人教版八年级上 11.3 角的平分线的性质(2) 教案

合集下载

角的平分线的性质第二课时教案

角的平分线的性质第二课时教案

角的平分线的性质第二课时教案
11.3角的平分线的性质(第2课时)
 【教学目标】
 1.使学生掌握角的平分线的判定定理,并会用角的平分线的性质定理和判定定理解决有关简单问题.
 2.通过引导学生参与活动的过程,使学生体验定理的发现及证明的过程提高思维能力.
 3.通过师生互动,培养学生学习的自觉性,激发学生探究新知的热情. 【教学重点】角的平分线的判定定理的探索与角平分线的性质定理和判定定理应用.
 【教学难点】角的平分线性质定理和判定定理的区别与联系.
 【教学方法】启发探究式.
 【教具】三角板
 【教学流程】
 一、复习引入:
 学生口答角的平分线有什幺性质?教师强调说明:
 “在角平分线上的点”都具有“到角的两边距离相等”的性质,即角平分线上没有不具备此性质的点.那幺,反过来会怎幺样呢?
 二、探索新知:
 1、提出问题,创设情境:
 如图,要在S区建一个贸易市场,使它到公路、铁路距离相等,离公路与铁路交叉处500米,这个贸易市场应建于何处(在图上标出它的位置,比例尺为1:20000)。

人教版八年级上册12.3角的平分线的性质2)教学设计

人教版八年级上册12.3角的平分线的性质2)教学设计
-学生尝试回答,教师引导学生通过折叠纸张来直观感受角的平分。
3.引入新课,明确学习目标。
-介绍本节课将学习角的平分线的性质及其应用。
-强调掌握这一性质对于解决几何问题的重要性。
(二)讲授新知
1.系统讲解角的平分线的定义。
-解释角的平分线是“将一个角平均分成两个相等的角的线段”。
-通过动态演示,让学生直观理解角的平分线的概念。
2.能够运用数学符号和语言表达角的平分线性质,形成严密的逻辑推理能力。
-学生能够用数学语言描述角的平分线性质,如“角的平分线上的任意一点到角的两边的距离相等”。
-学生能够通过几何证明,运用逻辑推理证明角的平分线性质的准确性。
3.能够在综合问题中,灵活运用角的平分线性质,解决多步骤几何问题。
-学生能够将角的平分线性质与其他几何知识综合应用,解决复合几何问题。
-对于基础较好的学生,设计具有挑战性的问题和证明任务,提高他们的逻辑推理能力。
3.探索实践,促进深度学习。
-组织学生进行小组讨论和合作探究,共同解决角的平分线性质的相关问题。
-鼓励学生动手实践,通过尺规作图等方式,加深对性质的理解。
4.精讲精练,提高教学效率。
-教学过程中,教师应精讲性质的本质和证明的关键步骤,避免冗长的解释。
-将学生分成小组,针对角的平分线性质进行讨论。
-鼓励学生提出问题,分享解题思路,共同解决疑惑。
2.教师巡回指导,给予反馈。
-在小组讨论过程中,教师观察学生的讨论情况,适时给予指导和鼓励。
-针对不同层次的学生,提出不同难度的问题,引导他们深入思考。
3.小组汇报,分享成果。
-每个小组选派代表汇报讨论成果,展示解题过程。
-通过展示几何图形的美,让学生体会数学的和谐与对称美。

11.3角的平分线的性质说课稿

11.3角的平分线的性质说课稿

角的平分线的性质(二)一、教材的分析和处理本节课选自人教版《义务教育课程标准实验教科书·数学》八年级上册,第十一章第三节内容“角的平分线的性质”。

1、教材的地位和作用角的平分线的性质是全等三角形知识的运用和延续,为后面证明线段相等、角相等的几何证明开辟了一种新的,更为简捷的方法。

同时也是轴对称图形的基础,并为解决九年级下册确定内切圆的圆心提供了依据。

本节分两个课时,我选的是第二课时。

本课时主要探究角的平分线的性质和判定,并能在此基础上进行简单的应用.教材不仅为学生动手操作、观察、思考、验证、交流等提供了较好的素材,使学生通过自主探究、合作交流等方式形成新的知识,更让学生学习了怎样从实际问题中建立数学模型,从而解决相关的实际问题。

