方法:因子分析法
管理学研究方法之因子分析法+案例(史上最详细)

四、基本步骤
(1)确认待分析的原变量是否适合作因子分析。
• 在确定使用因子分析方法之前,我们需要首先使用SPSS统 计软件对模型中的变量进行过巴特利特球度检验和KMO检 验,依据这两个统计量来判断观测数据是否适合作因子分
析。
• KMO是取样适当性量数。其值越高(接近1.0时),表明 变量间的共同因子越多,研究数据适合用因子分析。
管理学研究方法
---实证研究法之因子分析法
一、因子分析的概念
• 因子分析法是用少数几个因子去描述许多指标或 因素之间的联系,即将相关比较密切的几个变量 归在同一类中,每一类变量就成为一个因子(之 所以称其为因子,是因为它是不可观测的,即不 是具体的变量),以较少的几个因子反映原资料 的大部分信息。它是一种通过降维以简化数据的 多元统计方法。
方差贡 献率
累计贡 献率
25.5% 25.5%
20.0% 45.5%
14.7% 62.9%
15.0% 77.9%
12.0% 89.9%
10.1% 100%
0.0% 100%
• 从上表中可以看出,综合变量解释变量的总方差 的能力有大有小。前四个累计方差贡献率达到了 77.9%,即前四个因子解释了总方差的77.9%,能 够较好的解释变量的方差。
二、因子分析的方法介绍
• 研究相关矩阵内部的依存关系,寻找出支配多个 指标X1,X2 ,…,Xm(可观测)相互关系的少数几 个公共的因子F1,F2,…,Fp (不可观测)以再现原 指标与公共因子之间的相关关系。 这些公共因子是彼此独立或不相关的,又往往是 不能够直接观测的。
• 通常这种方法要求出因子结构和因子得分模型。 • 因子结构通过相关系数来反映原指标与公共因子
1、因子选取。 将原有变量综合成少数几个因子是因子分析的核心内容。 决定共同因子抽取的方法,有“主成份分析法” 、主轴法、 一般化最小平方法、未加权最小平方法、最大概似法、 Alpha因素抽取法与映象因素抽取法等。原始变量与因子 分析时抽取出的共各变量在因子上的载荷。实践中一般用旋转后的方差 来看各因子在每个变量上的载荷,就使对共同因子的命名 和解释变量变得更容易。
因子分析法

因子分析法因子分析法是一种基于统计学的方法,用于探索数据中潜在的隐藏结构,以确定变量之间的相关关系。
它在社会科学研究中被广泛应用,用于探究研究对象的潜在变量结构。
因子分析法可以通过把原始变量组合成新的具有含义的变量,来降低数据中的冗余信息,有助于研究者全面理解研究对象特征,以及作出正确的判断和决策,从而更好地为解决社会实际问题服务,有着重要的学术意义与社会意义。
一、因子分析法的历史溯源因子分析法最早起源于美国社会心理学家凯尔(Charles Spearman),在20世纪早期,他研究生物化学的统计学,用于检验的普遍水平尺度和特定水平尺度的可能性,他发现,当把一个变量与另一个变量之间的关系抽象化时,它会隐藏在变量的值中,于是形成了一种新的统计手段,即因子分析法。
之后,此方法被广泛应用于科学研究及其他领域,以确定变量之间的相互联系,并识别出潜在结构、趋势及关联关系。
二、因子分析法的基本原理因子分析法基于把多个变量按变量特征和变量之间的相互关系组合在一起,把多个变量转换成少量几个变量,这些变量也称为因子。
它们是导致原始变量所反映出的潜在结构的原因,可能是变量内在的差异,也可能是变量之间的关系。
因子分析法在实际应用中,最重要的是理解变量之间的关系,而不仅仅是观察原始变量之间的差异,因此,它可以在研究中更有效地发现因素,有助于更精确地描述研究对象。
三、因子分析法的主要方法因子分析法有诸多方法,最基本的是相关分析,但诸如因子模式分解、因子结构分析、多元统计分析等,也是开展因子分析的有力工具,可以辅助分析师更全面地探究变量之间的关系。
因子模式分解(FMA)是因子分析法的一种,它可以让分析师发现一组变量中潜在的结构和模式,同时考虑变量之间的不同关系,以揭示潜在变量结构。
当需要组合多组变量时,可以通过多元统计分析来检验两个或多个因子之间的差异及其关系,以便发现数据关系,检验是否有潜在的结构。
四、因子分析法的应用领域因子分析法在社会科学研究中有着广泛的应用,它可以将原始变量组合成新的有含义的变量,以发现数据之间的隐含关系,并理解一个研究事件的潜在结构。
方法因子分析法

方法因子分析法因子分析法是一种统计方法,用于找出背后隐藏的因素,并将观测到的变量与这些潜在因素进行关联。
它的主要原理是通过观察多个相关变量之间的共同性,推断出潜在的共同因素。
它可以帮助研究者减少变量的数量,简化数据分析过程,并识别出变量之间的关系。
在执行因子分析之前,首先需要确定几个重要的因素。
这可以通过以下步骤来完成:1.收集数据:收集你感兴趣的变量的测量数据。
