因子分析结果,计算每个个体在各个因子上的得分。

-这可以帮助理解每个个体在不同潜在变量特征上的表现。

11.结果解释:-基于因子载荷、因子得分、因子解释,解释结果并得出结论。

-分析因子对原始变量的解释能力和解释率,判断因子分析是否有效。

12.结果验证:-使用因子分析结果进行验证,可基于交叉验证、重复抽样等方法。

-检验因子分析的结果是否稳定和可靠。

13.结果报告:-撰写因子分析报告,包括研究目的、方法描述、结果解释、结论等内容。

因子分析法

因子分析法

因子分析法因子分析法,又称因子分析,是在描述、预测和理解给定的研究结果时一种常用的统计分析方法。

它可用于探索数据中潜在的因素结构,以及找出影响解释变量的最重要的驱动因子。

因子分析涉及多个变量,可以将数据中的噪声减少到最小,并对变量之间的关系进行建模以实现最佳假设。

因子分析的主要目的是通过分析变量之间的关系,将多个变量组合起来,形成一个有意义的因子结构,有助于来源于同一个因素的变量聚为一类。

因子分析还可以用于验证现有的统计模型,检测数据中是否存在偏差,以及主成分分析中用于减少变量数量。

因子分析通常需要经历四个步骤:实验设计、数据处理、因子分析以及结果分析和解释。

实验设计阶段,研究者需要收集所需要的数据,如变量的定义、变量的数量、测量方式等;数据处理阶段,一般包括数据属性的编码、检查缺失值以及数据的标准化;在因子分析阶段,研究者需要指定假设的因子个数,并根据特定的方法进行变量的讯析;最后,研究者可以检查因子提取结果,并通过模态图和层次图等绘图方法对因子分析结果进行可视化,以更好地理解研究的解释变量。

