《概率论与数理统计》模拟题

合集下载

概率论与数理统计模拟试题&参考答案

概率论与数理统计模拟试题&参考答案

练习题一一、填空题。

1、已知P(A)=0.3,P(A+B)=0.6,则当A 、B 互不相容时,P(B)=___________,而当A 、B 相互独立时,P(B)=__________。

2、已知X ~),(p n B ,且8E X =, 4.8D X =, 则n =__________,X 的最可能值为__________。

3、若)(~λP X ,则=EX ,=DX 。

4、二维离散型随机变量),(ηξ的分布律为:则η的边缘分布_____________,ξ,η是否独立?_____________(填独立或不独立)。

5、设12(,,,)n X X X 是来自正态总体2(,)N μσ的一组简单随机样本,则样本均值11()n X X X n=++ 服从__________。

6、设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的次品率依次为0.1, 0.2, 0.3, 从这10箱中任取一箱,再从这箱中任取一件,则这件产品为次品的概率为 。

7、设连续型随机变量ξ的概率密度为1 -1 ()1 010 x xx x x ϕ+≤<⎧⎪=-≤≤⎨⎪⎩其它,则E ξ=__________。

二、判断题。

1、服从二元正态分布的随机变量),(ηξ,它们独立的充要条件是ξ与η的相关系数0ρ=。

( )2、设12(,,,)n X X X 是来自正态总体2(,)N μσ的样本,S 是样本方差,则222(1)~()n Sn χσ-。

( )3、随机变量Y X ,相互独立必推出Y X ,不相关。

( )4、已知θ 是θ的无偏估计,则2θ 一定是2θ的无偏估计。

( )5、在5把钥匙中,有2把能打开门,现逐把试开,则第3把能打开门的概率为0.4。

( )三、选择题。

1、某元件寿命ξ服从参数为λ(11000λ-=小时)的指数分布。

3个这样的元件使用1000小时后,都没有损坏的概率是 (A )1e -; (B )3e -(C )31e --(D )13e -2、设X 的分布函数为)(x F ,则13+=X Y 的分布函数()y G 为(A )()3131-y F (B )()13+y F (C )1)(3+y F (D )⎪⎭⎫⎝⎛-3131y F3、设随机变量(3,4)N ξ ,且()()P c P c ξξ≤=>,则c 的取值为() (A )0; (B )3; (C )-3; (D )24、设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是()。

概率论与数理统计模拟试题(七)

概率论与数理统计模拟试题(七)

概率论与数理统计模拟试题(七)一.是非题(7分,每题1分)1.设0)(=A P ,则随机事件A 与任何随机事件B 一定相互独立. () 2.连续随机变量X 的密度函数)(x f 与其分布函数)(x F 未必相互惟一确定. ( ) 3.若X 与Y 都是标准正态随机变量,则)2,0(~N Y X +. ( ) 4. 设有分布律:,2/1}/2)1({1nnn n XP =-=+),2,1( =n ,则X的期望存在. ( ) 5. 设随机变量序列 ,,,,21n X X X 相互独立,且均服从参数为λ的指数分布,则∑==ni iX nX11依概率收敛于λ. ( )6. 区间估计的置信度α-1的提高会降低区间估计的精确度. ( ) 7.在假设检验中,显著性水平α是指α-=1)(00为假拒绝H H P .( )二. 选择题(15分,每题3分)1. 设连续随机变量X 的密度函数满足)()(x f x f -=,)(x F 是X的分布函数,则=>)2004(X P.)(A )2004(2F -; )(B 1)2004(2-F ; )(C )2004(21F -; )(D )]2004(1[2F -.2. 设二维随机变量(,)X Y 服从G 上的均匀分布,G 的区域由曲线2xy =与x y =所围,则(,)X Y 的联合概率密度函数为 .)(A ⎩⎨⎧∈=他其,0),(,6),(G y x y x f ; )(B ⎩⎨⎧∈=他其,0),(,6/1),(G y x y x f ;)(C ⎩⎨⎧∈=他其,0),(,2),(G y x y x f ; )(D ⎩⎨⎧∈=他其,0),(,2/1),(G y x y x f .3. 设)0;5.0,0;5.0,0(~),(N Y X ,Y X Z -=,则方差=)(Z D .)(A 0; )(B 1; )(C π/21+; )(D π/21-.4. 设总体),1(~p B X ,12,,,nX X X 是来自总体的样本,X 为样本均值,则==)/(n k XP .)(A p ; )(B kn k p p --)1(;)(C kn kkn p p C --)1(; )(D kn kkn pp C --)1(.5. 设总体),(~2σμN X,μ为未知参数,样本12,,,n X X X 的方差为2S,对假设检验2:,2:10<≥σσH H ,水平为α的拒绝域是 .)(A )1(22/12-≤-n αχχ; )(B )1(212-≤-n αχχ;)(C )(22/12n αχχ-≤; )(D )(212n αχχ-≤.三. 填空题(15分,每题3分)1.已知7.0)(=A P ,4.0)(=B P ,8.0)(=AB P , 则=⋃)(B A A P.2.设随机变量X 与Y 相互独立,且都服从]1,0[上的均匀分布,则Y X Z -=的分布函数⎪⎩⎪⎨⎧=_________________________)(z F Z .3. 设6.0,4)(,1)(,2)(,1)(=====XY Y D X D Y E X E ρ,设2)12(+-=Y X Z ,则其数学期望=)(Z E . 4. 设随机变量),(~2σμN X,由切比雪夫不等式知,概率)2(σμ≥-X P 的取值区间为 与 之间.5. 设12,,,n X X X 是来自总体)(2n χ分布的样本,X 是样本均值,则=)(X E ,=)(X D .四. 计算题 (57分,前三题每题9分,后三题每题10分) 1.一盒乒乓球有6个新球,4个旧球。

概率论与数理统计模拟题训练

概率论与数理统计模拟题训练

X1, X 2 , , X n 为来自总体 X 的样本,求θ 的最大似然估计量。
四、应用题 1.一食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一只蛋糕的价格是一个随机变量,
它取 1 元,2 元,3 元,各个值的概率别为 0.3, 0.4, 0.3 ,某天售出 250 只蛋糕,试用中心极限定理求这天
(B) T = X − µ S2 / n
5.在假设检验问题中,检验水平α 的意义是(
(C) T = X − µ S3 / n

