2.3幂函数习题(带答案)-人教版数学高一上必修1第二章
高一数学人教新课标A版必修123幂函数同步练习

高一数学人教新课标A 版必修1第二章2.3幂函数同步练习(答题时间:30分钟)微课程:幂函数的定义同步练习1. 已知幂函数y =f (x )通过点(2,22),则幂函数的解析式为( )A. y =212xB. y =12xC. y =32x D. y =521x 22. 下列命题中正确的是( )A. 当0=α时函数αx y =的图象是一条直线 B. 幂函数的图象都经过点(0,0)和(1,1)C. 若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D. 幂函数的图象不可能出现在第四象限3. 已知(0.71.3)m <(1.30.7)m ,则实数m 的取值范围是( ) A.(0,+∞) B.(1,+∞) C.(0,1) D.(-∞,0)4. 已知幂函数f (x )=x m )x 1 12 f (x )122A. {x|0<x≤2}B. {x|0≤x≤4}C. {x|-2≤x≤2}D. {x|-4≤x≤4} 5. 设x ∈(0,1),幂函数y =x a 的图象在直线y =x 的上方,则实数a 的取值范围是______。
6. 已知函数223()m m f x x -++=(m ∈Z )为偶函数,且f (3)<f (5),求m 的值,并确定f (x )的解析式。
微课程:幂函数的图象和性质同步练习1. 下列函数在区间(0,3)上是增函数的是( )A. 1y x=B. 12y x =C. 1()3xy =D. 2215y x x =--2. 函数35x y =的图象大致是( )3. 当x ∈(1,+∞)时,下列函数的图象全在直线y =x 下方的偶函数是( )A. 21x y = B. y =x -2 C. y =x 2 D. y =x -14. 函数y =1x-x 2的图象关于( )A. y 轴对称B. 直线y =-x 对称C. 坐标原点对称D. 直线y =x 对称5. 已知幂函数qp x y =,(p ,q ∈N *)的图象如图所示,则( )A. p ,q 均为奇数,且p q >0B. q 为偶数,p 为奇数,且p q<0C. q 为奇数,p 为偶数,且p q >0D. q 为奇数,p 为偶数,且pq<06. 函数y =x m ,y =x n ,y =x p 的图象如图所示,则m ,n ,p 的大小关系是________。
人教A版精编数学必修1练习:第二章 2.3 幂函数 Word版含解析

[课时作业][A组基础巩固]1.下列所给出的函数中,是幂函数的是( )A.y=-x3B.y=x-3C.y=2x3D.y=x3-1解析:由幂函数的定义可知y=x-3是幂函数.答案:B2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( ) A.y=x-2 B.y=x-1C.y=x2D.y=x 1 3解析:∵y=x-1和y=x 13都是奇函数,故B、D错误.又y=x2虽为偶函数,但在(0,+∞)上为增函数,故C错误.y=x-2=1x2在(0,+∞)上为减函数,且为偶函数,故A满足题意.答案:A3.如图,函数y=x 23的图象是( )解析:y=x 23=3x2≥0,故只有D中的图象适合.答案:D4.已知幂函数273225()(1)()t tf x t t x t N+-=-+⋅∈是偶函数,则实数t的值为( )A.0 B.-1或1 C.1 D.0或1解析:∵273225()(1)()t tf x t t x t N+-=-+⋅∈是幂函数,∴t2-t+1=1,即t2-t=0,∴t=0或t=1.当t=0时,f(x)=x 75是奇函数,不满足题设;当t =1时,f (x )=x 85是偶函数,满足题设.答案:C5.a ,b 满足0<a <b <1,下列不等式中正确的是( )A .a a <a bB. b a <b b C .a a <b a D .b b <a b 解析:因为0<a <b <1,而函数y =x a 单调递增,所以a a <b a .答案:C6.若函数则f {f [f (0)]}=________.解析:∵f (0)=-2,∴f (-2)=(-2+3)12=1,∴f (1)=1,∴f {f [f (0)]}=f [f (-2)]=f (1)=1.答案:17.下列命题中,①幂函数的图象不可能在第四象限; ②当α=0时,函数y =x α的图象是一条直线;③当α>0时,幂函数y =x α是增函数;④当α<0时,幂函数y =x α在第一象限内函数值随x 值的增大而减小.其中正确的序号为________.解析:当α=0时,是直线y =1但去掉(0,1)这一点,故②错误.