Z变换的性质定理
数字信号处理第2章

Z变换与拉氏变换的关系:
这一关系实际上是通过 到了Z平面。
若将Z平面用极坐标表示
标表示
,代入
将S平面的函数映射
,S平面用直角坐 ,得:
上述关系表明: z 的模 r 仅与 s 的实部 相对应, z 的幅角 则仅与 s 的虚部 对应。
映射关系:
Z变换与拉氏变换的关系
0 0,2 (S平面实轴映射到Z平面的正实轴)
解:
,求它的傅立叶变换。
其幅度谱和相位谱分别为:
典型例题
❖ 例2 已知序列的傅立叶变换如下,求它的反变换。
解:
显然序列 h(n)不是绝对可和的,而是平方可和 的 ,但其依然存在傅立叶变换。 Parseval定理
典型例题
❖ 例3 证明复指数序列 x(n) e j0n 的傅立叶变换为:
证:根据序列的傅立叶反变换定义,利用冲击函 数 的性质,有:
即序列绝对可和
某的有 立些序些叶既列序变不,列换满若虽依足引然然绝入不存对频满在可 域足。和的以见的冲上后条击条例件函件。也数,不但满满,足足其平平傅方方立可可叶和和变条,换件其傅
也存在。如
、某些周期序列,见后例。
序列傅立叶变换的定义
5.常用序列的傅立叶变换
序列
(n)
傅立叶变换
1
1
典型例题
❖ 例1 已知
A形k(式k=求0,X取1(…:z),N)B,(此z) A( z )
时
为了方bi 便z i通常利用
i0
N
1 ai z i
X(z)/z的
i 1
若序列为因果序列,且N≥M,当X(z)的N个极点都是单
极点时,可以展开成以下的部分分式的形式:
则其逆Z变换为:
06第六讲 Z变换的性质

Y(z)的收敛域为X(z)、H(z)收敛域的公共部分。 若有极点被
抵消,收敛域可扩大。
证 Y ( z ) Z [ x( n) h(n)]
n
[ x(n) h(h)]z n
n
n m
x ( m) h ( n m) z
第2章 Z变换 2. 序列的移位
Z[ x(n m)] z m X ( z)
Rx | z | Rx
(1-80)
位移m可以为正(右移)也可以为负(左移)。 证
Z [ x(n m)]
n
x(n m) z n z m
k
x( k ) z k z m X ( z )
证
Z [ x (n)]
*
n
x ( n) z
*
n
n *
[ x(n)(z )
* n *
]
* n * * x(n)(z ) X ( z ) n
Rx | z | Rx
第2章 Z变换 6. 翻褶序列
1 Z[ x(n)] X z
9. 序列卷积(卷积定理)
若
y ( n ) x ( n ) h ( n)
则
m
x(m)h(n m)
Y ( z ) Z [ y(n)] X ( z ) H ( z ) max[Rx , Rh ] | z | min[Rx , Rh ]
(1-88)
第2章 Z变换
V平面收敛域为
(1-90)
|z| |z| max Rx , | v | min Rx , Ry Ry
7.4 z变换

2
对上式两边取z变换
而
Z[ x(t T )] z[ X ( z ) x(0)] zX ( z )
2
z 1 ( z 1) X ( z ) T z ( z 1)2
k 0
两式相减,
x[(k 1)T ] x(kT ) z k ( z 1) X ( z ) zx(0)
k 0
两边取z->1的极限, lim ( z 1) X ( z ) zx (0) lim( z 1) X ( z ) x (0) z 1 z 1
1 2
z 1 1
3
x1 (t ) 1(t )
采样
x ( t ) 1( t ) ( t kT )
* 1 k 0 * x2 ( t ) ( t kT ) k 0
x2 ( t ) ( t kT )
k 0
由该例可知,在z变换中只考虑时域函数在采样时刻的信号值, 单位阶跃函数和单位脉冲序列函数在采样时刻具有相同特性, 其z变换结果相同。 相同的z变换X(z)对应于相同的采样函数x*(t),但是不一定 对应于相同的连续函数x(t)。
z z
17
6、终值定理
x( ) lim( z 1) X ( z ) lim(1 z 1 ) X ( z )
z 1 z 1
证明:
X ( z ) x( kT ) z k
k 0
Z x(t T ) x(k 1)T z k z[ X ( z ) x(0)]
z变换复移位定理