(D) T = X − µ S4 / n
(A) 原假设 H0 成立,经检验被拒绝的概率;
(B) 原假设 H0 成立,经检验不能被拒绝的概率;
(C) 原假设 H0 不成立,经检验被拒绝的概率; (D) 原假设 H0 不成立,经检验不能被拒绝的概率;
P{X

500}
=1−
P{X
<
500}
=1−
⎧ P⎨
X

500
<
500

500 ⎫ ⎬
⎩ 150
150 ⎭
=
1−
P
⎧ ⎨
X

500
<
⎫ 0⎬
=
1−
Φ(0)
=
0.5
⎩ 150 ⎭
2.
解: X
~
σ2 N (66.5, )
n
,设 H 0 : X = 70 , H1 : X ≠ 70 ,

T
=
X S

µ
~
t(n
10、10 个乒乓球中有 6 个新球,4 个旧球,从中任取两个,已知所取的两个球中有一个是旧球,则另一个

概率论与数理统计模拟试题集(6套,含详细答案)

概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。

三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。

概率论与数理统计模拟考试题目及答案

概率论与数理统计模拟考试题目及答案

概率论与数理统计复习题(一)一.填空1.3.0)(,4.0)(==B P A P 。

若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。

8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。

9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。

但当增大置信水平时,则相应的置信区间长度总是 。

二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。

设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率; (2)当乙河流泛滥时,甲河流泛滥的概率。

三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

概率论与数理统计

概率论与数理统计

概率论与数理统计模拟题一、填空题1、已知,7.0)B (P 4.0)A (P ==,B (A P )=0.2,则B)P(A += 0.5 。

2、已知,7.0)(,3.0)(=⋃=B A p B p 则B A P ()= 0.4 。

3、已知随机事件A 的概率0.5P(A)=,随机事件B 的概率P(B)=0.6,及条件概率 P(A|B)=0.8,则事件A B 的概率P(A B)= 0.7 。

4、已知事件A ,B ,C 相互独立,且P(A)=0.5,P(B)=0.9,P(C)=0.4。

则{}B C A )(P += 0.9 。

5、某射手每射击一枪击中目标的概率为0.8,今他对靶独立重复射击10枪,则至少有一枪击中目标的概率是__________________。

6、一口袋中装有4只白球,3只黑球,从中陆续不放回地取出三只球,则取出的三只球恰好有二只黑球的概率是 12/35 。

7、袋中有4个白球,10个红球。

甲先从袋中任取一个球,取后不放回,再放入一个与所取的颜色相反的球,然后乙再从袋中任取一球。

则甲取出的是白球,乙取出的是红球的概率是__________________。

8、某居民小区有45%住户订甲种报纸,有30%住户订乙种报纸,有60%住户至少订甲、乙两种报中的一种,则同时订甲、乙两种报的住户的百分比(概率)是 15% 。

9、某居民小区有45%住户订甲种报纸,有30%住户订乙种报纸,有2%住户同时订两种报纸。

则住户至少订甲、乙两种报纸中的一种报纸的百分比(概率)是____________。

10、若某居民小区有60%住户订甲报,有30%住户订乙报,有25%住户同时订甲、乙两种报纸。

则订甲报而不订乙报的住户的百分比(概率)是________。

11、已知事件A 与B 相互独立,又知A 发生且B 不发生的概率与B 发生且A不发生的概率相等即P(A B )=B)A P(。

又已知95)B A P(=。

则)(A P =__________。

概率论与数理统计-模拟题

概率论与数理统计-模拟题

《概率论与数理统计》模拟题一.单选题1.对于事件A,B,下列命题正确的是().A.若A,B 互不相容,则A 与B̅也互不相容. B.若A,B 相容,那么A 与B̅也相容. C.若A,B 互不相容,且概率都大于零,则A,B 也相互独立.D.若A,B 相互独立,那么A 与B̅也相互独立. [答案]:D2.在一次假设检验中,下列说法正确的是(). A.既可能犯第一类错误也可能犯第二类错误B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都不变D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:A3.对总体X~N(μ,σ²)的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间().A.平均含总体95%的值B.平均含样本95%的值C.有95%的机会含样本的值D.有95%的机会的机会含μ的值 [答案]:D4.在假设检验问题中,犯第一类错误的概率α的意义是(). A.在H 0不成立的条件下,经检验H 0被拒绝的概率 B.在H 0不成立的条件下,经检验H 0被接受的概率 C.在H 0成立的条件下,经检验H 0被拒绝的概率 D.在H 0成立的条件下,经检验H 0被接受的概率 [答案]:C5.在一次假设检验中,下列说法正确的是(). A.第一类错误和第二类错误同时都要犯B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都要变小D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:C6.设θ 是未知参数θ的一个估计量,若θθ≠ E 则θ是θ的(). A.极大似然估计 B.矩法估计 C.相合估计D.有偏估计[答案]:B7.在对单个正态总体均值的假设检验中,当总体方差已知时,选用().A.t检验法B.u检验法C.F检验法D.σ2检验法[答案]:B8.在一个确定的假设检验中,与判断结果相关的因素有().A.样本值与样本容量B.显著性水平C.检验统计量D.A,B,C同时成立[答案]:D9.对正态总体的数学期望进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是().A.必须接受H0B.可能接受,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0[答案]:A10.