当α>0时,幂函数y =x α仅在第一象限是递增的,如y =x 2,故③错误.答案:①④8.已知n ∈{-2,-1,0,1,2,3},若⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-13n ,则n =________. 解析:∵-12<-13,且⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-13n ,∴y =x n 在(-∞,0)上为减函数. 又n ∈{-2,-1,0,1,2,3},∴n =-1或n =2.答案:-1或29.点(2,2)与点⎝ ⎛⎭⎪⎫-2,-12分别在幂函数f (x )、g (x )的图象上,问当x 为何值时,有①f (x )>g (x );②f (x )=g (x );③f (x )<g (x ).解析:设f (x )=x α,g (x )=x β,则(2)α=2,(-2)β=-12,∴α=2,β=-1.∴f (x )=x 2,g (x )=x -1.分别作出它们的图象如图所示,由图象可知,当x ∈(-∞,0)∪(1,+∞)时,f (x )>g (x );当x =1时,f (x )=g (x );当x ∈(0,1)时,f (x )<g (x ).10.已知幂函数y =x 223m m -- (m ∈N +)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)3m <(3a -2)3的a 的取值范围.解析: ∵函数在(0,+∞)上单调递减,∴m 2-2m -3<0,解得-1<m <3.∵m ∈N +,∴m =1,2.又∵函数图象关于y 轴对称,∴m 2-2m -3是偶数.又∵22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,∴m =1.∴原不等式等价于(a +1)3<(3a -2)3.又∵y =x 3在(-∞,+∞)上是增函数,∴a +1<3a -2,∴2a >3,a >32,故a 的取值范围是a >32.[B 组 能力提升]1.设幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫13,3,设0<a <1,则f (a )与f (a -1)的大小关系是( )A .f (a -1)<f (a )B.f (a -1)=f (a ) C .f (a -1)>f (a ) D .不能确定解析:因为幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫13,3,设f (x )=x α,因为图象经过点⎝ ⎛⎭⎪⎫13,3,所以⎝ ⎛⎭⎪⎫13α=3,解得α=-12,所以f (x )=x 12-在第一象限单调递减. 因为0<a <1,所以a -1>a ,所以f (a -1)<f (a ). 答案:A2.若(a +1)12-<(3-2a )12-,则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫12,23 B.⎝ ⎛⎭⎪⎫23,32 C.⎝ ⎛⎭⎪⎫23,2 D .⎝ ⎛⎭⎪⎫32,+∞ 解析:令f (x )=x 12-=1x,∴f (x )的定义域是(0,+∞),且在(0,+∞)上是减函数,故原不等式等价于⎩⎨⎧ a +1>0,3-2a >0,a +1>3-2a ,解得23<a <32.答案:B 3.已知(0.71.3)m <(1.30.7)m ,则实数m 的取值范围是________.解析:∵0<0.71.3<0. 70=1,1.30.7>1.30=1,∴0.71.3<1.30.7.而(0.71.3)m <(1.30.7)m ,∴幂函数y =x m 在 (0,+∞)上单调递增,故m >0.答案:(0,+∞)4.把⎝ ⎛⎭⎪⎫2313-,⎝ ⎛⎭⎪⎫3512,⎝ ⎛⎭⎪⎫2512,⎝ ⎛⎭⎪⎫760按从小到大的顺序排列________. 解析:⎝ ⎛⎭⎪⎫760=1,⎝ ⎛⎭⎪⎫2313->⎝ ⎛⎭⎪⎫230=1,⎝ ⎛⎭⎪⎫3512<1,⎝ ⎛⎭⎪⎫2512<1. ∵y =x 12为增函数,∴⎝ ⎛⎭⎪⎫2512<⎝ ⎛⎭⎪⎫3512<⎝ ⎛⎭⎪⎫760<⎝ ⎛⎭⎪⎫2313-.答案:⎝ ⎛⎭⎪⎫2512<⎝ ⎛⎭⎪⎫3512<⎝ ⎛⎭⎪⎫760<⎝ ⎛⎭⎪⎫2313- 5.已知幂函数f (x )=x 21()m m -+ (m ∈N +).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数f (x )经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解析:(1)∵m 2+m =m (m +1)(m ∈N +),而m 与m +1中必有一个为偶数,∴m 2+m 为偶数,∴函数f (x )=x 21()m m -+ (m ∈N +)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.