z变换复移位定理摘要:1.引言2.Z变换及其性质3.复移位定理4.Z变换复移位定理的应用5.结论正文:【引言】在信号处理、系统分析等领域,Z变换及其相关理论发挥着重要作用。
复移位定理是Z变换理论中的一个重要定理,它为我们分析信号和系统提供了便利。
本文将详细介绍Z变换、复移位定理及其应用,帮助读者更好地理解和掌握这一理论。
【Z变换及其性质】Z变换是一种将时域信号转换为频域信号的数学方法。
给定一个时域信号x(t),其Z变换X(z)可以通过以下公式表示:X(z) = ∫(-∞,∞) x(t) * e^(-jωt) dt其中,ω为角频率,j为虚数单位。
Z变换具有许多有益的性质,如线性性质、时域性质、频域性质等。
这些性质为我们分析信号和系统提供了便利。
【复移位定理】复移位定理是Z变换理论中的一个重要定理。
它描述了将时域信号进行Z变换后,对变换结果进行复数域上的平移(即频域上的卷积)的操作。
复移位定理的数学表达式如下:X(z) * z^k = ∫(-∞,∞) x(t) * e^(-jωt) * z^k dt其中,z为复变量,k为实数。
复移位定理在信号处理、系统分析等领域具有广泛的应用。
【Z变换复移位定理的应用】在实际应用中,Z变换复移位定理可以帮助我们简化信号处理和系统分析的过程。
以下是一个具体例子:假设我们有一个线性时不变系统,其输入信号为x(t),输出信号为y(t)。
我们可以通过分析系统的冲激响应h(t)来了解系统的性能。
利用Z变换和复移位定理,我们可以得到如下关系:H(z) = Y(z) / X(z)其中,H(z)为系统的传递函数,Y(z)为输出信号的Z变换,X(z)为输入信号的Z变换。
通过这一关系,我们可以轻松地求解系统的性能参数,如频率响应、群延迟等。
【结论】Z变换及其复移位定理在信号处理、系统分析等领域具有重要应用价值。
掌握这一理论,可以帮助我们更好地分析和设计信号处理系统。
第六节 Z 变 换

Z xn 1 z X ( z) x(1)
1
Z xn 2 z X ( z) z x(1) x(2)
2 1
三、频移性质(Z域尺度变换):
If x ( n ) X(z )
j0 n
ROC : R
then 1. e
x n X e
j0z k源自 z 1 j 0 j 0
1 e z e z cosk 0 k j 0 j 0 e z 1 e z 1 2 z z cos 0 2 z 2 z cos 0 1
2
z z cos 0 k cosk 0 k 2 z z 2 cos 0 1
2
a 1 b 1 z a b z a b a z b
1 k 1 k 1 x ( k ) * h( k ) a b k a b
七、序列除(k+m)(Z域积分)
If f ( n) F ( z )
z 2. F2 z 2 . z z 3 1
f 2 k ?
2 2 2
解:
1 z z z 1. F1 z 1 2 2 z 1 z 1
cos 0;
2
k f1 k k cos 2
k
z 2. F2 z 2 z z 3 1
3 2
z 1
解:
F ( z) 2 6 8 13 2 z z z z 1 z 0.5
k
f (k ) 2 k 1 6 k (8 130.5 ) k
Z变换的基本性质