这些变量应该是相关的。
2.计算相关性矩阵:计算变量之间的相关性系数。
这可以通过计算协方差矩阵或相关系数矩阵来完成。
3.确定特征值:通过对相关矩阵进行特征值分解,可以得到特征值和特征向量。
特征值表示了每个因素的方差贡献程度。
4.选择因子数量:通过观察特征值的大小,选择需要保留的因子数量。
一般来说,保留特征值大于1的因子。
5.旋转因子矩阵:利用主成分分析或极大似然估计方法,对因子进行旋转。
旋转可以使因子更具可解释性。
6.确定因子载荷:因子载荷表示每个变量与因子之间的相关性。
一般来说,载荷大于0.3或0.4的变量可以被认为与这个因子有关。
7.解释因子:根据因子的载荷模式和理论背景,解释每个因子表示什么。
因子分析法的一个重要应用是在心理学研究中。
通过对一系列调查问卷的因子分析,可以识别出潜在的心理因素,如情绪、人格特征等。
这对于心理学家研究个体和群体之间的差异,以及预测特定行为和情绪表现的可能性非常有用。
另一个重要应用是在市场调研中。
通过对消费者购买行为和偏好的因子分析,可以识别潜在的购物动机和购买因素。
这对于企业制定市场策略和产品定位非常有价值。
虽然因子分析法可以提供丰富且有用的信息,但也有一些限制。
首先,它依赖于数据的质量和变量之间的相关性。
如果数据不准确或变量之间相关性较低,可能会得到不可靠的结果。
其次,因子分析无法证明因果关系。
它只能提供变量之间的关联性,而不能解释变量之间的因果关系。
最后,选择因子的数量和因子旋转方法都需要主观判断,可能会导致结果的不确定性。
因子分析法

因子分析法因子分析法,又称因子分析,是在描述、预测和理解给定的研究结果时一种常用的统计分析方法。
它可用于探索数据中潜在的因素结构,以及找出影响解释变量的最重要的驱动因子。
因子分析涉及多个变量,可以将数据中的噪声减少到最小,并对变量之间的关系进行建模以实现最佳假设。
因子分析的主要目的是通过分析变量之间的关系,将多个变量组合起来,形成一个有意义的因子结构,有助于来源于同一个因素的变量聚为一类。
因子分析还可以用于验证现有的统计模型,检测数据中是否存在偏差,以及主成分分析中用于减少变量数量。
因子分析通常需要经历四个步骤:实验设计、数据处理、因子分析以及结果分析和解释。
实验设计阶段,研究者需要收集所需要的数据,如变量的定义、变量的数量、测量方式等;数据处理阶段,一般包括数据属性的编码、检查缺失值以及数据的标准化;在因子分析阶段,研究者需要指定假设的因子个数,并根据特定的方法进行变量的讯析;最后,研究者可以检查因子提取结果,并通过模态图和层次图等绘图方法对因子分析结果进行可视化,以更好地理解研究的解释变量。
因子分析的优点在于,它是一种基于模型的统计分析方法,它可以通过分析变量之间的关系来减少数据中的噪声,以提高分析的准确性。
另外,因子分析可以从复杂的数据中提取出重要的因素,以便进行有用的模型建构。
然而,因子分析也存在一些缺点。
由于因子分析假设只有有限数量的因子导致了变量,因此不能解释所有变量之间的关系。
此外,因子分析受到偏差和方差的影响,某些变量可能被忽略了,而有些因素可能被过分重视。
总而言之,因子分析方法是一种有效的研究工具,可用于简化复杂的数据,探索数据中潜在的因素结构,以及验证和解释研究结果。
因此,有效的因子分析有助于研究者更好地理解数据,并得出合理的结论。
因子分析方法

因子分析方法
1. 因子分析法是一种多元统计分析中的统计技术,用于从一组变量中研究和发现变
量之间的内在关系。
它最初由杰佛逊和里斯本开发,并由皮尔森扩展和完善。
这个技术不
仅用于研究变量之间的关系,而且还可以用来确定变量在多维度方面的性质。
2. 在实践中,因子分析包括从一组原始变量中获取数据分析,然后创建较少数量的
有意义的变量,称为因子。
因子分析通过计算来确定这些因子,这样可以对变量进行评估,以便更好地理解变量的意义和它们之间的关系。
3. 通常,因子分析的最佳方法是使用主成分分析来确定因子。
在主成分分析中,其
目的是从原始变量中抽取最大的变异性,以反映数据的复杂性。
此外,研究人员还可以使
用因子分解的方法来概括原始变量之间的内在关系,以及使用对因子负荷进行提取的方法
来确定变量之间的关系。
4. 因子分析也可以用于变量选择。
这是因为它可以帮助确定哪些变量更大地贡献了
变异性,从而有助于确定有效和不变的因素。
因此,它可以更好地弄清哪些变量值得多关注,以及它们如何影响研究结果。
5. 总之,因子分析是一种有用的技术,可以用来研究变量之间的关系,确定有效变量,并从看起来无关联的变量中获取有用的信息,以便更好地理解样本和总体之间的关系。
因子分析法

因子分析法因子分析法是一种常用的多变量统计分析方法,广泛应用于社会科学、心理学、市场调研等领域。