设A和B为两个任意事件,且A⊂B,P(B)>0,则必有().A.P(A)<P(A|B)B.P(A)≤P(A|B)C.P(A)>(A|B)D.P(A)≥P(A|B)[答案]:B11.已知P(A)=0.4,P(B)=0.6,P(B|A)=0.5,则P(A|B)=().A.1/2B.1/3C.10/3D.1/5[答案]:B12.甲.乙两人独立的对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是乙命中的概率是().A.3/5B.5/11C.5/8B.6/11 [答案]:C13.设A 和B 为两个任意事件,则下列关系成立的是(). A.(A ∪B )−B =A B.(A ∪B )−B ⊃A C.(A ∪B )−B ⊂A D.(A −B )∪B =A [答案]:C14.设A 和B 为两个任意事件,且A ⊂B ,则必有(). A.P (A )<P(AB) B.P (A )≤P(AB) C.P (A )>P(AB) D.P (A )≥P(AB) [答案]:D15.设每次实验成功的概率为p(0<p<1)则在三次独立重复试验中至少一次成功的概率为(). A.p 3 B.1-p 3 C.(1-p)3 D.1-(1-p)3 [答案]:B16.某人射击时,中靶的概率为2/3,如果射击直到中靶子为止,则射击次数为3的概率(). A. 2/27 B.2/9 C.8/27 D.1/27 [答案]:A17.设随机事件A 和B 满足P (B |A )=1,则(). A.为必然事件 B.P (B |A )=0 C.B ⊂A D.B ⊃A [答案]:C18.设一随机变量X 的密度函数φ(−x )=φ(x ),F(x)是X的分布函数,则对任意实数a 有(). A.F (−a )=1−∫φ(x )a0dx B.F (−a )=12−∫φ(x )a 0dx C.F (−a )=1−F(a)D.F (−a )=2F (a )−1 [答案]:B19.变量X 的密度函数为f (x )={Cx 30<x <10其它,则常数C=().A.3B.4C.1/4D.1/3 [答案]:B20.设X 和Y 相互独立,且分别服从N(0,1)和N(1,1)则(). A.P {X +Y ≤0}=12 B.P {X +Y ≤1}=12C.P {X −Y ≤0}=12D.P {X −Y ≤1}=12[答案]:B21.设X和Y独立同分布,且P {X =1}=P {Y =1}=12,P {X =−1}=P {Y =−1}=12,则下列各式成立的是(). A.P {X =Y }=12 B.P {X =Y }=1 C.P {X +Y =0}=14D.P {XY =1}=14 [答案]:A22.总体方差D 等于(). A.1n ∑(X i −X ̅)2n i=1B.1n−1∑(X i −X ̅)2n i=1 C.1n ∑X i 2−(EX)2n i=1 D.1n−1∑(X i −EX)2n i=1 [答案]:C23.设随机变量X~N(μ,σ²),则随着σ的增大,概率P{|X−μ|<σ}为().A.单调增加B.单调减少C.保持不变D.增减不定[答案]:C24.设随机变量X和Y均服从正态分布X~N(μ,4²),Y~N(μ,5²),记p1=P{X<μ−4},p2= P{Y≥μ+5},则().A.对任何实数μ都有p1=p2B.对任何实数μ都有p1<p2C.仅对个别值有p1=p2D.对任何实数μ都有p1>p2[答案]:A25.设X1,X2,…,X n为来自总体的一个样本,X̅为样本均值,EX未知,则总体方差DX的无偏估计量为().A.1n ∑(X i−X̅)2 ni=1B.1n−1∑(X i−X̅)2 ni=1C.1n ∑(X i−EX)2 ni=1D.1n−1∑(X i−EX)2 ni=1[答案]:B26.设总体X~f(x,θ),θ为未知参数,X1,X2,…,X n为X的一个样本,θ1(X1,X2,…,X n).θ2(X1,X2,…,X n)为两个通缉量(θ1,θ2)为θ的置信度为1-α的置信区间,则应有().A.P{θ1<θ<θ2}=αB.P{θ<θ2}=1-αC.P{θ1<θ<θ2}=1-αD.P{θ<θ1}=α[答案]:C27.在假设建设检验中,记H0为检验假设,则所谓犯第一类错误的是().A.H0为真时,接受H0B.H0不真时,接受H0C.H0不真时,拒绝H0D.H0为真时,拒绝H0[答案]:D28.袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球.则第二人取到黄球的概率是().A.1/5B.2/5C.3/5D.4/5[答案]:B29.事件”甲种产品畅销,乙种产品滞销”,则其对立事件A为().A.”甲种产品滞销,乙种产品畅销”B.”甲.乙两种产品均畅销”C.”甲种产品滞销”D.”甲种产品滞销或乙种产品畅销”[答案]:D30.设A,B,C表示三个随机事件,则A⋃B⋃C表示A.A,B,C中至少有一个发生;B.A,B,C都同时发生;C.A,B,C中至少有两个发生;D.A,B,C都不发生.[答案]:A31.已知事件A,B相互独立,且P(A)=0.5,P(B)=0.8,则P(A⋃B)=()A.0.65;B.1.3;C.0.9;D.0.3.[答案]:C32.设X~B(n,p),则有()A.E(2X-1)=2np;B.E(2X+1)=4np+1;C.D(2X+1)=4np(1-p)+1A.;D.D(2X-1)=4np(1-p).[答案]:D33.X则a=()A.1/3;B.0;C.5/12;D.1/4.[答案]:A34.常见随机变量的分布中,数学期望和方差一定相等的分布是() A.二项分布; B.标准正态分布; C.指数分布; D.泊松分布. [答案]:D35.在n 次独立重复的贝努利试验中,设P (A )=p,那么A 事件恰好发生k 次的概率为(). A.p k ;B.(nk )p k (1-p)n-k ;C.p n-k (1-p)k ;D.p k (1-p)n-k . [答案]:B36.设X则它的数学期望E(X)和方差D(X )分别是 A.1/4,1/16; B.1/2,3/4; C.1/4,11/16; D.1/2,11/16. [答案]:C37.设随机变量X 的密度函数f (x )={2x x ∈[0,A]0 其他,则常数A=().A.1;B.1/2;C.1/2;D.2.[答案]:A38.若T ~t(n),下列等式中错误的是(). A.P{T>0}=P{T ≤0}; B.P{T ≥1}=P{T>1}; C.P{T=0}=0.5;D.P{T>t α}=P{T<-t α}. [答案]:C39.设X ~N(μ1,σ12),它有容量为n 1的样本X i ,i =1,2,…n 1;Y ~N(μ2,σ22),它有容量为n 2的样本Y j ,j=1,2,…n 2.它们均相互独立,X 和Y 分别是它们样本平均值,s 12和s 22分别是它们样本方差,σ12,σ22未知但是相等.