2、教学目标知识与技能:掌握角的平分线的性质和判定,并会运用它们解决实际问题.过程与方法:通过让学生经历动手实践、合作交流、演绎推理的过程,培养学生的动手操作能力和逻辑思维能力,提高解决问题的能力.情感态度与价值观:经历对角的平分线的性质和判定的探索过程,发展应用数学知识的意识与能力,培养学生良好的学习态度及严谨的科学态度,体验探索过程中的乐趣与成功后的喜悦.3、教学重、难点重点:掌握角的平分线的性质和判定.难点:理解角的平分线的性质和判定的互逆关系,并能正确运用它们解决问题.4、教材的处理教材是围绕现实生活中的实际问题采用“创设问题情境—建立数学模型—解释、应用与拓展”的基本教学模式来展开教学活动。

让学生经历探索角的平分线的性质、判定的形成与初步的应用过程,从而能从理性逻辑思维的角度掌握性质和判定的区别与联系,达到真正的“学数学”和“用数学”。

二、教法、学法课堂教学利用引导,鼓励,赏识的教学方法充分调动学生的积极性,激发学生内在的动力,让他们主动的投入到学习中去,成为教学的主体和学习的主人,以获取最大限度的发展。

三、教学手段和教具准备教学手段:多媒体辅助教学,促进学生自主学习,提高学习效率.教具准备:学生各自准备一张三角形纸片.四、教学过程设计(1)创设情境、引入新知有两条小河交汇形成的三角区,土壤肥沃,气候宜人,有一头小牛的家就建在小河交汇所成的角平分线上的A处。

数学人教版八年级上册角平分线的性质

数学人教版八年级上册角平分线的性质

角平分线的性质一、学情分析本节课选自新人教版教材《初中数学》八年级上册第十一章第三节,本节课的教学内容包括探索并证明角平分线性质定理的逆定理,会用角平分线性质定理的逆定理解决问题。

是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质和判定为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面的学习奠定基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.二、学习目标:1、能够利用三角形全等,证明角平分线的性质。

2、能对角平分线的性质进行简单推理,解决一些实际问题。

学习重点:探索并证明角平分线的性质。

学习难点:表达文字几何命题的证明过程。

三、教学目标:知识与技能目标:1、掌握作角的平分线和作直线垂线的方法2、学握角平分线的性质情感态度目标:1、在探讨作角平分线的方法及角平分线的性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,2、培养学生团结合作精神四、概念回顾1、角平分线:从一个角的顶点引出条射线,把这个角分成两个相等的角的射线有条,这条射线叫做这个角的线。

练一练:在空白处画一个△AOB,射线OC是∠AOB的平分线,则∠AOC==2、点到直线的距离:从直线外一点到这直线的_______的长度,叫做点到直线的距离。

(1)如图1,在Rt△ACB中,点A到CB的距离是线段______,点B到AC的距离是线段______(2)如图2,在△ACB中,画出点C到AB的距离CD四、研读课文P48--49页(一)、画出你认为重点的语句,并加以理解。

(二)、完成下面练习并体验知识点的形成过程。

CBAA BC图2图11、根据下面的操作步骤进行:(1)作任意一个角∠AOB,剪下来。

(2)将∠AOB对折.记折痕为OC,即OC是∠AOB 的线。

角的平分线的性质2优秀教案.docx

角的平分线的性质2优秀教案.docx

角的平分线的性质《第2课时》【教学目标】:(1)知识与技能目标:掌握角的平分线的两个性质;能应用角的平分线的性质解决一些简单的实际问题。

(2)过程与方法目标:通过探索集贸市场的位置加深学生对角的平分线的性质的理解。

引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。

(3)情感与态度目标:利用角的平分线的性质探索集贸市场的位置,使学生的求知欲望得到激发,使学生通过应用已学知识解决身边的问题,提高学生学习数学的兴趣。

【教学重点1:角的平分线的性质的运用及运用【教学难点】:角的平分线的性质的探究【教学突破点1通过实际生活中的例子对比角的平分线的两个性质。

【教法、学法设计】:合作探究式分层次教学,讲授、练习相结合。

【课前准备】:课件【教学过程设计】:问题1.一个S区有一个集贸市场,在公路与铁路所成的角平分线上的P点,要从P点建两条路,一条到公路上,另一条到铁路上,怎样修建距离最短?这两条路有什么关系?画出來看一看?问题2.以上我们运用了什么知识点?角平分线上的点到角的两边的距离相等.问题3.那么到角的两边距离相等的点是否在角的平分线上呢?根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用利用所学的数学知识解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。