(2)∵函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即212=2(m 2+m )-1,∴m 2+m =2,解得m =1或m =-2,又∵m ∈N +,∴m =1,f (x )=x 12.又∵f (2-a )>f (a -1), ∴⎩⎨⎧ 2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32, 故函数f (x )经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为1≤a <32. 6.已知函数f (x )=(m 2+2m )·x 21m m +-,求m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解析:(1)若f (x )为正比例函数,则⎩⎨⎧m 2+m -1=1,m 2+2m ≠0,解得m =1. (2)若f (x )为反比例函数,则⎩⎨⎧m 2+m -1=-1,m 2+2m ≠0,解得m =-1.(3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2,m 2+2m ≠0,解得m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1, 解得m =-1±2.。
高中数学人教版 必修1 第二章 基本初等函数(I) 2.3 幂函数

高中数学人教版必修1 第二章基本初等函数(I) 2.3 幂函数选择题下列函数中是幂函数的是()①y=?x2;②y=2x;③y=xπ;④y=(x?1)3;⑤y=;⑥y=x2+.A.①③⑤? B.①②⑤C.③⑤D.只有⑤【答案】C【解析】y=?x2的系数是?1而不是1,故不是幂函数;y=2x是指数函数;y=(x?1)3的底数是x?1而不是x,故不是幂函数;y=x2+是两个幂函数和的形式,也不是幂函数.y==x?2和y=xπ具有幂函数y=xα的形式,所以选C.选择题幂函数f(x)的图象过点(4,),那么f(8)的值为()A. B.64 C.2 ? D.【答案】A【解析】设幂函数的解析式为y=xα,依题意得,=4α,即22α=2?1,∴α=?.∴幂函数的解析式为y=,∴f(8)====, 故选A.选择题函数f(x)=(m2?m?1)是幂函数,且在x∈(0,+∞)上是减函数,则实数m的取值集合是()A.{m|m=?1或m=2} B.{m|?1解得m=2.选择题下列幂函数中图象过点(0,0),(1,1),且是偶函数的是()A.? y=?B.? y=C.? y=D.? y=【答案】B【解析】函数y=,y=不是偶函数,函数y=是偶函数,但其图象不过点(0,0).函数y=的图象过点(0,0),(1,1)且是偶函数,故选B.选择题函数f(x)=(n∈Z,a>0且a≠1)的图象必过定点()A.(1,1) ?B.(1,2)C.( ?1,0)D.( ?1,1)【解析】因为f(1)==1+1=2,所以f(x)=(n∈Z,a>0且a≠1)的图象必过定点(1,2),故选B.选择题下列命题中正确的是()A.当α=0时,函数y=xα的图象是一条直线B.幂函数的图象都经过(0,0)、(1,1)两点C.幂函数y=x0的定义域是RD.幂函数的图象不可能在第四象限【答案】D【解析】当α=0时,函数y=xα的定义域为{x|x≠0,x∈R},其图象不是直线,故A和C不? 正确;当α0,α∈R时,y=xα>0,则幂函数的图象都不在第四象限,故D正确.选择题设α∈{?2,?1,?,,,1,2,3},则使f(x)=xα为奇函数,且在(0,+∞)上递增的α的个数是()A.1 B.2 C.3 D.4【解析】f(x)为奇函数,则α=?1,,1,3,f(x)在(0,+∞)上递增,则α=,1,3,故选C.选择题在同一坐标系内,函数y=xa(a≠0)和y=ax?的图象可能是()【答案】C【解析】当a0,结合图象排除A,C,D,又y=xa在(0,+∞)上是减函数,∴B项也不正确.当a>0时,y=ax?是增函数,?0时,y=xa在(0,+∞)上是增函数,故A项不正确,故选C.选择题在函数,,,中,幂函数的个数为A.0? ? B.1C.2 D.3【解析】函数为幂函数;函数,前的系数不是1,所以它不是幂函数;函数是两个函数和的形式,所以它不是幂函数;函数与不是同一个函数,所以它也不是幂函数.所以只有1个是幂函数,故选B.选择题若函数是幂函数,且满足,则的值等于A.B.C.D.