则统计量212121221121)2()()(n n n n n n s n s n Y X +-++---μμ应该服从的分布是().A.t(n 1+n 2);B.t(n 1+n 2-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:C40.设X ~N(μ1,σ2),它有容量为n 1的样本X i i=1,2,…n 1;Y ~N(μ2,σ2),它有容量为n 2的样本Y j j=1,2,…n 2.均相互独立,s 12和s 22分别是它们样本方差.则统计量1122221211--n s n n s n 应该服从的分布是().A.χ2(n 1+n 2-2);B.F(n 2-1,n 1-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:D41.若μˆ1和μˆ2同是总体平均数μ的无偏估计,则下面叙述中,不正确的是(). A.2μˆ1-μˆ2仍是总体平均数μ的无偏估计; B.21μˆ1-21μˆ2仍是总体平均数μ的无偏估计; C.21μˆ1+21μˆ2仍是总体平均数μ的无偏估计 D.32μˆ1+31μˆ2仍是总体平均数μ的无偏估计. [答案]:B42.假设检验时,当样本容量n 固定时,缩小犯第Ⅰ类错误的概率α,则犯第Ⅱ类错误的概率β().A.一般要变小;B.一般要变大;C.可能变大也可能变小;D.肯定不变. [答案]:B43.设X ~N(μ,σ2),μ和σ2均未知,X 是样本平均值,s 2是样本方差,则(X -t 0.051-n s ,X +t 0.051-n s )作为的置信区间时,其置信水平为().A.0.1;B.0.2;C.0.9;D.0.8. [答案]:C44.已知一元线性回归直线方程为yˆ=a +4x,且x =3,y =6.则a=(). A.0;B.6;C.2;D.-6. [答案]:D45.设(x 1,y 1),(x 2,y 2),...(x n ,y n )是对总体(X,Y)的n 次观测值,l YY =∑=-ni iy y12)(,l XX =∑=-ni ix x12)(分别是关于Y,关于X 的校正平方和及l XY =∑=--ni i i y y x x 1))((是关于X 和Y的校正交叉乘积和,则它们的一元回归直线的回归系数b=().A.XX XYl l ; B.XXXYl l ; C.YYXX XY l l l 2; D.YYXX XY l l l .[答案]:A46.设A,B为两个事件,则AB=().A.A B;B.A B;C.A B;D.A⋃B.[答案]:D47.若X~N(0,1),ϕ(x)是它的密度函数,Φ(x)是它的分布函数,则下面叙述中不正确的是().A.Φ(-x)=-Φ(x);B.ϕ(x)关于纵轴对称;C.Φ(0)=0.5;D.Φ(-x)=1-Φ(x).[答案]:A48.对单个总体X~N(μ,σ2)假设检验,σ2未知,H0:μ≥μ0.在显著水平α下,应该选().A.t检验;B.F检验;C.χ2检验;D.u检验.[答案]:A49.甲乙两人各自同时向敌机射击,已知甲击中敌机的概率为0.8,乙击中敌机的概率为0.5,则恰有一人击中敌机的概率().A.0.8B.0.5C.0.4D.0.6[答案]:B=,则未知参数μ的置信度为0.95的置信区间是.(查表50.设X~N(μ,0.3²),容量n=9,均值X5Z0.025=1.96)A.(4.808,6.96)B.(3.04,5.19)C.(4.808,5.19)D.(3.04,6.96)[答案]:C二.填空题1.设X 1,X 2,…,X 16是来自总体X~(4,σ2)的简单随机样本,2σ已知,令1611X 16i i X==∑则统计量4X-16σ服从分布###(必须写出分布的参数). [答案]:N(0,1)2.设2X~μσ(,),而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为###. [答案]:71.111=∑=ni i X n3.设X~U[a,1],X 1,…,X n 是从总体X 中抽取的样本,求a 的矩估计为###.[答案]:121-∑=ni i X n4.已知F 0.1(8,20)=2,则F 0.9(20,8)=###.[答案]:0.55.设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为###.[答案]:0.156.设样本的频数分布为X0 1 2 3 4 频数 1 3 2 1 2则样本方差s 2=###.[答案]:27.设X1,X2,,Xn 为来自正态总体N(μ,σ²)的一个简单随机样本,其中参数μ和σ²均未知,记,221Q )n i i X X ==-∑(,则假设H 0:μ=0的t 检验使用的统计量是###.(用X 和Q 表示)[答案]:Xt (1)n n Q =-8.设总体X~N(μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,则样本均值X =###.[答案]:n 2σ9.设总体X ~b,(np),0<p<1,X 1,X 2,…,X n 为其样本,则n 的矩估计是###.[答案]:X n p =10.设总体X ~[U,θ],(X 1,X 2,…,X n )是来自X 的样本,则θ的最大似然估计量是###.[答案]:{}12max X X X n θ=,,11.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下:+2,+1,-2,+3,+2,+4,-2,+5,+3,+4.则零件尺寸偏差的数学期望的无偏估计量###.[答案]:212.设X 1,X 2,X 3,X 4是来自正态总体N(0,2)2的样本,令Y=(X 1+X 2)2+(X 3-X 4)2,则当C=###时CY ~x 2(2).[答案]:1/813.设容量n=10的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值样本方差###.[答案]:s 2=214.设A.B 为随机事件,P(A)=0.5,P(B)=0.6,P(B|A)=0.8则P(B|A)=###.[答案]:0.715.若事件A 和事件B 相互独立,P(A)=α,P(B)=0.3,P (A⋃B )=0.7,则α=###.[答案]:3/716.设X ~N(2,σ²),且P{2<x<4}=0.3,则P{x<0}=###.[答案]:217.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为###.[答案]:2/318.三个人独立地解答一道难题,他们能单独正确解答的概率分别为1/5.1/3.1/4,则此难题被正确解答的概率为###.[答案]:3/519.设有一箱产品由三家工厂生产的其中1/2是第一加工厂生产的,其余两家工厂各生产1/4,又知第一.第二工厂生产的产品有2%的次品,第三工厂生产的产品有4%的次品,现从箱中任取一只,则取到的次品的概率为###.