引入复习符号语言填写下表:图形已知事项由已知事项推出的事项PD 丄OB,PE 丄OA,垂足为D、EPD=PE已知事项符合直角三角形全等的条件,所以RtAPEO^APDO (HL).于是可得ZPOE二ZP0D.由己知推出的事项:点P在ZA0B的平分线上.第一步:尺规作图法作lllZAOB 的平分线0P.第二步:在射线0P 上截取002. 5cm,确定C 点,C 点就是集贸 市场所建地了.总结:应用角平分线的性质,就可以省去证明三角形全等的步骤, 使问题简单化.所以若遇到有关角平分线,乂要证线段相等的问题, 我们可以直接利用性质解决问题.二、讲授 新课(1)由此我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.这与“角平分线上的点到角的两边的距离相等”有什么区别与联 系吗?分析:这两个性质已知条件和所推出的结论可以互换.如图,要在S 区建立一个集贸市场,是它到公路、铁路距离相等, 离公路与铁路交叉处500米。

《 角的平分线的性质(第二课时)》精品教案 2022年公开课一等奖

《 角的平分线的性质(第二课时)》精品教案 2022年公开课一等奖

教学过程设计角平分线的判定定理的应用:多媒体展示:〔1〕现有一条题目,两位同学分别用两种方法证明,问他们的做法正确?那一种方法好? :, CA ⊥OA 于A ,BC ⊥OB 于B ,AC=BC求证: OC 平分∠AOBB AO C证法1:∵CA ⊥OA ,BC ⊥OB ∴∠A=∠B 在△AOC 和△BOC 中⎩⎨⎧==BC AC OCOC ∴△AOC ≌△BOC 〔HL 〕∴∠AOC=∠BOC ∴OC 平分∠AOB 证法2:∵ CA ⊥OA 于A ,BC ⊥OB 于B , AC=BC ∴OC 平分∠AOB 〔角平分线判定定理〕〔2〕:如图,AD 、BE 是△ABC 的两个角平分线,AD 、BE 相交于O 点求证:O 在∠C 的平分线上三、课堂训练多媒体展示:、1.如图,DB ⊥AN 于B ,交AE 于点O ,OC ⊥AM 于点C ,且OB=OC ,假设∠OAB =25°,求∠ADB 的度数.想及证明,归纳角平分线的判定定理。

学生明确在一定条件下,证角平分线不再用证三角形全等后再证角相等得出,可直接运用角平分线判定定理。

教师引导学生分析,思考,写出证明过程。

教师标准书写格式。

学生应用角的平分线判定定理解题。

概括能力。

使学生明确角平分线判定定理的作用。

稳固角的平分线的性质与判定的应用,培养学生分析问题、解决问题的能力。

稳固本节所学。

BD MC N E A G板 书 设 计2.如图,AB =AC ,DE ⊥AB 于E , DF ⊥AC 于F ,且DE =DF . 求证:BD =DC 四、小结归纳1.角平分线判定定理及期作用;2.在一定条件下,证角平分线不再用三角形全等后角相等得出,可直接运用角平分线判定定理。