因子分析的优点在于,它是一种基于模型的统计分析方法,它可以通过分析变量之间的关系来减少数据中的噪声,以提高分析的准确性。

另外,因子分析可以从复杂的数据中提取出重要的因素,以便进行有用的模型建构。

然而,因子分析也存在一些缺点。

由于因子分析假设只有有限数量的因子导致了变量,因此不能解释所有变量之间的关系。

此外,因子分析受到偏差和方差的影响,某些变量可能被忽略了,而有些因素可能被过分重视。

总而言之,因子分析方法是一种有效的研究工具,可用于简化复杂的数据,探索数据中潜在的因素结构,以及验证和解释研究结果。

因此,有效的因子分析有助于研究者更好地理解数据,并得出合理的结论。

因子分析方法

因子分析方法

因子分析方法
1. 因子分析法是一种多元统计分析中的统计技术,用于从一组变量中研究和发现变
量之间的内在关系。

它最初由杰佛逊和里斯本开发,并由皮尔森扩展和完善。

这个技术不
仅用于研究变量之间的关系,而且还可以用来确定变量在多维度方面的性质。

2. 在实践中,因子分析包括从一组原始变量中获取数据分析,然后创建较少数量的
有意义的变量,称为因子。

因子分析通过计算来确定这些因子,这样可以对变量进行评估,以便更好地理解变量的意义和它们之间的关系。

3. 通常,因子分析的最佳方法是使用主成分分析来确定因子。

在主成分分析中,其
目的是从原始变量中抽取最大的变异性,以反映数据的复杂性。

此外,研究人员还可以使
用因子分解的方法来概括原始变量之间的内在关系,以及使用对因子负荷进行提取的方法
来确定变量之间的关系。

4. 因子分析也可以用于变量选择。

这是因为它可以帮助确定哪些变量更大地贡献了
变异性,从而有助于确定有效和不变的因素。

因此,它可以更好地弄清哪些变量值得多关注,以及它们如何影响研究结果。

5. 总之,因子分析是一种有用的技术,可以用来研究变量之间的关系,确定有效变量,并从看起来无关联的变量中获取有用的信息,以便更好地理解样本和总体之间的关系。

因子分析法

因子分析法

因子分析法因子分析法是一种常用的多变量统计分析方法,广泛应用于社会科学、心理学、市场调研等领域。

它通过对各个变量之间的相关性进行分解,寻找潜在的共同因子,从而降低变量的维度,提取出能够解释数据变异性较多的因子。

本文将从因子分析法的基本原理、前提假设、步骤与应用等方面进行探讨。

首先,因子分析法的基本原理是通过对观测数据进行降维,将多个变量转化为少数几个共同的因子,以便更好地理解数据背后的潜在结构与关系。

这些共同的因子代表了数据中呈现的模式和结构,通常可以解释数据变异性的大部分来源。

这种降维的目的主要是为了简化数据分析的复杂性,提高解释力和预测能力。

其次,因子分析法的前提假设包括共同因素假设、因子独立假设和因子与观测变量之间的线性关系。

共同因素假设认为观测变量之间的相关性可以通过少数几个共同的因子来解释;因子独立假设则假设因子之间相互独立,不存在相关性;线性关系假设认为观测变量可以线性组合形成潜在因子。

这些假设为因子分析的实施提供了理论基础。

接下来,因子分析法的步骤主要包括确定因子个数、提取因子、旋转因子和解释因子。

在确定因子个数方面,可以采用特征根、累计方差贡献率和平行分析等方法,根据不同的指标选取适当的因子个数。

提取因子是将原始数据转化为因子得分,通常使用主成分分析或极大似然估计法来计算因子得分。

旋转因子是为了提高因子的解释力,常用的旋转方法包括方差最大旋转、极大方差法和等角旋转法等。

最后,解释因子是通过因子载荷矩阵来解释因子的含义,载荷值表示了观测变量与因子之间的关系强度和方向。

最后,因子分析法在许多领域有着广泛的应用。

在社会科学领域,因子分析可以用于研究人的个性特征、心理健康水平和态度取向等因素。

在心理学领域,因子分析可以用于衡量心理测量的可靠性和效度,提取心理构念和评估心理疾病等方面。

在市场调研中,因子分析可以用于细分市场、评估产品特征、定位目标顾客等方面。

此外,因子分析法还可以在金融学、教育学、医学和生物学等领域中发挥重要作用。

管理学研究方法之因子分析法+案例(史上最详细)

管理学研究方法之因子分析法+案例(史上最详细)

颜色X6 0.57075 0.45547 -0.07874 0.22931 0.62148 0.14770 -0.00183
易洗熨X7 0.04328 0.49569 0.52183 0.50821 -0.46939 -0.03945 -0.00155
特征值 1.78312 1.40444 1.21696 1.04998 0.83791 0.70779 0.00003
• 因子分析希望达到的目的是:减少变量的个数, 解释事物的本质。
• 在这里,我们选前四个变量作为因子,则累计的 综合变量方差的贡献率达到了77.9%。
• 为了使因子对变量的解释以及因子的命名更准确, 我们再对因子进行旋转。旋转之后得到因子负荷 系数,如下表:
观察 变量
舒适X1 质地X2 款式X3 耐穿X4 价位X5 颜色X6 易洗熨X7
-0.08925
-0.39328
0.00088
F4 0.05156 -0.72079 -0.41522 0.13561 0.24376 0.11851 0.75523
• 由表中数据得到分析结果:
因子F1与变量X3,X4,X6相关性较强,说明它体 现了顾客对服装外在表现的要求;
因子F2与变量X5有较强的证相关性,说明它体现 了顾客对服装价格的要求;
之间的相关关系; 因子得分是以回归方程的形式将指标X1,X2,…, Xm表示为因子F1 ,F 2 ,…,Fp的线性组合。
三、因子分析模型
• 因子分析法是从研究变量内部相关的依赖关系出 发,把一些具有错综复杂关系的变量归结为少数 几个综合因子的一种多变量统计分析方法。它的 基本思想是将观测变量进行分类,将相关性较高, 即联系比较紧密的分在同一类中,而不同类变量 之间的相关性则较低,那么每一类变量实际上就 代表了一个基本结构,即公共因子。对于所研究 的问题就是试图用最少个数的不可测的所谓公共 因子的线性函数与特殊因子之和来描述原来观测 的每一分量。