【答案】A【解析】令,因为,即,解得,所以,所以.选择题若幂函数的图象不过原点,则A.B.或C.D.【答案】B【解析】因为幂函数的图象不过原点,所以,解得或.故选B.选择题如图所示的曲线是幂函数在第一象限的图象,已知,相应曲线对应的值依次为A.B.C.D.【答案】B【解析】结合幂函数的单调性及图象,易知曲线对应的值依次为.故本题选B.选择题设,,,则的大小关系是A.B.C.D.【答案】B【解析】在上为减函数,,即.在上为增函数,,即.所以.选择题在同一直角坐标系中,函数,的图象可能是【答案】D【解析】对于A,没有幂函数的图象,不符合题目要求;对于B,中,中,舍去;对于C,中,中,舍去;对于D,中,中,故选D.选择题已知幂函数的图象过点,则A.B.1C.D.2【答案】A【解析】因为幂函数的图象过点,所以,解得,所以.故选A.选择题函数是幂函数,且在上为增函数,则实数的值是A.?1? B.2C.3 D.?1或2【答案】B【解析】是幂函数或.又在上是增函数,所以,故选B.填空题比较下列各组数的大小:(1)与的大小关系是______;(2),,的大小关系是______.【答案】(1) (2)【解析】1)∵在(0,+∞)上为减函数,且5.1>5.09,∴.(2),.∵在(0,+∞)上为增函数,且,∴.又,∴.填空题已知幂函数f(x)=,若f(a+1)=(x>0),易知f(x)在(0,+∞)上为减函数,又f(a+1)解得∴3,下列五个关系式:①0与y=的图象(如图所示),设,作直线y=m.如果m=0或1,则a=b;如果01,则1填空题若一个幂函数的图象过点,则.【答案】【解析】设幂函数的解析式为已知幂函数的图象过点,所以,即所以,则.填空题若,则满足的的取值范围是.【答案】【解析】根据幂函数的性质,由于,所以当时,当时,,因此的解集为.填空题下列函数中,在(0,1)上单调递减,且为偶函数的是.①;②y=x4;③y=x?2;④.【答案】③【解析】①中函数不具有奇偶性;②中函数y=x4是偶函数,但在[0,+∞)上为增函数;③中函数y=x?2是偶函数,且在(0,+∞)上为减函数;④中函数是奇函数.故填③.填空题已知幂函数,若f(a+1)<f(10?2a),则a的取值范围是.【答案】(3,5)【解析】∵,易知f(x)在(0,+∞)上为减函数,又f(a+1)<f(10?2a),∴,解得,∴3<a<5.解答题已知函数f(x)=?且f(4)=.(1)求的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.【答案】(1)1 ?(2)奇函数?(3)略【解析】(1)因为f(4)=,所以,所以=1.(2)由(1)知f(x)=,因为f(x)的定义域为{x|x≠0},,所以f(x)是奇函数.(3) f(x)在(0,+∞)上单调递增.证明如下:设,则.因为,所以,,所以,所以f(x)在(0,+∞)上为单调递增函数.解答题已知点在幂函数f(x)的图象上,点在幂函数g(x)的图象上,问当x为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)?α=2,∴f(x)=x2.同理可求出,在同一坐标系内作出y=f(x)与y=g(x)的图象,如图所示.由图象可知:(1)当x>1或xg(x).(2)当x=±1时,f(x)=g(x).(3)当?1,其中?2,,1;(2),,;【答案】(1);(2).【解析】(1)把1看作,幂函数在(0,+∞)上是增函数.∵,∴,即.(2)因为,,,幂函数在(0,+∞)上是增函数,且.∴.解答题已知幂函数()的图象关于轴对称,且在上是减函数.(1)求的值;(2)求满足不等式的实数a的取值范围.【答案】(1);(2).【解析】(1)因为函数在上是减函数,所以,所以.因为,所以或.又函数图象关于轴对称,所以是偶数,所以.(2)不等式等价于,解得.所以实数a的取值范围是.解答题已知幂函数(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f(x)的解析式;(2)设函数,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围.【答案】(1)f(x)=x4;(2)(3,+∞).【解析】(1)∵f(x)在区间(0,+∞)上是单调增函数,∴?m2+2m+3>0,即m2?2m?32对任意的x∈R恒成立,∴g(x)min>2,且x∈R,即c?1>2,解得c>3.故实数c的取值范围是(3,+∞).。
人教版高一数学必修一2.3幂函数