[答案]:2.5%20.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(有放回)则:第二次取到黑球的概率为###.[答案]:0.221.由长期统计资料得知,某一地区在4月下雨(记事件A)的概率为4/15,刮风(记作事件B)概率为7/15,刮风又下雨(记作事件C)概率为1/10则:p(B|A)=###.[答案]:3/822.一盒子中黑球.红球.白球各占50%,30%,20%,从中任取一球,结果不是红球,则取到的是白球的概率为###.[答案]:2/723.某公共汽车站甲.乙丙动人分别独立地等1.2.3路汽车,设每个人等车时间(单位分钟)均服从[0,5]上的均匀分布,则三人中至少有两个人等车时间不超过2分钟的概率为###.[答案]:0.35224.若随机变量X ~(2,σ²)且p{2<X<4}=0.3,则p{X<2}=###.[答案]:0.525.若随机变量X ~N(-1,1),Y ~N(3,1)且X 和Y 相互独立,设随机变量Z=X-2Y+7,则Z ~###.[答案]:N(0,5)26.设随机变量X ~N(1,22),则EX 2=###.[答案]:5三.计算题1.已知100个产品中有5个次品,现从中有放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.007125.0)95.0()05.0(}2{223===C X P2.某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率.[答案]:).02.0,400(~b XX 的分布律为,)98.0()02.0(400}{400k k k k X P -⎪⎪⎭⎫ ⎝⎛==0,1,,400.k = 于是所求概率为}1{}0{1}2{=-=-=≥X P X P X P 399400)98.0)(02.0(400)98.0(1--=.9972.0=3.已知100个产品中有5个次品,现从中无放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.00618.0}2{310025195≈==C C C X P4.某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布,求该城市一天内发生3次或3次以上火灾的概率.[答案]:由概率的性质,得}3{1}3{<-=≥X P X P }2{}1{}0{1=-=-=-=X P X P X P⎪⎪⎭⎫ ⎝⎛++-=-!28.0!18.0!08.012108.0e .0474.0≈5.某公共汽车站从上午7时起,每15分钟来一班车,即7:00,7:15,7:30,7:45等时刻有汽车到达此站,如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率.[答案]:以7:00为起点0,以分为单位,依题意~X ),30,0(U ⎪⎩⎪⎨⎧<<=其它,0300,301)(x x f 为使候车时间X 少于5分钟,乘客必须在7:10到7:15之间,或在7:25到7:30之间到达车站,故所求概率为}3025{}1510{<<+<<X P X P 3130130130251510=+=⎰⎰dx dx6.某元件的寿命X 服从指数分布,已知其平均寿命为1000小时,求3个这样的元件使用1000小时,至少已有一个损坏的概率.[答案]:由题设知,X 的分布函数为.0,00,1)(1000⎪⎩⎪⎨⎧<≥-=-x x ex F x 由此得到}1000{1}1000{≤-=>X P X P .)1000(11-=-=e F各元件的寿命是否超过1000小时是独立的,用Y 表示三个元件中使用1000小时损坏的元件数,则).1,3(~1--e b Y所求概率为}0{1}1{=-=≥Y P Y P .1)()1(13310103----=--=e e e C7.设某项竞赛成绩N X ~(65,100),若按参赛人数的10%发奖,问获奖分数线应定为多少?[答案]:设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x)(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=⎪⎭⎫ ⎝⎛-Φ-=x 即,9.010650=⎪⎭⎫ ⎝⎛-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78.8.设随机变量X 具有以下的分布律,试求2)1(-=X Y 的分布律. 4.01.03.02.02101i p X-[答案]:Y 所有可能的取值0,1,4,由,2.0}1{}4{,7.0}2{}0{}1{,1.0}1{}0)1{(}0{2=-=====+=======-==X P Y P X P X P Y P X P X P Y P即得Y 的分布律为9.已知随机变量X 的分布函数⎪⎩⎪⎨⎧>≤<≤=4,140,4/0,0)(x x x x x F ,求).(X E[答案]:随机变量X 的分布密度为,,040,4/1)()(⎩⎨⎧≤<='=其它x x F x f故.2841)()(40240==⋅==⎰⎰∞+∞-x dx x dx x xf X E 10.设05.0=α,求标准正态分布的水平0.05的上侧分位数和双侧分位数.[答案]:由于,95.005.01)(05.0=-=Φu 查标准正态分布函数值表可得,645.105.0=u 而水平0.05的双侧分位数为,025.0u 它满足:,975.0025.01)(025.0=-=Φu 查标准正态分布函数值表可得.96.1025.0=u 2χ分布.11.设),2,21(~2N X 2521,,,X X X 为X 的一个样本,求:(1)样本均值X 的数学期望与方差;(2)}.24.0|21{|≤-X P[答案]:)1(由于),2,21(~2N X 样本容量,25=n 所以,252,21~2⎪⎪⎭⎫⎝⎛N X 于是,21)(=X E .4.0252)(22==X D)2(由),4.0,21(~2N X 得),1,0(~4.021N X - 故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-6.04.021}24.0|21{|X P X P .4514.01)6.0(2=-Φ=12.⎪⎩⎪⎨⎧≤<≤≤--+=其它100101)(x x x A x x f ,则求常数A.期望EX 及方差DX. [答案]:011(1)x dx -=++⎰10()A x dx -⎰,得A=1()EX xf x dx +∞-∞==⎰01(1)x x dx -++⎰10(1)0x x dx -=⎰ 22()EX x f x dx +∞-∞==⎰021(1)x x dx -++⎰120(1)1/6x x dx -=⎰ 61)D(x)22=-=EX EX (。