第
22 页
Y z A1 A2 z z 1 z 0.9
A1 0.5
A2 0.45
z z Y z 0.5 0.45 z 1 z 0.9
y n 0.5 0.45 0.9
n
n 0
第
例8-7-2
已知系统框图 列出系统的差分方程。
a,b为任意常数。
二.位移性
1.双边z变换 2.单边z变换
(1) 左移位性质
(2) 右移位性质
第 4 页
1.双边z变换的位移性质
x ( n) 4
第 5 页
x ( n 2) 4
4
x ( n 2)
1O Hale Waihona Puke 2n 1O 1 2
n
2 1 O 1
n
的z变换为Z x( n m ) z m X ( z )
1 m k z X z x k z k m
(z域微分) 三.序列线性加权
若 则 Z x( n) X ( z )
第
12 页
d X (z) 1 d X z nx( n) z z dz d z 1
例:求na
解:
n
z2 Yzs z 2 z 2
n Yzs z yzs n n 1 2 un
第
b.由储能引起的零输入响应(对n 2都成立)
Yzi z 1 3z 1 2z 2 2z 1 y 1 3 y 1 2 y 2
z z 1 3z 2z Yzi z z 2z 1 z 2 z 1 零输入响应为
25 页
第二章Z变换

2n-
1 3
(0.5)n
u
(
n
)
由已知的收敛域 知道是因果序列
n0 n0
16
2、长除法
x(n)的z变换定义为z-1的幂级数,即
X (z )x ( n )z n x ( 1 )z x ( 0 ) x ( 1 )z 1 x ( 2 )z 2 n
因此只要在给定的收敛域内将X(z)展成幂级数, 则级数的系数就是序列x(n)。一般情况下,X(z)是 一个有理分式,分子分母都是z的多项式,则可直接 用分子多项式除以分母多项式,得到幂级数展开式, 从而得到x(n)。
[ x ( n ) ] X ( z ) R x |z | R x
[y (n ) ] Y (z ) R y |z| R y
则 [ a ( n ) b x ( n ) y a ] ( z ) b X ( z )Y R |z | R 其中RmaRx x,[Ry],RmiR nx,[Ry],即线性组合后的
zb
| z||b|
如果a=b,则此例与上例中右边序列的Z变换表达式 完全一样,所以只给出Z变换的闭合表达式是不够的, 不能正确得到原序列,必须同时给出收敛域范围, 才能惟一确定一个序列,这就说明了研究收敛域的
重要性。
10
4、双边序列
一个双边序列可以看做一个左边序列和一个右边 序列之和,因此双边序列Z变换的收敛域就应该是这 两个序列Z变换的公共收敛区间。
0 |z| , n 20
ROC
0
Re[z]
有限长序列的收敛域
5
例:矩形序列是一个有限长序列,x(n)=RN(n),求其 X(z)。
解:
X(z)n x(n)znN n 0 1zn1 1 zz N 1
(优选)z变换的基本性质和定理

X (z)H(z)
两者交集 序列的卷积和
1
2j
c
X
(v)H ( z v
)v 1dv
上下限对应相乘
序列相乘
x(n)为因果序列
且X(z)的极点落在单 位圆内部,最多在
z=1处有一极点
初值定理 终值定理
ax(n) by(n) aX (z) bY(z)
x(n m)
zm X (z)
两者交集 不变
线性性质 移位性质
an x(n)
X (z a) 上下限放大|a| 乘以指数序列
序列
nx(n) x* (n)
Z变换 z d X (z)
dz
X *(z*)
收敛域 不变 不变
说明 线性加权
共轭
x(n)
X (1 z)
部分分式的系数Ak,Ck分别为(留数定理求出):
Ck
(r
1 d rk
k
)!
dz
r
k
[(z
zi )r
x(z zk
)
z
zi
,
k 1,2r
3、长除法 将X(z)分解成简单分式和的形式,每部分对应
一个因果序列或一个反因果序列。
对因果序列,分子、分母多项式按降幂排列相除;
对反因果序列,分子、分母多项式按升幂排列相除。
3、乘以指数序列(z域尺度变换) 如果 则有: 证明:根据z变换的定义证明
4、序列的线性加权(z域求导数) 如果 则有:
证明: (见下页,怎样证明?)从右至左证明。
5、共轭序列 如果 则有:
证明:
6、翻褶序列 如果 则有:
证明: (见下页)
证明:
7、初值定理 证明: (怎样证明?) 显然: lim X (z) x(0)