3.三角形三个内角平分线交于一点,到三角形三边距离相等的点是三条角平分线的交点。

五、作业设计1.教材习题11.3第3、4题;2.补充作业:如图,ABC ∆的外角∠CBD 、∠BCE 的平分线相交于点F 。

人教版数学八年级上册12.3 角的平分线的性质(2课时)教案与反思

人教版数学八年级上册12.3 角的平分线的性质(2课时)教案与反思

12.3 角的平分线的性质路漫漫其修远兮,吾将上下而求索。

屈原《离骚》江南学校李友峰第1课时角的平分线的性质一、基本目标【知识与技能】1.初步掌握角的平分线的性质定理.2.掌握用尺规作已知角的平分线的方法.3.能运用角的平分线性质定理解决简单的几何问题.【过程与方法】在利用尺规作图时,让学生在动手操作的过程中深刻理解角平分线的画法及发现角平分线的性质.【情感态度与价值观】在探索角的平分线的画法和性质中培养学生探究问题的兴趣,增强解决问题的信心.二、重难点目标【教学重点】1.利用尺规作已知角的平分线.2.角平分线的性质的证明及运用.【教学难点】角平分线性质的应用.环节1 自学提纲,生成问题【5 min阅读】阅读教材P48~P49的内容,完成下面练习.【3 min反馈】1.把一个角分成两个相等的角的射线叫做角的平分线.2.角的平分线的性质:角的平分线上的点到角的两边的距离相等.它的题设是角的平分线上的点,结论是此点到角的两边的距离相等.3.一般情况下,我们要证明一个几何命题时,可以按照类似的步骤进行,即(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用符号表示已知和求证;(3)经过分析,找出由已知推出要证的结论的途径,写出证明过程.4.已知:如图,∠AOB.求作:∠AOB的平分线OC.略环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB 、AC 于E 、F 两点,再分别以E 、F 为圆心,大于12EF 的长为半径画弧,两弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =120°,求∠MAB 的度数.【互动探索】(引发学生思考)明确尺规所作的射线AP 是∠CAB 的平分线.要求∠MAB ,只需先求得∠CAB .【解答】∵AB ∥CD ,∴∠ACD +∠CAB =180°.又∵∠ACD =120°,∴∠CAB =60°.由作法知AM 是∠CAB 的平分线,∴∠MAB =12∠CAB =30°. 【互动总结】(学生总结,老师点评)解决本题要掌握角平分线的作图步骤,根据作图明确AM 是∠BAC 的平分线是解题的关键.【例2】如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,F 在AC 上,BD =DF .求证:CF =EB .【互动探索】(引发学生思考)要求CF =EB ,需证Rt △DCF≌Rt △DEB ,而由角平分线的性质可得DE =DC ,从而决问题.【证明】∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC , ∴DE =DC .在Rt △DCF 和Rt △DEB 中,∵⎩⎪⎨⎪⎧ DF =BD ,DC =DE ,∴Rt △DCF ≌Rt △DEB (HL),∴CF =EB .【互动总结】(学生总结,老师点评)角平分线的性质是判定线段相等的一个重要依据,在运用时一定要注意是两条“垂线段”相等.动2 巩固练习(学生独学)1.如图所示,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,若BC =16,BD =9则点D 到AB 的距离是( C )A .9B .8C .7D .62.如图所示,D 是△ABC 外角∠ACG 的平分线上的一点,DE ⊥AC ,DF ⊥CG ,垂足分别为点E 、F .求证:CE =CF .证明:∵CD 是∠ACG 的平分线,DE ⊥AC ,DF ⊥CG ,∴DE =DF .在Rt △CDE 和Rt △CDF 中,∵⎩⎪⎨⎪⎧ CD =CD ,DE =DF ,∴Rt △CDE ≌Rt △CDF (HL),∴CE =CF .活动3 拓展延伸(学生对学)【例3】如图,四边形ABCD 中,∠B =90°,ABCD ,M 为BC 边上的一点,且AM 平分∠BAD ,DM 平分∠ADC .求证:(1)AM ⊥DM ;(2)M 为BC 的中点.【互动探索】(1)要证AM ⊥DM ,可转化为求∠AMD =90°.由平行线中,同旁内角的角平分线相交成的角等于90°可得结论;(2)要证M 为BC 的中点,即证BM =CM .由题意知,需作辅助线MN (如图),利用角平分线的性质得出结论.【证明】(1)∵AB ∥CD ,∴∠BAD +∠ADC =180°.∵AM 平分∠BAD ,DM 平分∠ADC ,∴2∠MAD +2∠ADM =180°,∴∠MAD +∠ADM =90°,∴∠AMD =90°,即AM ⊥DM .