概率论与数理统计模拟试题集(6套,含详细答案)

概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。

三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》模拟题一.单选题1.对于事件A,B,下列命题正确的是().A.若A,B 互不相容,则A 与B̅也互不相容. B.若A,B 相容,那么A 与B̅也相容. C.若A,B 互不相容,且概率都大于零,则A,B 也相互独立.D.若A,B 相互独立,那么A 与B̅也相互独立. [答案]:D2.在一次假设检验中,下列说法正确的是(). A.既可能犯第一类错误也可能犯第二类错误B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都不变D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:A3.对总体X~N(μ,σ²)的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间().A.平均含总体95%的值B.平均含样本95%的值C.有95%的机会含样本的值D.有95%的机会的机会含μ的值 [答案]:D4.在假设检验问题中,犯第一类错误的概率α的意义是(). A.在H 0不成立的条件下,经检验H 0被拒绝的概率 B.在H 0不成立的条件下,经检验H 0被接受的概率 C.在H 0成立的条件下,经检验H 0被拒绝的概率 D.在H 0成立的条件下,经检验H 0被接受的概率 [答案]:C5.在一次假设检验中,下列说法正确的是(). A.第一类错误和第二类错误同时都要犯B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都要变小D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:C6.设θ 是未知参数θ的一个估计量,若θθ≠ E 则θ是θ的(). A.极大似然估计 B.矩法估计 C.相合估计D.有偏估计[答案]:B7.在对单个正态总体均值的假设检验中,当总体方差已知时,选用().A.t检验法B.u检验法C.F检验法D.σ2检验法[答案]:B8.在一个确定的假设检验中,与判断结果相关的因素有().A.样本值与样本容量B.显著性水平C.检验统计量D.A,B,C同时成立[答案]:D9.对正态总体的数学期望进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是().A.必须接受H0B.可能接受,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0[答案]:A10.设A和B为两个任意事件,且A⊂B,P(B)>0,则必有().A.P(A)<P(A|B)B.P(A)≤P(A|B)C.P(A)>(A|B)D.P(A)≥P(A|B)[答案]:B11.已知P(A)=0.4,P(B)=0.6,P(B|A)=0.5,则P(A|B)=().A.1/2B.1/3C.10/3D.1/5[答案]:B12.甲.乙两人独立的对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是乙命中的概率是().A.3/5B.5/11C.5/8B.6/11 [答案]:C13.设A 和B 为两个任意事件,则下列关系成立的是(). A.(A ∪B )−B =A B.(A ∪B )−B ⊃A C.(A ∪B )−B ⊂A D.(A −B )∪B =A [答案]:C14.设A 和B 为两个任意事件,且A ⊂B ,则必有(). A.P (A )<P(AB) B.P (A )≤P(AB) C.P (A )>P(AB) D.P (A )≥P(AB) [答案]:D15.设每次实验成功的概率为p(0<p<1)则在三次独立重复试验中至少一次成功的概率为(). A.p 3 B.1-p 3 C.(1-p)3 D.1-(1-p)3 [答案]:B16.某人射击时,中靶的概率为2/3,如果射击直到中靶子为止,则射击次数为3的概率(). A. 2/27 B.2/9 C.8/27 D.1/27 [答案]:A17.设随机事件A 和B 满足P (B |A )=1,则(). A.为必然事件 B.P (B |A )=0 C.B ⊂A D.B ⊃A [答案]:C18.设一随机变量X 的密度函数φ(−x )=φ(x ),F(x)是X的分布函数,则对任意实数a 有(). A.F (−a )=1−∫φ(x )a0dx B.F (−a )=12−∫φ(x )a 0dx C.F (−a )=1−F(a)D.F (−a )=2F (a )−1 [答案]:B19.变量X 的密度函数为f (x )={Cx 30<x <10其它,则常数C=().A.3B.4C.1/4D.1/3 [答案]:B20.设X 和Y 相互独立,且分别服从N(0,1)和N(1,1)则(). A.P {X +Y ≤0}=12 B.P {X +Y ≤1}=12C.P {X −Y ≤0}=12D.P {X −Y ≤1}=12[答案]:B21.设X和Y独立同分布,且P {X =1}=P {Y =1}=12,P {X =−1}=P {Y =−1}=12,则下列各式成立的是(). A.P {X =Y }=12 B.P {X =Y }=1 C.P {X +Y =0}=14D.P {XY =1}=14 [答案]:A22.总体方差D 等于(). A.1n ∑(X i −X ̅)2n i=1B.1n−1∑(X i −X ̅)2n i=1 C.1n ∑X i 2−(EX)2n i=1 D.1n−1∑(X i −EX)2n i=1 [答案]:C23.设随机变量X~N(μ,σ²),则随着σ的增大,概率P{|X−μ|<σ}为().A.单调增加B.单调减少C.保持不变D.增减不定[答案]:C24.设随机变量X和Y均服从正态分布X~N(μ,4²),Y~N(μ,5²),记p1=P{X<μ−4},p2= P{Y≥μ+5},则().A.对任何实数μ都有p1=p2B.对任何实数μ都有p1<p2C.仅对个别值有p1=p2D.对任何实数μ都有p1>p2[答案]:A25.设X1,X2,…,X n为来自总体的一个样本,X̅为样本均值,EX未知,则总体方差DX的无偏估计量为().A.1n ∑(X i−X̅)2 ni=1B.1n−1∑(X i−X̅)2 ni=1C.1n ∑(X i−EX)2 ni=1D.1n−1∑(X i−EX)2 ni=1[答案]:B26.设总体X~f(x,θ),θ为未知参数,X1,X2,…,X n为X的一个样本,θ1(X1,X2,…,X n).θ2(X1,X2,…,X n)为两个通缉量(θ1,θ2)为θ的置信度为1-α的置信区间,则应有().A.P{θ1<θ<θ2}=αB.P{θ<θ2}=1-αC.P{θ1<θ<θ2}=1-αD.P{θ<θ1}=α[答案]:C27.在假设建设检验中,记H0为检验假设,则所谓犯第一类错误的是().A.H0为真时,接受H0B.H0不真时,接受H0C.H0不真时,拒绝H0D.H0为真时,拒绝H0[答案]:D28.袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球.则第二人取到黄球的概率是().A.1/5B.2/5C.3/5D.4/5[答案]:B29.事件”甲种产品畅销,乙种产品滞销”,则其对立事件A为().A.”甲种产品滞销,乙种产品畅销”B.”甲.乙两种产品均畅销”C.”甲种产品滞销”D.”甲种产品滞销或乙种产品畅销”[答案]:D30.设A,B,C表示三个随机事件,则A⋃B⋃C表示A.A,B,C中至少有一个发生;B.A,B,C都同时发生;C.A,B,C中至少有两个发生;D.A,B,C都不发生.[答案]:A31.