2.3幂函数班级______________座号_________学生_______________一. 选择题:1.已知,则( )A . B. C. D. 2. 设1{1,1,,3}2α∈-,则使幂函数y x α=的定义域为R 且为奇函数的所有α的值为( )A. 1,3B. -1,1C.-1,3D.-1,1,33. 已知幂函数()a x x f =的图像经过点()2,2,函数g (x )= log ()a x k +,若0<x 时()0≥x g 无解,则k 的范围是( )A.2≥kB.1-≤kC.11≤≤-kD.1≤k4.已知函数:,当时,下列选项正确的是 ( )A. B.C. D.二.填空题:5. 已知幂函数f (x )=(m 2-2m -2) 21m m x +-的图像与坐标轴没有交点,则 m =__________________.6. 已知函数()()()⎩⎨⎧<≥+=01012x x x x f ,则满足不等式()()x f x f 212>-的x 的范围是_____.7. 若关于x 的一元二次方程030112=++-a x x 的两根均大于5,求实数a 的取值范围4213332,3,25a b c ===b a c <<a b c <<b c a <<c a b <<22(),()2,()log x f x x g x h x x ===(4,)a ∈+∞()()()f a g a h a >>()()()g a f a h a >>()()()g a h a f a >>()()()f a h a g a >>三.解答题:8.已知函数f(x)=(a2-3a+2)x a2-5a+5(a为常数),问a为何值时,f(x)(1)是幂函数;(2)是正比例函数;(3)是反比例函数。
高一数学人教A版必修一检测第二章2.3幂函数 Word版含解析

第二章基本初等函数(Ⅰ)
幂函数
级基础巩固
一、选择题
.下列函数是幂函数的是( )
.=.=
.=.=(+)
解析:函数=是幂函数,其他函数都不是幂函数.
答案:.下列函数中既是偶函数又在(-∞,)上是增函数的是( )
.=.=
.=-.=-
解析:对于幂函数=α,如果它是偶函数,当α<时,它在第一象限为减函数,在第二象限为增函数,则选项正确,故选.
答案:.已知幂函数()=α的图象经过点(,),则()的值为( )
.
解析:依题意有=α,所以α=-,
所以()=-,所以()=-=.
答案:
.函数=图象的大致形状是( )
解析:因为=是偶函数,且在第一象限图象沿轴递增,所以选项
正确.
答案:
.或...
解析:因为()为幂函数,所以-+=,
解得=或=,所以()=-或()=,
因为()为(,+∞)上的减函数,所以=.
答案:
二、填空题.(·全国Ⅲ卷改编)已知=,=,=,则,,的大小关系是.
解析:==,=,==.
因为=在第一象限内为增函数,又>>,
所以>>.
答案:>>.幂函数()=-(∈)在(,+∞)上是减函数,且(-)=(),则等于
.解析:因为幂函数()=-(∈)在(,+∞)上是减函数,
所以-<,即<,又∈,
所以=,,因为(-)=(),所以函数()是偶函数,
当=时,()=-,是奇函数;
当=时,()=-,是偶函数.
所以=.
答案:
.已知幂函数()=·α的图象过点,则+α=.
解析:因为函数是幂函数,所以=,。
【优化课堂】高一数学人教A版必修1 学案:第二章 2.3 幂函数 Word版含答案[ 高考]
![【优化课堂】高一数学人教A版必修1 学案:第二章 2.3 幂函数 Word版含答案[ 高考]](https://img.taocdn.com/s3/m/736124f480eb6294dd886c9f.png)
2.3幂函数[学习目标] 1.通过实例,了解幂函数的概念,能区别幂函数与指数函数(易混点).2.结合函数y =x ,y =x 2,y =x 3,y =x 12,y =x -1的图象,了解它们的变化情况(难点).3.能够运用幂函数的简单性质进行实数大小的比较(重点).一、幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 二、幂函数的图象与性质1.判断:(正确的打“√”,错误的打“×”) (1)函数y =x 3+2是幂函数.( )(2)幂函数的图象必过(0,0)和(1,1)这两点.( )(3)指数函数y =a x 的定义域为R ,与底数a 无关,幂函数y =x α的定义域为R ,与指数也无关.( )【答案】 (1)× (2)× (3)× 2.下列函数中,不是幂函数的是( ) A .y =2x B .y =x -1 C .y =x D .y =x 2【解析】 由幂函数定义知y =2x 不是幂函数,而是指数函数. 【答案】 A3.函数y =x 3的图象关于________对称.【解析】 函数y =x 3为奇函数,其图象关于原点对称. 【答案】 原点4.若幂函数过(2,2)点,则此函数的解析式为________. 