角的平分线的性质 优秀教学设计

合集下载

人教版数学八年级上册12.3角平分线的性质优秀教学案例

人教版数学八年级上册12.3角平分线的性质优秀教学案例
3.小组合作:组织学生进行小组讨论,鼓励学生分享自己的观点和思考。在合作过程中,学生共同探索角平分线的性质,培养了团队协作能力和沟通能力。
人教版数学八年级上册12.3角平分线的性质优秀教学案例
一、案例背景
本节内容为人教版数学八年级上册12.3角平分线的性质。在学习了角的概念、角的计算等相关知识后,学生已具备一定的逻辑思维能力和空间想象力。角平分线的性质是数学中的重要概念,对于学生理解角的本质、提高几何证明能力具有重要意义。
本节课的内容与实际生活密切相关,学生可以通过观察和思考实际问题,发现并理解角平分线的性质。在教学过程中,我将以生动的生活实例引入,激发学生的学习兴趣,接着引导学生发现并证明角平分线的性质,最后通过练习巩固所学知识。
2.强调角平分线在几何学习和实际生活中的重要性,激发学生继续学习的动力。
3.布置课后作业,巩固学生对角平分线性质的理解和应用。
(五)作业小结
1.设计具有层次性的作业,让学生在实践中运用角平分线的性质,提高学生的动手操作能力和解决问题的能力。
2.鼓励学生对自己的作业进行自我评价,反思自己在解决问题过程中的优点和不足。
(二)问题导向
1.引导学生发现并提出问题:角平分线有哪些性质?如何证明这些性质?
2.引导学生通过观察、分析、推理等方法,自主探索角平分线的性质,培养学生的问题解决能力。
3.在学生探索过程中,适时提供提示和引导,帮助学生建立角平分线性质的逻辑体系。
(三)小组合作
1.组织学生进行小组讨论,鼓励学生分享自己的观点和思考,培养学生的团队协作能力和沟通能力。
(三)学生小组讨论
1.设计具有挑战性的小组讨论任务,如:请你设计一个三角形,并利用角平分线的性质解决其中一个问题。
2.组织学生进行小组讨论,鼓励学生分享自己的观点和思考,培养学生的团队协作能力和沟通能力。