已知事件A,B相互独立,且P(A)=0.5,P(B)=0.8,则P(A⋃B)=()A.0.65;B.1.3;C.0.9;D.0.3.[答案]:C32.设X~B(n,p),则有()A.E(2X-1)=2np;B.E(2X+1)=4np+1;C.D(2X+1)=4np(1-p)+1A.;D.D(2X-1)=4np(1-p).[答案]:D33.X则a=()A.1/3;B.0;C.5/12;D.1/4.[答案]:A34.常见随机变量的分布中,数学期望和方差一定相等的分布是() A.二项分布; B.标准正态分布; C.指数分布; D.泊松分布. [答案]:D35.在n 次独立重复的贝努利试验中,设P (A )=p,那么A 事件恰好发生k 次的概率为(). A.p k ;B.(nk )p k (1-p)n-k ;C.p n-k (1-p)k ;D.p k (1-p)n-k . [答案]:B36.设X则它的数学期望E(X)和方差D(X )分别是 A.1/4,1/16; B.1/2,3/4; C.1/4,11/16; D.1/2,11/16. [答案]:C37.设随机变量X 的密度函数f (x )={2x x ∈[0,A]0 其他,则常数A=().A.1;B.1/2;C.1/2;D.2.[答案]:A38.若T ~t(n),下列等式中错误的是(). A.P{T>0}=P{T ≤0}; B.P{T ≥1}=P{T>1}; C.P{T=0}=0.5;D.P{T>t α}=P{T<-t α}. [答案]:C39.设X ~N(μ1,σ12),它有容量为n 1的样本X i ,i=1,2,…n 1;Y ~N(μ2,σ22),它有容量为n 2的样本Y j ,j=1,2,…n 2.它们均相互独立,X 和Y 分别是它们样本平均值,s 12和s 22分别是它们样本方差,σ12,σ22未知但是相等.则统计量212121221121)2()()(n n n n n n s n s n Y X +-++---μμ应该服从的分布是().A.t(n 1+n 2);B.t(n 1+n 2-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:C40.设X ~N(μ1,σ2),它有容量为n 1的样本X i i=1,2,…n 1;Y ~N(μ2,σ2),它有容量为n 2的样本Y j j=1,2,…n 2.均相互独立,s 12和s 22分别是它们样本方差.则统计量1122221211--n s n n s n 应该服从的分布是().A.χ2(n 1+n 2-2);B.F(n 2-1,n 1-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:D41.若μˆ1和μˆ2同是总体平均数μ的无偏估计,则下面叙述中,不正确的是(). A.2μˆ1-μˆ2仍是总体平均数μ的无偏估计; B.21μˆ1-21μˆ2仍是总体平均数μ的无偏估计; C.21μˆ1+21μˆ2仍是总体平均数μ的无偏估计 D.32μˆ1+31μˆ2仍是总体平均数μ的无偏估计. [答案]:B42.假设检验时,当样本容量n 固定时,缩小犯第Ⅰ类错误的概率α,则犯第Ⅱ类错误的概率β().A.一般要变小;B.一般要变大;C.可能变大也可能变小;D.肯定不变. [答案]:B43.设X ~N(μ,σ2),μ和σ2均未知,X 是样本平均值,s 2是样本方差,则(X -t 0.051-n s ,X +t 0.051-n s )作为的置信区间时,其置信水平为().A.0.1;B.0.2;C.0.9;D.0.8. [答案]:C44.已知一元线性回归直线方程为yˆ=a +4x,且x =3,y =6.则a=(). A.0;B.6;C.2;D.-6. [答案]:D45.设(x 1,y 1),(x 2,y 2),...(x n ,y n )是对总体(X,Y)的n 次观测值,l YY =∑=-ni iy y12)(,l XX =∑=-ni ix x12)(分别是关于Y,关于X 的校正平方和及l XY =∑=--ni i i y y x x 1))((是关于X 和Y的校正交叉乘积和,则它们的一元回归直线的回归系数b=().A.XX XYl l ; B.XXXYl l ; C.YYXX XY l l l 2; D.YYXX XY l l l .[答案]:A46.设A,B为两个事件,则AB=().A.A B;B.A B;C.A B;D.A⋃B.[答案]:D47.若X~N(0,1),ϕ(x)是它的密度函数,Φ(x)是它的分布函数,则下面叙述中不正确的是().A.Φ(-x)=-Φ(x);B.ϕ(x)关于纵轴对称;C.Φ(0)=0.5;D.Φ(-x)=1-Φ(x).[答案]:A48.对单个总体X~N(μ,σ2)假设检验,σ2未知,H0:μ≥μ0.在显著水平α下,应该选().A.t检验;B.F检验;C.χ2检验;D.u检验.[答案]:A49.甲乙两人各自同时向敌机射击,已知甲击中敌机的概率为0.8,乙击中敌机的概率为0.5,则恰有一人击中敌机的概率().A.0.8B.0.5C.0.4D.0.6[答案]:B=,则未知参数μ的置信度为0.95的置信区间是.(查表50.设X~N(μ,0.3²),容量n=9,均值X5Z0.025=1.96)A.(4.808,6.96)B.(3.04,5.19)C.(4.808,5.19)D.(3.04,6.96)[答案]:C二.填空题 1.设X 1,X 2,…,X 16是来自总体X~(4,σ2)的简单随机样本,2σ已知,令1611X 16i i X==∑则统计量4X-16σ服从分布###(必须写出分布的参数). [答案]:N(0,1)2.设2X~μσ(,),而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为###. [答案]:71.111=∑=ni i X n3.设X~U[a,1],X 1,…,X n 是从总体X 中抽取的样本,求a 的矩估计为###.[答案]:121-∑=ni i X n4.已知F 0.1(8,20)=2,则F 0.9(20,8)=###.[答案]:0.55.设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为###.[答案]:0.156.设样本的频数分布为X0 1 2 3 4 频数 1 3 2 1 2则样本方差s 2=###.[答案]:27.设X1,X2,,Xn 为来自正态总体N(μ,σ²)的一个简单随机样本,其中参数μ和σ²均未知,记,221Q )n i i X X ==-∑(,则假设H 0:μ=0的t 检验使用的统计量是###.(用X 和Q 表示)[答案]:Xt (1)n n Q =-8.设总体X~N(μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,则样本均值X =###.[答案]:n 2σ9.设总体X ~b,(np),0<p<1,X 1,X 2,…,X n 为其样本,则n 的矩估计是###.[答案]:X n p =10.设总体X ~[U,θ],(X 1,X 2,…,X n )是来自X 的样本,则θ的最大似然估计量是###.[答案]:{}12max X X X n θ=,,11.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下:+2,+1,-2,+3,+2,+4,-2,+5,+3,+4.则零件尺寸偏差的数学期望的无偏估计量###.[答案]:212.设X 1,X 2,X 3,X 4是来自正态总体N(0,2)2的样本,令Y=(X 1+X 2)2+(X 3-X 4)2,则当C=###时CY ~x 2(2).[答案]:1/813.设容量n=10的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值样本方差###.[答案]:s 2=214.