【解析】 设幂函数为f (x )=x α,则2=2α,∴α=12.∴f (x )=x 12.【答案】 f (x )=x 12预习完成后,请把你认为难以解决的问题记录在下面的表格中(2)(2014·宿迁高一检测)已知幂函数f (x )=x α的图象过点⎝ ⎛⎭⎪⎫2,22,则f (4)=________.(3)函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,则f (x )的解析式为________.【解析】 (1)∵y =(m 2-4m -4)x m 是幂函数, ∴m 2-4m -4=1,解得m =-1或m =5. (2)由题意22=2α,即2-12=2α,∴α=-12, ∴f (4)=4-12=12.(3)根据幂函数的定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3,在(0,+∞)上是增函数,符合题意;当m =-1时,f (x )=x -3,在(0,+∞)上是减函数,不符合要求. 故f (x )=x 3.【答案】 (1)-1或5 (2)12(3)f (x )=x 3判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.反之,若一个函数为幂函数,则该函数应具备这一形式,这是我们解决某些问题的隐含条件.的图象.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 值依次为( )图2-3-1A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12(2)若点A (2,2)在幂函数f (x )的图象,B ⎝ ⎛⎭⎪⎫-2,14在幂函数g (x )的图象上, ①求f (x )、g (x )的解析式;②求当x 为何值时:(ⅰ)f (x )>g (x );(ⅱ)f (x )=g (x );(ⅲ)f (x )<g (x ). 【思路探究】 (1)根据幂函数的图象特征及性质确定相应的图象;(2)设出函数解析式f (x )=x a 、g (x )=x b ,把A ,B 两点的坐标分别代入求得a ,b 即可.画出相应的函数图象,数形结合求得x 的范围.【解析】 (1)由幂函数的图象与性质,n <0时不过原点,故C 3,C 4对应的n 值均为负,C 1,C 2对应的n 值均为正;由增(减)快慢知曲线C 1,C 2,C 3,C 4的n 值依次为2,12,-12,-2.【答案】 B(2)①设f (x )=x a ,因为点(2,2)在幂函数f (x )的图象上,所以(2)a =2,所以a =2,即f (x )=x 2.设g (x )=x b,因为点B ⎝ ⎛⎭⎪⎫-2,14在幂函数g (x )的图象上,所以(-2)b =14,所以b =-2,即g (x )=x -2.②令f (x )=g (x ),解得x =±1.在同一坐标系下画出函数f (x )和g (x )的图象,如图:由图象可知,f (x ),g (x )的图象均过点(1,1)和(-1,1). 所以(i)当x >1或x <-1时,f (x )>g (x ); (ⅱ)当x =1或x =-1时,f (x )=g (x ); (ⅲ)当-1<x <1且x ≠0时,f (x )<g (x ).1.幂函数的图象有以下特点: (1)恒过点(1,1),且不过第四象限.(2)当α>0时,幂函数的图象在(0,+∞)上都是增函数;当α<0时,幂函数的图象在(0,+∞)上都是减函数.(3)在第一象限内,直线x =1的右侧,图象由上到下,相应的指数由大变小. 2.幂函数y =x α在第一象限内图象的画法 (1)当α<0时,其图象可以类似y =x -1画出; (2)当0<α<1时,其图象可以类似y =x 12画出;(3)当α>1时,其图象可以类似y =x 2画出.本例(2)中若定义h (x )=⎩⎨⎧f (x ),f (x )≤g (x ),g (x ),f (x )>g (x ),求函数h (x )的最大值及单调区间.【解】 由题意h (x )=⎩⎪⎨⎪⎧x -2,x <-1或x >1,x 2,-1≤x <0或0<x ≤1,根据图象可知函数h (x )的最大值为1,单调递增区间为(-∞,-1],(0,1],单调递减区间为[-1,0),[1,+∞).(1)3-52和3.1-52;(2)-8-78和-⎝ ⎛⎭⎪⎫1978;(3)4.125,3.8-23和(-1.9)-35.【思路探究】 比较两个幂值的大小,可借助幂函数的单调性或取中间量进行比较.对于(1),(2)可利用同指数或转化为同指数的幂函数进行比较,而(3)可找中间量进行比较.【解】 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978,从而-8-78<-⎝ ⎛⎭⎪⎫1978.