角的平分线的性质教案

角的平分线的性质教案

角的平分线的性质教案教案:角的平分线的性质一、知识背景1.平分线的存在性:对于任意一个角,都存在且唯一一条通过其顶点的平分线。

2.平分线的性质:平分线上的任意一点都与角的两边的端点连线所得的两条边相等。

二、教学目标1.知识目标:了解角的平分线的定义和性质。

2.能力目标:能够应用平分线的性质,解决与角的平分线相关的问题。

三、教学重难点1.教学重点:角的平分线的定义和性质。

2.教学难点:能够应用平分线的性质解决问题。

四、教学过程1.导入新知识:通过展示一张图示例,在黑板上画出一个角,并说明角的概念和角的顶点、边等基本要素。

2.角的平分线的定义:向学生介绍角的平分线的概念和定义,并说明平分线的存在性。

3.平分线的性质:通过展示一个新的角,并在其顶点处画出一条平分线,向学生解释平分线上任意一点与角的两边的连线等长的性质,并引导学生猜测平分线的性质。

4.定理的证明:通过几何推理,给出平分线的性质的证明,从而使学生对角的平分线的性质有更深刻的理解。

5.例题讲解:给出一些具体的角和平分线的问题,引导学生应用平分线的性质解决问题,例如:已知角A的平分线BC,求角ABC的度数。

6.练习与解答:让学生自己完成一些练习题,巩固和运用所学的知识。

7.拓展延伸:给学生一些更复杂的问题,让学生运用平分线的性质解决问题,例如:已知平面内有三条互不相交的直线,任意两线的交角都相等,求证这三条直线共点。

五、教学方法1.讲授法:通过讲解和示例,向学生介绍角的平分线的定义和性质。

2.演练法:让学生自己完成一些练习题,巩固和应用所学的知识。

3.启发法:通过给出具体的问题和图示,引导学生发现平分线的性质,并进行推理思考。

六、教学评价与反思1.教学评价:通过学生的参与和表现,观察他们对角的平分线的理解和运用。

2.教学反思:根据教学评价的结果,总结学生的差异化学习需求,找到改进教学的方法和策略。

七、教学延伸1.角的平分线在三角形中的运用:通过引导学生观察,发现角平分线在三角形中的运用,比如说角平分线与三角形的中位线、高、垂心等的关系。

角的平分线的性质优秀教学设计

角的平分线的性质优秀教学设计

角的平分线的性质优秀教学设计教学设计:角的平分线的性质教学目标:1.了解角的平分线的概念;2.掌握角的平分线的性质;3.能够应用角的平分线的性质解决相关问题。

教学准备:1.教学课件、教学板书;2.角规、直尺、铅笔等绘图工具;3.《数学课程标准》中关于角的知识点。

教学步骤:第一步:引入知识(时间:10分钟)1.利用实物或图片引入角的概念,让学生了解角的组成元素和名称。

2.引导学生思考:如果一条直线能够将一个角平分成两个角,这条直线是什么?这个性质有什么特点?3.引入角的平分线的概念,并提示学生,我们将要研究角的平分线的性质。

第二步:探究角的平分线的性质(时间:30分钟)1.在教师引导下,学生边观察边探究角的平分线的性质。

2.学生利用角规和直尺,绘制不同角度的角,并将其角度平分,观察平分线的特点。

3.教师通过示范,引导学生观察和总结,整理角的平分线的性质。

第三步:总结角的平分线的性质(时间:15分钟)1.学生与教师一起总结和讨论角的平分线的性质。

2.教师将角的平分线的性质整理成教学板书,并与学生一起进行强化记忆。

第四步:应用角的平分线的性质解决问题(时间:30分钟)1.学生在教师的指导下,通过绘制图形和应用角的平分线的性质解决相关问题。

2.分组活动:每个小组设计一道角的平分线的问题,并交换进行解答,加深对角的平分线性质的理解和应用能力。

第五步:课堂练习(时间:15分钟)1.教师提供一些练习题,让学生在课堂上进行练习,巩固所学的知识点。

2.教师布置一些作业题,让学生完成,并要求学生在下节课上检查和讨论解题过程。

第六步:课堂总结(时间:10分钟)1.教师与学生一起进行课堂总结,巩固角的平分线的性质。

2.学生回答教师提问,对所学知识进行总结和归纳。

教学评价:1.通过观察学生的参与度和答题情况,评价学生对角的平分线的性质的理解和应用能力;2.检查学生完成的作业题,评价学生课后的复习和自主学习的情况。