(2)过点M 作NM ⊥AD 交AD 于点N .∵∠B =90°,AB ∥CD ,∴BM⊥AB,CM⊥CD.∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【互动总结】(学生总结,老师点评)在已知角的平分线的前提下,作角两边的垂线段是常用辅助线之一.角平线的性质是证线段相等的另一途径.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!第2课时角的平分线的判定一、基本目标【知识与技能】理解角平分线的性质定理的逆定理(即判定定理),能利用角平分线的判定定理解决实际问题.【过程与方法】经历探究角平分线的性质定理的逆定理的过程,进一步体验证明几何命题的步骤,能够灵活运用性质定理解决实际问题.【情感态度与价值观】在探究角的平分线的判定定理的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.二、重难点目标【教学重点】角的平分线的判定定理的证明及应用.【教学难点】角的平分线的判定定理的应用.环节1 自学提纲,生成问题【5 min阅读】阅读教材P50的内容,完成下面练习.【3 min反馈】1.角的内部到角的两边的距离相等的点在角的平分线上.2.(1)三角形的三条角平分线相交于一点,它到三边的距离相等.(2)三角形内,到三边距离相等的点是三条角平分线的交点.3.如图,AD⊥DC,AB⊥BC,若AB=AD,∠DAB=120°,则∠ACB的度数为30°.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】已知:如图,△ABC.求作:点P,使得点P在△ABC内,且到三边AB、BC、CA的距离相等.作法:(提示)作三个内角平分线交于一点P,点P即为所求作的点.【例2】如图,在△ABC中,∠ABC和∠ACB的外角平分线交于点D,求证:AD是∠BAC的平分线.【互动探索】(引发学生思考)证明一条射线是角平分线常添加的辅助线是什么?【证明】过点D分别作DE、DF、DG垂直于AB、BC、AC,垂足分别为E、F、G.∵BD平分∠CBE,DE⊥BE,DF⊥BC,∴DE=DF.同理DG=DF,∴DE=DG,∴点D在∠EAG的平分线上,∴AD是∠BAC的平分线.【互动总结】(学生总结,老师点评)在遇到角平分线的问题时,往往过角平分线上的一点作角两边的垂线段,利用角平分线的判定或性质解决问题.活动2 巩固练习(学生独学)1.如图,AD⊥OB,BC⊥OA,垂足分别为点D、C,AD与BC 相交于点P,若PA=PB,则∠1与∠2的大小是( A )A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定2.如图,△ABC中,点O是△ABC内一点,且点O到△ABC 三边的距离相等,∠A=40°,则∠BOC=( A )A.110°B.120°C.130°D.140°3.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个锐角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的平分线.”你认为小明的想法正确吗?请说明理由.解:小明的想法正确.理由如下:作PC⊥OB于点C,设另一把直尺与OA交于点D.∵PC⊥OB,PD⊥OA,PD=PC,∴射线OP就是∠BOA的平分线.活动3 拓展延伸(学生对学)【例3】如图,直线a、b、c表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的站址有几处?如何选?请作简要说明并画出图形.【互动探索】△ABC的内角平分线的交点到三角形三边的距离相等,那么本题只有一处站址吗?【解答】∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点P1满足条件.如图,点P2是△ABC两条外角平分线的交点,过点P2作P2E⊥AB,P2D⊥BC,P2F⊥AC,∴P2E=P2F,P2F=P2D,∴P2E=P2F=P2D,∴点P2到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点P2到其三边的距离也相等,满足这条件的点有3个,如图P2、P3、P4.综上所述,到三条公路的距离相等的点有4个,故可供选择的地址有4处.【互动总结】(学生总结,老师点评)由三角形内角平分线的交点到三角形三边的距离相等,得三角形内角平分线的交点满足条件,然后利用角平分线的性质,证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,则可供选择的站址有4处.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。