设A.B 为随机事件,P(A)=0.5,P(B)=0.6,P(B|A)=0.8则P(B|A)=###.[答案]:0.715.若事件A 和事件B 相互独立,P(A)=α,P(B)=0.3,P (A⋃B )=0.7,则α=###.[答案]:3/716.设X ~N(2,σ²),且P{2<x<4}=0.3,则P{x<0}=###.[答案]:217.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为###.[答案]:2/318.三个人独立地解答一道难题,他们能单独正确解答的概率分别为1/5.1/3.1/4,则此难题被正确解答的概率为###.[答案]:3/519.设有一箱产品由三家工厂生产的其中1/2是第一加工厂生产的,其余两家工厂各生产1/4,又知第一.第二工厂生产的产品有2%的次品,第三工厂生产的产品有4%的次品,现从箱中任取一只,则取到的次品的概率为###.[答案]:2.5%20.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(有放回)则:第二次取到黑球的概率为###.[答案]:0.221.由长期统计资料得知,某一地区在4月下雨(记事件A)的概率为4/15,刮风(记作事件B)概率为7/15,刮风又下雨(记作事件C)概率为1/10则:p(B|A)=###.[答案]:3/822.一盒子中黑球.红球.白球各占50%,30%,20%,从中任取一球,结果不是红球,则取到的是白球的概率为###.[答案]:2/723.某公共汽车站甲.乙丙动人分别独立地等1.2.3路汽车,设每个人等车时间(单位分钟)均服从[0,5]上的均匀分布,则三人中至少有两个人等车时间不超过2分钟的概率为###.[答案]:0.35224.若随机变量X ~(2,σ²)且p{2<X<4}=0.3,则p{X<2}=###.[答案]:0.525.若随机变量X ~N(-1,1),Y ~N(3,1)且X 和Y 相互独立,设随机变量Z=X-2Y+7,则Z ~###.[答案]:N(0,5)26.设随机变量X ~N(1,22),则EX 2=###.[答案]:5三.计算题1.已知100个产品中有5个次品,现从中有放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.007125.0)95.0()05.0(}2{223===C X P2.某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率.[答案]:).02.0,400(~b XX 的分布律为,)98.0()02.0(400}{400k k k k X P -⎪⎪⎭⎫ ⎝⎛==0,1,,400.k = 于是所求概率为}1{}0{1}2{=-=-=≥X P X P X P 399400)98.0)(02.0(400)98.0(1--=.9972.0=3.已知100个产品中有5个次品,现从中无放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.00618.0}2{310025195≈==C C C X P4.某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布,求该城市一天内发生3次或3次以上火灾的概率.[答案]:由概率的性质,得}3{1}3{<-=≥X P X P }2{}1{}0{1=-=-=-=X P X P X P⎪⎪⎭⎫ ⎝⎛++-=-!28.0!18.0!08.012108.0e .0474.0≈5.某公共汽车站从上午7时起,每15分钟来一班车,即7:00,7:15,7:30,7:45等时刻有汽车到达此站,如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率.[答案]:以7:00为起点0,以分为单位,依题意~X ),30,0(U ⎪⎩⎪⎨⎧<<=其它,0300,301)(x x f 为使候车时间X 少于5分钟,乘客必须在7:10到7:15之间,或在7:25到7:30之间到达车站,故所求概率为}3025{}1510{<<+<<X P X P 3130130130251510=+=⎰⎰dx dx6.某元件的寿命X 服从指数分布,已知其平均寿命为1000小时,求3个这样的元件使用1000小时,至少已有一个损坏的概率.[答案]:由题设知,X 的分布函数为.0,00,1)(1000⎪⎩⎪⎨⎧<≥-=-x x ex F x 由此得到}1000{1}1000{≤-=>X P X P .)1000(11-=-=e F各元件的寿命是否超过1000小时是独立的,用Y 表示三个元件中使用1000小时损坏的元件数,则).1,3(~1--e b Y所求概率为}0{1}1{=-=≥Y P Y P .1)()1(13310103----=--=e e e C7.设某项竞赛成绩N X ~(65,100),若按参赛人数的10%发奖,问获奖分数线应定为多少?[答案]:设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x)(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=⎪⎭⎫ ⎝⎛-Φ-=x 即,9.010650=⎪⎭⎫ ⎝⎛-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78.8.设随机变量X 具有以下的分布律,试求2)1(-=X Y 的分布律. 4.01.03.02.02101i p X-[答案]:Y 所有可能的取值0,1,4,由,2.0}1{}4{,7.0}2{}0{}1{,1.0}1{}0)1{(}0{2=-=====+=======-==X P Y P X P X P Y P X P X P Y P即得Y 的分布律为9.已知随机变量X 的分布函数⎪⎩⎪⎨⎧>≤<≤=4,140,4/0,0)(x x x x x F ,求).(X E[答案]:随机变量X 的分布密度为,,040,4/1)()(⎩⎨⎧≤<='=其它x x F x f故.2841)()(40240==⋅==⎰⎰∞+∞-x dx x dx x xf X E 10.设05.0=α,求标准正态分布的水平0.05的上侧分位数和双侧分位数.[答案]:由于,95.005.01)(05.0=-=Φu 查标准正态分布函数值表可得,645.105.0=u 而水平0.05的双侧分位数为,025.0u 它满足:,975.0025.01)(025.0=-=Φu 查标准正态分布函数值表可得.96.1025.0=u 2χ分布.11.设),2,21(~2N X 2521,,,X X X 为X 的一个样本,求:(1)样本均值X 的数学期望与方差;(2)}.24.0|21{|≤-X P[答案]:)1(由于),2,21(~2N X 样本容量,25=n 所以,252,21~2⎪⎪⎭⎫ ⎝⎛N X 于是,21)(=X E .4.0252)(22==X D )2(由),4.0,21(~2N X 得),1,0(~4.021N X - 故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-6.04.021}24.0|21{|X P X P .4514.01)6.0(2=-Φ=12.⎪⎩⎪⎨⎧≤<≤≤--+=其它100101)(x x xA x x f ,则求常数A.期望EX 及方差DX. [答案]:011(1)x dx -=++⎰10()A x dx -⎰,得A=1 ()EX xf x dx +∞-∞==⎰01(1)x x dx -++⎰10(1)0x x dx -=⎰ 22()EX x f x dx +∞-∞==⎰021(1)x x dx -++⎰120(1)1/6x x dx -=⎰61)D(x)22=-=EX EX (。

相关文档
最新文档