教学延伸:1.引导学生分组设计更复杂的角平分线问题,并互相交换解答,促使学生深入理解和应用角的平分线的性质。

人教版八年级上册12.3角的平分线的性质的综合运用优秀教学案例

人教版八年级上册12.3角的平分线的性质的综合运用优秀教学案例
3.小组合作,培养团队合作能力:通过组织学生进行小组讨论和合作,培养他们的团队合作能力。在小组合作中,学生能够分享和交流自己的想法和成果,提高表达能力和沟通能力,同时也能够培养批判性思维和创造性思维能力。
4.反思与评价,提高自我评价能力:通过引导学生进行自我反思和互相评价,培养他们的自我评价能力和评价能力。反思与评价能够帮助学生深化对知识的理解和掌握,提高思维深度,同时也能够激发学生继续学习和进步的动力。
3.熟练掌握如何画出一个角的平分线,提高实际操作能力。
在教学过程中,我会通过讲解、示范、练习等方式,帮助学生理解和掌握角的平分线的性质。我会引导学生参与课堂讨论,鼓励他们提出问题,解答疑惑。同解决,从而巩固他们的理解和掌握程度。
(二)过程与方法
1.培养学生的观察能力,通过观察角的平分线与矩形边的交点坐标,引导学生发现角的平分线的性质。
总而言之,本章节的教学目标旨在培养学生对角的平分线性质的理解和掌握,提高他们的知识与技能、过程与方法、情感态度与价值观。通过本章节的教学,希望学生能够更好地运用角的平分线解决实际问题,培养他们的观察能力、动手操作能力和解决问题的能力。同时,激发学生对数学的兴趣和热情,培养他们的团队合作精神和自主学习能力,使他们能够在学习过程中获得更好的情感体验和价值观的培养。
(五)作业小结
1.布置相关的作业题目。
最后,我会布置一些与本节课内容相关的作业题目,让学生在课后进行巩固和练习。这样能够帮助学生加深对知识的理解和掌握,提高他们的学习效果。
2.提醒学生及时总结和复习。
我会提醒学生及时总结和复习本节课的内容,巩固所学知识。同时,我会鼓励学生主动查找相关的学习资源,进一步拓展知识面。
(二)问题导向
1.引导学生提出问题,培养他们的问题意识。

人教版八年级上册12.3《角的平分线的性质》优秀教学案例

人教版八年级上册12.3《角的平分线的性质》优秀教学案例
人教版八年级上册12.3《角的平分线的性质》优秀教学案例
一、案例背景
本节内容为人教版八年级上册12.3《角的平分线的性质》。在之前的学习中,学生已经掌握了角的概念、分类以及角的计算方法,了解了直线、射线、线段的基本性质。在此基础上,学习角的平分线的性质,既是对已有知识的巩固,也是为后续学习几何图形的对称性、角的平分线定理等知识打下基础。
4.结合学生的评价和反思,教师总结本节课的教学效果,对后续教学进行调整和改进,以提高教学质量和学生的学习效果。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入角的平分线概念。例如,展示一张图片,图片中有一辆汽车在转弯处,转弯处的角被一条线段平分,使学生感受到角的平分线在现实生活中的应用。
2.引导学生回顾已学过的角的概念、分类以及角的计算方法,为新课的学习打下基础。
2.采用小组讨论、合作交流的方式,让学生在探讨中思考,培养团队合作能力和自主学习能力。
3.利用几何画图工具,让学生动手实践,加深对角的平分线性质的理解和运用。
4.设计不同难度的题目,针对不同程度的学生进行针对性训练,提高学生的解题能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生探索数学奥秘的热情。
3.教师提出问题:“你们认为角的平分线有什么特殊性质?”,让学生思考并发表自己的观点。
(二)讲授新知
1.介绍角的平分线的定义:角的平分线是将一个角平分成两个相等角的线段。
2.讲解角的平分线的性质,如:角的平分线上的任意一点,到角的两边的距离相等;角的平分线与角的两边垂直等。
3.结合几何画图工具,如直尺、圆规等,演示角的平分线的画法,让学生直观地理解角的平分线的性质。
4.通过示例题,讲解如何运用角的平分线性质解决实际问题,如在几何图形中,如何找到一点,使这点到图形两边的距离相等。