角平分线性质2

角平分线性质2
求证:
求证:
证明:
完成知识技能2:
1、认真阅读21页例题的解题过程并能独立完成。
2、思考点P在∠A的平分线上吗?你会证明吗?
3、由此说明三角形的三条角平分线有什么关系?
二、记录预习中存在的问题:
三、课堂学习:
(一)完善并整理自学内容
(二)以小组为单位合作交流自学中存在的问题
(三)汇报展示自学效果
(四)质疑与教师精讲
八年级数学导学案课题:11.3角的平分线的性质(2)
主备人:备课时间:月日学科领导签字:上课时间:月日
1分工预设
人员
分配
任务
2学情预设
3知识点:
学习目标:
1、掌握角平分线上点的判定。
2、能初步应用判定解决实际问题。
3、提高综合运用三角形全等的有关知识解决问题的能力。
4、初步了解角的平分线的判定在生活、生产中的应用。
4关键点:
5易错点
6.拓展变式
7.注意问题
8.反思提高
重点:角平分线上点的判定的证明及运用
难点:角平分线上点的判定的探究
学习过程:
一自主学习完成知识技能1:
1、阅读教材第21页思考你想怎么做?
2、操作(保留作图痕迹):
3、从上述操作中你能发现什么结论?试加以证明:
4、结论(文字描述):
几何语言:
已知:
(五)课堂练习课堂练习(12分钟)
1、教材22页1题:2、22页练习:
(六)课堂小结:八)课堂检测(10分钟)
1.如图ll.3—9, 且DE=CE,下列结论错误的是( ).
, ,
2.如图11.3—10,已知0为 的平分线的交点,0E_kAC于E,若0E=2
求0到AB与0到CD的距离之和.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.3 角的平分线的性质(二)
教学目标
1、角的平分线的性质
2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
3.能应用这两个性质解决一些简单的实际问题.
教学重点角平分线的性质及其应用.
教学难点灵活应用两个性质解决问题.
教学过程
Ⅰ.创设情境,引入新课
拿出课前准备好的折纸与剪刀,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?
分析:第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.Ⅱ.导入新课
角平分线的性质即已知角的平分线,能推出什么样的结论.
折出如图所示的折痕PD、PE.
画一画:
按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?
投影出下面两个图形,让学生评一评,以达明确概念的目的.
结论:同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点作两边的垂线段,所以他的画法不符合要求.
问题1:如何用文字语言叙述所画图形的性质吗?
[生]角平分线上的点到角的两边的距离相等.
问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表:
已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.
由已知事项推出的事项:PD=PE.
于是我们得角的平分线的性质:
在角的平分线上的点到角的两边的距离相等.
[师]那么到角的两边距离相等的点是否在角的平分线上呢?(出示投影)
问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:
[生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE=∠POD.
由已知推出的事项:点P在∠AOB的平分线上.
由此我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.这两个性质有什么联系吗?
分析:这两个性质已知条件和所推出的结论可以互换.
思考:
如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?
2.比例尺为1:20000是什么意思?
结论:
1.应该是用第二个性质.•这个集贸市场应该建在公路与铁路形成的角的平分线上,
并且要求离角的顶点500米处.
2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,•这就涉及一个单位换算问题了.1m=100cm,所以比例尺为1:20000,其实就是图中1cm•表示实际距离200m的意思.作图如下:
第一步:尺规作图法作出∠AOB的平分线OP.
第二步:在射线OP上截取OC=2.5cm,确定C点,C点就是集贸市场所建地了.
总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,•使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,•我们可以直接利用性质解决问题.
III例题与练习
例如图,△ABC的角平分线BM、CN相交于点P.
求证:点P到三边AB、BC、CA的距离相等.
分析:点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,•也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.
证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.
因为BM是△ABC的角平分线,点P在BM上.
所以PD=PE.
同理PE=PF.
所以PD=PE=PF.
即点P到三边AB、BC、CA的距离相等.
练习:
1.课本练习.
2.课本习题
强调:条件充足的时候应该直接利用角平分线的性质,无须再证三角形全等.IV.课时小结
今天,我们学习了关于角平分线的两个性质:①角平分线上的点到角的两边的距离相等;②到角的两边距离相等的点在角的平分线上.它们具有互逆性,随着学习的深入,解决问题越来越简便了.像与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分线的性质,而不必再去证明三角形全等而得出线段相等.
Ⅴ.课后作业
1、课本习题
2、《新课堂》。

相关文档
最新文档