它通过对各个变量之间的相关性进行分解,寻找潜在的共同因子,从而降低变量的维度,提取出能够解释数据变异性较多的因子。
本文将从因子分析法的基本原理、前提假设、步骤与应用等方面进行探讨。
首先,因子分析法的基本原理是通过对观测数据进行降维,将多个变量转化为少数几个共同的因子,以便更好地理解数据背后的潜在结构与关系。
这些共同的因子代表了数据中呈现的模式和结构,通常可以解释数据变异性的大部分来源。
这种降维的目的主要是为了简化数据分析的复杂性,提高解释力和预测能力。
其次,因子分析法的前提假设包括共同因素假设、因子独立假设和因子与观测变量之间的线性关系。
共同因素假设认为观测变量之间的相关性可以通过少数几个共同的因子来解释;因子独立假设则假设因子之间相互独立,不存在相关性;线性关系假设认为观测变量可以线性组合形成潜在因子。
这些假设为因子分析的实施提供了理论基础。
接下来,因子分析法的步骤主要包括确定因子个数、提取因子、旋转因子和解释因子。
在确定因子个数方面,可以采用特征根、累计方差贡献率和平行分析等方法,根据不同的指标选取适当的因子个数。
提取因子是将原始数据转化为因子得分,通常使用主成分分析或极大似然估计法来计算因子得分。
旋转因子是为了提高因子的解释力,常用的旋转方法包括方差最大旋转、极大方差法和等角旋转法等。
最后,解释因子是通过因子载荷矩阵来解释因子的含义,载荷值表示了观测变量与因子之间的关系强度和方向。
最后,因子分析法在许多领域有着广泛的应用。
在社会科学领域,因子分析可以用于研究人的个性特征、心理健康水平和态度取向等因素。
在心理学领域,因子分析可以用于衡量心理测量的可靠性和效度,提取心理构念和评估心理疾病等方面。
在市场调研中,因子分析可以用于细分市场、评估产品特征、定位目标顾客等方面。
此外,因子分析法还可以在金融学、教育学、医学和生物学等领域中发挥重要作用。
因子分析法(自己整理)
因子分析法1.因子分析法简介:1)因子分析法的提出“因子分析”的名称于1931年由Thurstone 首次提出,但它的概念起源于二十世纪初Karl Pearson 和Charles Spearmen 等人关于智力测验的统计分析。
近年来,随着电子计算机的高速发展,人们将因子分析方法成功地应用于各个领域,使得因子分析的理论和方法更加丰富。
2)因子分析的定义因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。
因子分析法(Factor Analysis)就是寻找这些公共因子的模型分析方法,它是在主成分的基础上构筑若干意义较为明确的公因子,以它们为框架分解原变量,以此考察原变量间的联系与区别。
运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。
3)与主成分分析的联系主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。
主成分分析一般很少单独使用:a,了解数据。
(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。
(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
管理学研究方法之因子分析法+案例(史上最详细)
颜色X6 0.57075 0.45547 -0.07874 0.22931 0.62148 0.14770 -0.00183
易洗熨X7 0.04328 0.49569 0.52183 0.50821 -0.46939 -0.03945 -0.00155
特征值 1.78312 1.40444 1.21696 1.04998 0.83791 0.70779 0.00003
• 因子分析希望达到的目的是:减少变量的个数, 解释事物的本质。
• 在这里,我们选前四个变量作为因子,则累计的 综合变量方差的贡献率达到了77.9%。
• 为了使因子对变量的解释以及因子的命名更准确, 我们再对因子进行旋转。旋转之后得到因子负荷 系数,如下表:
观察 变量
舒适X1 质地X2 款式X3 耐穿X4 价位X5 颜色X6 易洗熨X7
-0.08925
-0.39328
0.00088
F4 0.05156 -0.72079 -0.41522 0.13561 0.24376 0.11851 0.75523
• 由表中数据得到分析结果:
因子F1与变量X3,X4,X6相关性较强,说明它体 现了顾客对服装外在表现的要求;
因子F2与变量X5有较强的证相关性,说明它体现 了顾客对服装价格的要求;
之间的相关关系; 因子得分是以回归方程的形式将指标X1,X2,…, Xm表示为因子F1 ,F 2 ,…,Fp的线性组合。
三、因子分析模型