角平分线的性质的市公开课获奖教案省名师优质课赛课一等奖教案

角平分线的性质的市公开课获奖教案省名师优质课赛课一等奖教案

角平分线的性质的教案一、教学目标:1. 知识与技能:了解角平分线的定义和性质,学会运用角平分线的性质解题。

2. 过程与方法:通过教师讲解和实例演示相结合的方式,提高学生的理解和运用能力。

3. 情感态度价值观:培养学生严谨的数学思维,注重观察与推理,提高学生的自学、合作学习和解决问题的能力。

二、教学重点与难点:1. 重点:掌握角平分线的定义和性质。

2. 难点:运用角平分线的性质解决实际问题。

三、教学过程:Step 1 引入新知(1)教师通过提问,引导学生回顾角的定义和性质,复习相关知识。

(2)教师出示一张图纸,上面有两条射线,从一个点出发,交于一点,并各自形成两个角。

教师问学生:如何判断这两个角是否相等?请从几何性质的角度进行推理。

Step 2 角平分线的定义(1)教师解释角平分线的含义:角平分线是指从角的顶点出发,把角分成两个相等的角的射线或线段。

(2)教师出示角平分线的实例图,并要求学生观察并总结出角平分线的特点。

Step 3 角平分线的性质(1)教师提供一些角平分线的性质,如:a. 角平分线把一个角分成两个相等的角。

b. 一个角的两个相等角的角平分线相交于同一点,且这个点在角的内部。

(2)教师通过具体例子进行演示,让学生观察并找出角平分线的性质,引导学生进行类比和推理。

Step 4 角平分线的运用(1)教师提供一些具体问题,要求学生利用角平分线的性质解决问题。

a. 已知一个角的两个角平分线相交于点O,求证这两个角相等。

b. 在△ABC中,AD是∠BAC的角平分线,且∠ADB = 30°,求证∠ACB = 60°。

(2)学生独立思考并进行解答,然后进行讨论,通过合作学习的方式互相交流和纠正错误。

Step 5 拓展练习(1)教师布置一些拓展练习题,要求学生独立完成。

(2)教师进行答疑解惑,引导学生进行错误分析和订正,提高学生的解题能力和思维能力。

四、教学反思:本节课通过引导学生观察、思考和推理,使学生在实际操作中领会到角平分线的定义和性质,并能灵活运用角平分线的性质解决实际问题。

《角的平分线的性质》教学设计2篇

《角的平分线的性质》教学设计2篇

《角的平分线的性质》教学设计《角的平分线的性质》教学设计精选2篇(一)教学设计:《角的平分线的性质》一、教学目标:1. 理解角的平分线的概念;2. 掌握角的平分线的性质;3. 能够应用角的平分线的性质解决相关问题。

二、教学内容:1. 角的平分线的定义;2. 角的平分线的性质;3. 角的平分线的应用。

三、教学过程:Step 1 引入新知识:1. 通过展示一张含有角及其平分线的图片,引发学生对角的平分线的兴趣和思考;2. 学生根据图片,描述角的平分线的特点。

Step 2 角的平分线的定义与性质:1. 引导学生观察,讨论两个相邻的、边相等的角之间的关系;2. 引导学生总结出“两个相邻的、边相等的角之间存在一个角的平分线”的性质;3. 学生互相交流,理解并记忆角的平分线的定义与性质。

Step 3 角的平分线的应用:1. 通过给出一些已知条件,让学生找出角的平分线;2. 学生自主解决问题,教师引导学生应用角的平分线的性质解决问题;3. 学生举例子,解决多种情况的问题。

Step 4 练习巩固:1. 教师布置角的平分线的练习题,提供多种类型的问题;2. 学生独立完成练习,教师适时给予指导和帮助;3. 学生互相交流,共同解决问题。

四、教学评价:1. 教师观察学生的学习情况和参与程度,做好记录;2. 根据学生的表现和回答问题的情况,了解学生对角的平分线的掌握程度;3. 通过学生的解决问题的方式和结果,评价学生的学习成果。

五、教学延伸:1. 可以介绍更多与角的平分线相关的性质;2. 可以引导学生进行角的平分线相关的探究性实验;3. 可以让学生设计角的平分线相关的问题,互相出题和解答。

《角的平分线的性质》教学设计精选2篇(二)教学目标:1. 了解角的概念和基本术语2. 学会如何测量角的大小3. 掌握角的度量单位和换算教学步骤:步骤一:引入通过展示一些角的图形和实际生活中的角的例子,引起学生对角的兴趣,并让学生尝试描述角的特征和表达自己对角的理解。