因子分析法的原理

因子分析法的原理

因子分析法的原理
因子分析法是一种统计分析方法,用于确定观测数据背后的潜在因素。

它基于一个基本假设,即观测数据是由一组相互关联的潜在因素引起的。

通过因子分析,我们可以确定这些潜在因素,并计算每个观测数据与每个潜在因素之间的关系程度。

下面将介绍因子分析的基本原理。

1. 潜在因素的确定:
因子分析通过分析观测数据的协方差矩阵或相关矩阵,寻找共同方差最大的因素。

这些共同方差表示了潜在因素对观测数据的影响程度。

因子分析方法包括主成分分析和主轴法。

主成分分析通过线性组合观测数据,将原始变量转化为几个无关的主成分,使每个主成分解释尽可能多的总方差。

主轴法则是选择与总方差解释度最大的主轴因子。

2. 因子载荷的计算:
在因子分析中,因子载荷表示观测数据与每个潜在因素之间的关系强度。

载荷的绝对值越大,表示观测数据与潜在因素之间的关系越密切。

因子载荷可以通过最大似然估计、特征值分解等方法来计算。

3. 因子旋转:
在因子分析中,因子旋转是为了提高因子解释力,并使因子间的关系更加清晰。

常用的因子旋转方法有正交旋转(例如Varimax旋转)和斜交旋转(例如Oblique旋转)。

4. 因子解释:
通过因子分析,我们可以得到每个观测数据与潜在因素之间的关系强度,进而理解观测数据的结构。

因子解释可以帮助研究者识别出潜在因素对观测数据的解释度,从而进行进一步的分析和解释。

总的来说,因子分析方法通过寻找观测数据背后的潜在因素,帮助我们理解观测数据的结构和规律。

它可以应用于市场调研、心理学、教育等多个领域,帮助研究者深入分析数据,提取有价值的信息。

因子分析法详细步骤-因子分析法操作步骤

因子分析法详细步骤-因子分析法操作步骤

心理学研究
在心理学研究中,因子分析法 常用于人格特质、智力等方面 的研究。
社会学研究
在社会学研究中,因子分析法 可用于社会结构、文化等方面
的研究。
02 因子分析法操作步骤
数据标准化
总结词
消除量纲和数量级的影响
详细描述
在进行因子分析之前,需要对数据进行标准化处理,即将原始数据转换为均值为0、标准差为1的标准化数据,以 消除不同量纲和数量级对分析结果的影响。
案例三:品牌定位研究
总结词
通过因子分析法,明确品牌的定位和竞争优 势,以便更好地进行市场推广和竞争策略制 定。
详细描述
首先,收集市场上同类竞争品牌的定位和竞 争优势数据。然后,利用因子分析法对这些 数据进行处理,提取出几个主要的因子,这 些因子代表了不同品牌的定位和竞争优势。 最后,根据因子分析的结果,明确自己品牌 的定位和竞争优势,制定相应的市场推广和 竞争策略,以提高品牌的市场份额和竞争力
要点二
详细描述
首先,收集大量关于消费者行为和偏好的数据,包括购买 行为、品牌选择、价格敏感度等。然后,利用因子分析法 对这些数据进行降维处理,提取出几个主要的因子,这些 因子代表了消费者不同的需求和偏好。最后,根据这些因 子对市场进行细分,将消费者划分为不同的群体,并为每 个群体制定相应的营销策略。
计算相关系数矩阵
总结词
评估变量间的相关性
详细描述
计算标准化数据的相关系数矩阵,用于评估变量之间的相关性。相关系数矩阵 是一个对称矩阵,矩阵中的元素表示不同变量之间的相关系数,用于衡量变量 间的关联程度。
因子提取
总结词
找出主要因子
详细描述
通过因子提取的方法,从相关系数矩阵中找出主要因子。常用的因子提取方法有主成分分析法和公因 子分析法等。这一步的目标是找出能够解释原始数据变异的少数几个公共因子。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因子分析法一.定义因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。