(3)4.125>125=1;0<3.8-23<1-23=1;(-1.9)-35<0,所以(-1.9)-35<3.8-23<4.125.幂值大小比较常用的方法要比较的两个幂值,若指数相同,底数不同,则考虑应用幂函数的单调性;若底数相同,指数不同,则考虑应用指数函数的单调性;若底数,指数均不相同,则考虑借助中间量“1”“0”“-1”进行比较.比较大小,说明理由. (1)0.9513与0.9613;(2)0.95-35与0.95-23.【解】 (1)∵函数y =x 13在(0,+∞)上是增函数,且0.95<0.96,∴0.9513<0.9613.(2)∵函数y =0.95x 在R 上是减函数,且-35>-23,∴0.95-35<0.95-23.1.幂函数y=xα(α∈R),其中α为常数,其本质特征是以幂的底x为自变量,指数α为常数,这是判断一个函数是否是幂函数的重要依据和唯一标准.幂函数与指数函数形同而实异,幂函数的自变量在底数位置上,指数函数的自变量在指数位置上.2.已知幂函数的图象和性质求解析式时,常用待定系数法.3.幂函数y=xα在第一象限的图象特征.(1)当α>1时,图象过点(0,0),(1,1),递增,如y=x2;(2)当0<α<1时,图象过点(0,0),(1,1),递增,如y=x 12;(3)当α<0时,图象过点(1,1),递减,且以两坐标轴为渐近线,如y=x-1,y=x-12等.4.比较大小.(1)若指数相同,底数不同,则考虑幂函数;(2)若指数不同,底数相同,则考虑指数函数;(3)若指数与底数都不同,则考虑插入中间数.分类讨论思想在幂函数中的应用(5分)若(a -1)-13<(3-2a )-13,则实数a 的取值范围为( )A .(-∞,1) B.⎝ ⎛⎭⎪⎫43,32C .(-∞,1)∪⎝ ⎛⎭⎪⎫43,32 D.⎝ ⎛⎭⎪⎫1,32【思路探究】 以a -1,3-2a 是否在幂函数的同一单调区间为标准分类求解.【满分样板】 考查幂函数y =x -13,类比y =x -1的单调性,可得:若x -13<y -13,则有x <0<y ,y <x <0或0<y <x 三种情况. 因此,若(a -1)-13<(3-2a )-13,则有如下三种可能:⎩⎪⎨⎪⎧a -1<0,3-2a >0,或⎩⎪⎨⎪⎧a -1<0,3-2a <0,a -1>3-2a ,或⎩⎪⎨⎪⎧a -1>0,3-2a >0,a -1>3-2a , 解得a <1或43<a <32.故实数a 的取值范围为(-∞,1)∪⎝ ⎛⎭⎪⎫43,32.【答案】C1.欲利用幂函数y =x -13的性质求参数的值,可类比幂函数y =x -1的性质,y =x -1有两个单调递减区间(-∞,0),(0,+∞),又当x <0时,y <0;当x >0时,y >0.2.本题以a -1,3-2a 是否在幂函数y =x -13的同一单调区间为标准分类,可分为两类,而在同一单调区间时,又分两种情况,从而做到不重不漏.——[类题尝试]—————————————————(2014·济南高一检测)已知函数y =(m 2-3m +3)x m 23-1为幂函数,求其解析式,并讨论函数的单调性和奇偶性.【解】 由题意得m 2-3m +3=1,即m 2-3m +2=0. ∴m =1或m =2.当m =2时,y =x 13,定义域为R ,y =x 13在(-∞,+∞)上是增函数且是奇函数.当m =1时,y =x -23,定义域为(-∞,0)∪(0,+∞).由于y =x -23=1x 23=13x 2,∴函数y =x -23为偶函数.又-23<0,∴y =x -23在(0,+∞)上是减函数,在(-∞,0)上是增函数.。
2019-2020学年高一数学人教A版必修1练习:2.3 幂函数 Word版含解析

2.3 幂函数课后篇巩固提升基础巩固1.函数y=3x α-2的图象过定点( )A.(1,1)B.(-1,1)C.(1,-1)D.(-1,-1)2.在下列幂函数中,既是奇函数又在区间(0,+∞)上是增函数的是( )A.f (x )=x -1B.f (x )=x -2C.f (x )=x 3D.f (x )=x 123.下列结论中,正确的是( )A.幂函数的图象都过点(0,0),(1,1)B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,时,幂函数y=x α都是增函数12D.当幂指数α=-1时,幂函数y=x α在其整个定义域上是减函数4.已知当x ∈(1,+∞)时,函数y=x α的图象恒在直线y=x 的下方,则α的取值范围是( )A.0<α<1 B.α<0C.α<1D.α>1α<1.5.