角的平分线的性质教案多篇

角的平分线的性质教案多篇

角的平分线的性质教案多篇角的平分线的性质教案1一、教学目标【知识与技能】了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算。

【过程与方法】在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力。

【情感态度与价值观】在主动参与数学活动的过程中,增强探究问题的兴趣、有合作交流的意识、动手操作的能力与探索精神,获得解决问题的成功体验。

二、教学重难点角的平分线的性质的证明及应用。

角的平分线的性质的探究。

三、教学过程(一)导入新课1.复习角平分线的画法2.利用PPT创设情景:如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?(二)生成新知探究做一做(学生独立完成,同组同学交流,找学生到黑板上板演.教师纠正答案)如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论.0011.jpg∴△PDO≌△PEO(AAS)∴PD=PE.(三)深化新知思考:角的平分线的性质在应用时应该注意什么问题?(由学生讨论汇报)(四)应用新知1.例题:解决导入中PPT的问题2.练一练:(1) 下面四个图中,点P都在∠AOB的平分线上,则图形_____ 中PD=PE.0012.jpg(五)小结作业小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?作业:必做题,选做题,思考题:角平分线性质的逆命题并证明。

角的平分线的性质教案2一、教学目标【知识与技能】进一步了解角平分线的性质和判定,能够证明角平分线的性质和判定定理并且会运用角平分线性质去解决问题。

【过程与方法】通过对“角平分线性质”的探究,提高分析问题、解决问题的能力。

【情感态度与价值观】通过一系列的证明过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《11.3角的平分线的性质》教学设计
一、设计理念
角平分线性质一课,教学过程采用“引导--发现"教学模式,借助电子白板、PPT、几何画板和微课等教学工具,多角度的创设问题情景,让学生在操作、演示、猜想、验证等探究活动中,以独立思考、合作交流的形式,完成对知识的发现、生成、应用和自我构建,促进学生数学学习的个性化发展!
二、教材分析和学情分析
这是一节新授课,是学习轴对称和直角三角形的基础;八年级学生具备有一定的观察、推理能力,思维的广阔性和敏捷性比较欠缺,因此本课我采用了“引导--发现”的教学模式进行教学,利用教学课件为学生搭建的探究平台。

三、教学目标:
掌握作已知角的平分线的方法和角平分线性质;能运用角平分线及其性质解决有关的数学问题。

在探究角的平分线的性质定理的过程中,进一步发展学生的推理证明意识和解决问题的能力,
通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力,增强学生探究问题的兴趣,激发学生应用数学的热情.
四、教学重点、难点:
重点:用尺规作已知角的平分线的方法角平分线的性质定理的证明及运用,难点:角平分线的性质的探究
五、教学过程:
《探究活动一》创设情境导入新课- - -角的平分线
1、在练习纸上画一个角,怎样得到这个角的平分线呢?
1、这段视频说明了什么问题?
2、如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?
[教学说明]用微课创设情境导入新课,以问题做为本课的切入点,激发学生探究学习的兴趣,为新课的开展创造了良好的教学氛围!本课中的微课都是有几何画板制作的特效,用录屏软件CS7录制的!
《探究活动二》合作交流探究新知- - -探究角平分仪的作法
问题:工人师傅常用如图所示的简易平分角的仪器来画角的平分线(出示仪器的电子模型,介绍仪器特点--有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.
看一看:教师播放微视频,学生观看角平分仪作角平分线的过程。

说一说:学生用三角形全等知识说明这个仪器的操作原理。

[教学说明]教材中利用分角仪的静态图片,叙述了分角仪的使用方法;教学中我做了一个模型--电子教具来演示分角仪的使用方法,充分利用现代信息技术,让静态的图片动起来,实现了信息技术与数学教学的有效融合,使课堂更加生动高效。

想一想:能否利用尺规作已知角的平分线?
自己动手做做看.然后与同伴交流操作心得.
分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