• 因子分析法是从研究变量内部相关的依赖关系出 发,把一些具有错综复杂关系的变量归结为少数 几个综合因子的一种多变量统计分析方法。它的 基本思想是将观测变量进行分类,将相关性较高, 即联系比较紧密的分在同一类中,而不同类变量 之间的相关性则较低,那么每一类变量实际上就 代表了一个基本结构,即公共因子。对于所研究 的问题就是试图用最少个数的不可测的所谓公共 因子的线性函数与特殊因子之和来描述原来观测 的每一分量。
因子分析法(自己整理)
因子分析法1.因子分析法简介:1)因子分析法的提出“因子分析”的名称于1931年由Thurstone 首次提出,但它的概念起源于二十世纪初Karl Pearson 和Charles Spearmen 等人关于智力测验的统计分析。
近年来,随着电子计算机的高速发展,人们将因子分析方法成功地应用于各个领域,使得因子分析的理论和方法更加丰富。
2)因子分析的定义因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。
因子分析法(Factor Analysis)就是寻找这些公共因子的模型分析方法,它是在主成分的基础上构筑若干意义较为明确的公因子,以它们为框架分解原变量,以此考察原变量间的联系与区别。
运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。
3)与主成分分析的联系主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。
主成分分析一般很少单独使用:a,了解数据。
(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。
(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
因子分析方法
因子分析方法因子分析是一种常用的多元统计分析方法,用于探索变量之间的内在关系和结构。
它可以帮助研究者理解数据中的潜在因素,从而更好地解释变量之间的关联性。
在实际应用中,因子分析方法被广泛应用于心理学、教育学、市场调研等领域,为研究者提供了一种有效的数据分析工具。
首先,因子分析方法的基本原理是通过对变量之间的协方差矩阵进行分解,找出能够最大程度解释原始变量方差的因子。
这些因子可以被理解为潜在的、隐含在观测变量之间的共性因素,通过它们可以更好地理解变量之间的关系。
在实际操作中,研究者需要根据具体的研究目的和数据特点,选择合适的因子提取方法和因子旋转方法,以确保得到可靠和解释性强的因子结构。
其次,因子分析方法的应用范围非常广泛。
在心理学领域,研究者可以利用因子分析方法来探索不同心理特质之间的关系,如人格特征、情绪状态等。
在教育学领域,因子分析方法可以帮助研究者理解学生学习成绩背后的潜在因素,从而制定更有效的教学策略。
在市场调研领域,因子分析方法可以用于分析消费者偏好和行为模式,为企业决策提供有力支持。
此外,因子分析方法也存在一些需要注意的问题。
首先,研究者需要在因子提取和因子旋转过程中进行合理的选择,以避免因子结构的不稳定性和解释的困难。
其次,因子分析方法对数据的要求较高,需要满足一定的线性相关性和样本量要求,否则得到的结果可能不具有可靠性。
因此,在使用因子分析方法时,研究者需要充分了解其原理和应用条件,以确保得到有效的分析结果。
综上所述,因子分析方法是一种重要的多元统计分析方法,具有广泛的应用前景和研究意义。
通过对变量之间的内在关系进行探索和解释,可以帮助研究者更好地理解数据背后的结构和规律,为实际问题的解决提供有力支持。
因此,研究者在进行数据分析时,可以考虑使用因子分析方法,以丰富和深化对数据的理解和解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因子分析基础理论知识1 概念因子分析(Factor analysis ):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。
从数学角度来看,主成分分析是一种化繁为简的降维处理技术。
主成分分析(Principal component analysis ):是因子分析的一个特例,是使用最多的因子提取方法。
它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。
选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。
两者关系:主成分分析(PCA )和因子分析(FA )是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。