二.因子分析模型因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。

它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。

对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。

因子分析模型描述如下:(1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现);(2)F = (F1,F2,…,Fm)¢(m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的;(3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0,e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型:x1 = a11F1+ a12F2 +…+a1mFm + e1x2 = a21F1+a22F2 +…+a2mFm + e2………xp = ap1F1+ ap2F2 +…+apmFm + ep称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。

其矩阵形式为:x =AF + e .其中:x=,A=,F=,e=这里,(1)m £p;(2)Cov(F,e)=0,即F和e是不相关的;(3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1;D(e)=,即e1,e2,…,ep不相关,且方差不同。

我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子。

A = (aij),aij为因子载荷。

数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。

三.模型的统计意义模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。

公共因子的含义,必须结合具体问题的实际意义而定。

e1,e2,…,ep 叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。

模型中载荷矩阵A中的元素(aij)是为因子载荷。

因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。

可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。

为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。

因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。

它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。

hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm 的共同依赖程度大。

将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。

gj2就表示第j个公共因子Fj对于x的每一分量xi(i= 1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。

gj2越大,表明公共因子Fj对x的贡献越大,或者说对x 的影响和作用就越大。

如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。

四.因子旋转建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。

如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。

旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。

最常用的方法是最大方差正交旋转法(Varimax)。

进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。

因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。

常用的斜交旋转方法有Promax法等。

五.因子得分因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。

例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。

这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。

设公共因子F由变量x表示的线性组合为:Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m该式称为因子得分函数,由它来计算每个样品的公共因子得分。

若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。

但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计。

估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法。

(1)回归估计法F = X b = X (X ¢X)-1A¢= XR-1A¢(这里R为相关阵,且R = X ¢X )。

(2)Bartlett估计法Bartlett估计因子得分可由最小二乘法或极大似然法导出。

F = [(W-1/2A)¢W-1/2A]-1(W-1/2A)¢W-1/2X = (A¢W-1A)-1A¢W-1X(3)Thomson估计法在回归估计法中,实际上是忽略特殊因子的作用,取R = X ¢X,若考虑特殊因子的作用,此时R = X ¢X+W,于是有:F = XR-1A¢= X (X ¢X+W)-1A¢这就是Thomson估计的因子得分,使用矩阵求逆算法(参考线性代数文献)可以将其转换为:F = XR-1A¢= X (I+A¢W-1A)-1W-1A¢六.因子分析的步骤因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。

因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。

因子分析常常有以下四个基本步骤:(1)确认待分析的原变量是否适合作因子分析。

(2)构造因子变量。

(3)利用旋转方法使因子变量更具有可解释性。

(4)计算因子变量得分。

因子分析的计算过程:(1)将原始数据标准化,以消除变量间在数量级和量纲上的不同。

(2)求标准化数据的相关矩阵;(3)求相关矩阵的特征值和特征向量;(4)计算方差贡献率与累积方差贡献率;(5)确定因子:设F1,F2,…,Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;(6)因子旋转:若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。

(7)用原指标的线性组合来求各因子得分:采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。

(8)综合得分以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。

F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )此处wi为旋转前或旋转后因子的方差贡献率。

(9)得分排序:利用综合得分可以得到得分名次。

在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:简化系统结构,探讨系统内核。

可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。

“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。

构造预测模型,进行预报控制。

在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多远统计分析技术的主要目的。

在多元分析中,用于预报控制的模型有两大类。

一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。

另一类是描述性模型,通常采用聚类分析的建模技术。

进行数值分类,构造分类模式。

在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。

以便找出它们之间的联系和内在规律性。

过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。

进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。

如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。

对一个问题可以综合运用多种统计方法进行分析。

例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。

相关文档
最新文档