画一画:教师根据学生的叙述,利用电子白板中的电子圆规作已知角的平分线的方法:
已知:∠AO B.
求作:∠AOB的平分线.
作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB 内部交于点C.
(3)作射线OC,射线OC即为所求.
打开菜单作图
调出圆规
[教学说明]画角平分线时需要圆规,我调用了电子白板软件中的圆规工具来画角平分线;利用电子圆规作角平分线,可以回放,重温作图过程,并可以录制微课,便于课后观看。

随着三通两平台的建设和应用,以电子白板为代表的信息技术走进课堂教学,改变了传统的教学方式,创新了教学模式,调用电子白板的资源进行教学,可以更好地实现教师个性化教学的需求,使课堂表现得更加丰富多彩!
议一议:
1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?
2.第二步中所作的两弧交点一定在∠AOB的内部吗?
《探究活动三》深化领悟拓展构建- - -探究角平分仪的性质
问题:角的平分线是一个最基本的图形,它有哪些性质呢?
看一看:利用几何画板软的测量功能进行演示,展示角的平分线上的动点到角两边的距离的数值。

猜一猜:观察演示,直观得出实验结论。

(角的平分线上的点到角两边的距离相等)
证一证:寻找理论上的依据。

引导学生结合图形写出已知、求证,分析后写出证明过程,并利用实物投影
展示学生的证明过程.
已知:如图,OC是∠AOB的平分线,P.为.OC..上任意一点
.....,
PD⊥OA于D,PE⊥OB于E.
求证:PD=PE.
由此得到角平分线的性质定理:
定理:在角平分线上的点,到这个角的两边的距离相等.
表达方式:
∵P是∠AOB的平分线OC上一点,
PD⊥OA于D,PE⊥OB于E,
∴PD=PE.
[教学说明]探究角平分线性质时,我借助几何画板进行演示,然后学生进行猜想论证角平分线性质。

教学设计上,以学生的视角设置适合学生认知水平的问题,借住现代信息技术进行展示,使学生主动探究,发现问题,获得新知;经历实验、猜想、论证的探究过程!在探究中突出重点、突破难点!
《探究活动四》精讲点拨形成技能 - - -教材例题
例如图,△ABC的角平分线BM、CN相交于点P.
求证:点P到三边AB、BC、CA的距离相等.
[教学说明]通过例题教学,教师精讲点拨,明确本节课的知识要点,规范解题过程,应用性质解决问题。

《探究活动五》独立演练学以致用 - - -教材习题
课本练习.
[教学说明]在学生独立思考的基础上,进行合作交流探究,强化合作式学习;此设计旨在加深对性质的理解和学会初步的运用,突出本节重点。

《探究活动六》归纳总结自我提升
本节课学习了那些知识?有哪些运用?
1、用尺规作已知角的平分线的方法
2、角平分线的性质定理:在角平分线上的点到角的两边的距离相等.
3、角平分线的性质定理是证明角相等、线段相等的新途径.
[教学说明]这样可以进一步培养学生的概括能力、语言表达能力,鼓励学生对本节知识归纳总结。

既有知识的总结,又有方法的提炼,引导学生从多角度将本节知识归纳总结,感悟点滴,从而将知识系统化、条理化。

课后作业:课本习题
教学反思:我设计的《角的平分线的性质》一课,根据新课标的要求,针对本课的特点,结合学生实际认知水平,教学过程采用“引导--发现"教学模式,以PPT课件为载体,整合了电子白板教学软件、几何画板软件,并用微课、电子教具辅助教学,创建了多元化、个性化的课堂教学环境,实现了信息技术与数学教学的有效融合!
通过教师个性化的教学手段和信息资源的支撑,为学生的自主学习搭建探究平台!通过“演示、观察、猜想、论证”探究活动,让整个教学过程成为学生进行探究活动的过程,课堂成为学生进行探究活动的平台!。

相关文档
最新文档