2 特点(1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。
(2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。
(3)因子变量之间不存在显着的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显着的相关关系。
(4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。
在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。
显然,在一个低维空间解释系统要比在高维系统容易的多。
3 类型根据研究对象的不同,把因子分析分为R 型和Q 型两种。
当研究对象是变量时,属于R 型因子分析; 当研究对象是样品时,属于Q 型因子分析。
但有的因子分析方法兼有R 型和Q 型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。
4分析原理假定:有n 个地理样本,每个样本共有p 个变量,构成一个n ×p 阶的地理数据矩阵 :⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ΛM M M M ΛΛ212222111211当p 较大时,在p 维空间中考察问题比较麻烦。
这就需要进行降维处理,即用较少几个综合指标代替原来指标,而且使这些综合指标既能尽量多地反映原来指标所反映的信息,同时它们之间又是彼此独立的。
线性组合:记x1,x2,…,xp 为原变量指标,z1,z2,…,zm (m ≤p )为新变量指标(主成分),则其线性组合为:Lij 是原变量在各主成分上的载荷无论是哪一种因子分析方法,其相应的因子解都不是唯一的,主因子解仅仅是无数因子解中之一。
zi 与zj 相互无关;z1是x1,x2,…,xp 的一切线性组合中方差最大者,z2是与z1不相关的x1,x2,…的所有线性组合中方差最大者。
则,新变量指标z1,z2,…分别称为原变量指标的第一,第二,…主成分。
Z 为因子变量或公共因子,可以理解为在高维空间中互相垂直的m 个坐标轴。
主成分分析实质就是确定原来变量xj (j=1,2 ,…,p )在各主成分zi (i=1,2,…,m )上的荷载 lij 。
从数学上容易知道,从数学上也可以证明,它们分别是相关矩阵的m 个较大的特征值所对应的特征向量。
5分析步骤确定待分析的原有若干变量是否适合进行因子分析(第一步)因子分析是从众多的原始变量中重构少数几个具有代表意义的因子变量的过程。
其潜在的要求:原有变量之间要具有比较强的相关性。
因此,因子分析需要先进行相关分析,计算原始变量之间的相关系数矩阵。
如果相关系数矩阵在进行统计检验时,大部分相关系数均小于且未通过检验,则这些原始变量就不太适合进行因子分析。
⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z ΛM ΛΛ22112222121212121111⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z ΛM ΛΛ22112222121212121111进行原始变量的相关分析之前,需要对输入的原始数据进行标准化计算(一般采用标准差标准化方法,标准化后的数据均值为0,方差为1)。
SPSS 在因子分析中还提供了几种判定是否适合因子分析的检验方法。
主要有以下3种: 巴特利特球形检验(Bartlett Test of Sphericity ) 反映象相关矩阵检验(Anti-image correlation matrix ) KMO (Kaiser-Meyer-Olkin )检验 (1)巴特利特球形检验该检验以变量的相关系数矩阵作为出发点,它的零假设H0为相关系数矩阵是一个单位阵,即相关系数矩阵对角线上的所有元素都为1,而所有非对角线上的元素都为0,也即原始变量两两之间不相关。
巴特利特球形检验的统计量是根据相关系数矩阵的行列式得到。
如果该值较大,且其对应的相伴概率值小于用户指定的显着性水平,那么就应拒绝零假设H0,认为相关系数不可能是单位阵,也即原始变量间存在相关性。
(2)反映象相关矩阵检验该检验以变量的偏相关系数矩阵作为出发点,将偏相关系数矩阵的每个元素取反,得到反映象相关矩阵。
偏相关系数是在控制了其他变量影响的条件下计算出来的相关系数,如果变量之间存在较多的重叠影响,那么偏相关系数就会较小,这些变量越适合进行因子分析。
(3)KMO (Kaiser-Meyer-Olkin )检验该检验的统计量用于比较变量之间的简单相关和偏相关系数。
KMO 值介于0-1,越接近1,表明所有变量之间简单相关系数平方和远大于偏相关系数平方和,越适合因子分析。
其中,Kaiser 给出一个KMO 检验标准:KMO>,非常适合;<KMO<,适合;<KMO<,一般;<KMO<,不太适合;KMO<,不适合。
构造因子变量因子分析中有很多确定因子变量的方法,如基于主成分模型的主成分分析和基于因子分析模型的主轴因子法、极大似然法、最小二乘法等。
前者应用最为广泛。
主成分分析法(Principal component analysis ):该方法通过坐标变换,将原有变量作线性变化,转换为另外一组不相关的变量Zi (主⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=pp p p p p r r r r r r r r r R ΛM M M M ΛΛ212222111211成分)。
求相关系数矩阵的特征根λi (λ1,λ2,…,λp>0)和相应的标准正交的特征向量li ;根据相关系数矩阵的特征根,即公共因子Zj 的方差贡献(等于因子载荷矩阵L 中第j 列各元素的平方和),计算公共因子Zj 的方差贡献率与累积贡献率。
主成分分析是在一个多维坐标轴中,将原始变量组成的坐标系进行平移变换,使得新的坐标原点和数据群点的重心重合。
新坐标第一轴与数据变化最大方向对应。
通过计算特征根(方差贡献)和方差贡献率与累积方差贡献率等指标,来判断选取公共因子的数量和公共因子(主成分)所能代表的原始变量信息。
公共因子个数的确定准则:1)根据特征值的大小来确定,一般取大于1的特征值对应的几个公共因子/主成分。
2)根据因子的累积方差贡献率来确定,一般取累计贡献率达85-95%的特征值所对应的第一、第二、…、第m (m ≤p )个主成分。
也有学者认为累积方差贡献率应在80%以上。
因子变量的命名解释因子变量的命名解释是因子分析的另一个核心问题。
经过主成分分析得到的公共因子Z1,Z2,…,Zm 是对原有变量的综合。
在实际的应用分析中,主要通过对载荷矩阵进行分析,得到因子变量和原有变量之间的关系,从而对新的因子变量进行命名。
利用因子旋转方法能使因子变量更具有可解释性。
计算主成分载荷,构建载荷矩阵A 。
载荷矩阵A 中某一行表示原有变量 Xi 与公共因子的相关关系。
载荷矩阵A 中某一列表示某一个公共因子能够解释的原有变量 Xi 的信息量。
有时因子载荷矩阵的解释性不太好,通常需要进行因子旋转,使原有因子变量更具有可解释性。
因子旋转的主要方法:正交旋转、斜交旋转。
⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p p p z a z a z a x z a z a z a x z a z a z a x ΛM ΛΛ22112222121212121111⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z ΛM ΛΛ22112222121212121111正交旋转和斜交旋转是因子旋转的两类方法。
前者由于保持了坐标轴的正交性,因此使用最多。
正交旋转的方法很多,其中以方差最大化法最为常用。
方差最大正交旋转(varimax orthogonal rotation )——基本思想:使公共因子的相对负荷的方差之和最大,且保持原公共因子的正交性和公共方差总和不变。
可使每个因子上的具有最大载荷的变量数最小,因此可以简化对因子的解释。
斜交旋转(oblique rotation )——因子斜交旋转后,各因子负荷发生了变化,出现了两极分化。
各因子间不再相互独立,而是彼此相关。
各因子对各变量的贡献的总和也发生了改变。
因子旋转的目的是使因子负荷两极分化,要么接近于0,要么接近于1。
从而使原有因子变量更具有可解释性。
计算因子变量得分因子变量确定以后,对于每一个样本数据,我们希望得到它们在不同因子上的具体数据值,即因子得分。
估计因子得分的方法主要有:回归法、Bartlette 法等。
计算因子得分应首先将因子变量表示为原始变量的线性组合。
即:回归法得分是由贝叶斯思想导出的,得到的因子得分是有偏的,但计算结果误差较小。
贝叶斯判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。
Bartlett 法:Bartlett 因子得分是极大似然估计,得到的因子得分是无偏的,但计算结果误差较大。
结果的分析解释此部分详细见操作演示⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=pmp m m m pp pp x l x l x l z x l x l x l z x l x l x l z ΛM ΛΛ22112222121212121111。