已知a=1.,b=0.,c=,则( )2129-121.1A.c<b<a B.c<a<b C.b<a<c D.a<c<b0.,c==1.,9-12=(910)-12=(109)121.1112∵>0,且1.2>>1.1,12109∴1.>1.,即a>b>c.212>(109)121126.如图是幂函数y=x m 与y=x n 在第一象限内的图象,则( )A.-1<n<0<m<1B.n<-1,0<m<1C.-1<n<0,m>1D.n<-1,m>1y=x m 在(0,+∞)上单调递增,且为上凸函数,故0<m<1.由于y=x n 在(0,+∞)上单调递减,且在直线x=1的右侧时,y=x n 的图象在y=x -1的图象的下方,故n<-1.故选B .7.若(a+1<(3-2a ,则a 的取值范围是 .)13)13f (x )=的定义域为R ,且为单调递增函数,x 13所以由不等式可得a+1<3-2a ,解得a<.23-∞,23)8.已知幂函数f (x )=(m ∈Z )的图象关于y 轴对称,并且f (x )在第一象限内是单调递减函数,则m= .x m 2-2m -3f (x )=(m ∈Z )的图象关于y 轴对称,所以函数f (x )是偶函数,所以m 2-2m-3为偶数,所x m 2-2m -3以m 2-2m 为奇数.又因为f (x )在第一象限内是单调递减函数,故m=1.9.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y=x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是 .y=x α(α是常数)是一个幂函数模型,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=,则y=.由=3,得x=9,即明文是9.12x 12x 1210.已知函数y=(a 2-3a+2)(a 为常数),问:x a 2-5a +5(1)当a 为何值时,此函数为幂函数?(2)当a 为何值时,此函数为正比例函数?(3)当a 为何值时,此函数为反比例函数?.由题意知a 2-3a+2=1,即a 2-3a+1=0,解得a=.3±52(2)由题意知解得a=4.{a 2-5a +5=1,a 2-3a +2≠0,(3)由题意知解得a=3.{a 2-5a +5=-1,a 2-3a +2≠0,11.已知幂函数f (x )=(2m 2-6m+5)x m+1为偶函数.(1)求f (x )的解析式;(2)若函数y=f (x )-2(a-1)x+1在区间(2,3)上为单调函数,求实数a 的取值范围.由f (x )为幂函数知2m 2-6m+5=1,即m 2-3m+2=0,得m=1或m=2,当m=1时,f (x )=x 2,是偶函数,符合题意;当m=2时,f (x )=x 3,为奇函数,不合题意,舍去.故f (x )=x 2.(2)由(1)得y=x 2-2(a-1)x+1,函数的对称轴为x=a-1,由题意知函数在(2,3)上为单调函数,∴a-1≤2或a-1≥3,相应解得a ≤3或a ≥4.能力提升1.已知幂函数g (x )=(2a-1)x a+2的图象过函数f (x )=32x+b 的图象所经过的定点,则b 的值等于( )A.-2B.1C.2D.4g (x )=(2a-1)x a+2为幂函数,则2a-1=1,∴a=1,函数的解析式为g (x )=x 3,幂函数过定点(1,1),在函数f (x )=32x+b 中,当2x+b=0时,函数过定点,据此可得-=1,故b=-2.故选A .(-b 2,1)b 22.函数f (x )=(m 2-m-1)是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足>0,若a ,b ∈R ,且xm 2+m -3f (x 1)-f (x2)x 1-x 2a+b>0,ab<0,则f (a )+f (b )的值( )A.恒大于0B.恒小于0C.等于0D.无法判断f (x )=(m 2-m-1)是幂函数,可得m 2-m-1=1,解得m=2或m=-1,x m 2+m -3当m=2时,f (x )=x 3,当m=-1时,f (x )=x -3,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足>0,f (x 1)-f (x 2)x1-x 2函数是单调增函数,所以m=2,此时f (x )=x 3.又a+b>0,ab<0,可知a ,b 异号,且正数的绝对值大于负数的绝对值,则f (a )+f (b )恒大于0,故选A .3.已知幂函数f (x )=mx n 的图象过点(,2),设a=f (m ),b=f (n ),c=f (ln 2),则( )22A.c<b<a B.c<a<bC.b<c<aD.a<b<cf (x )=mx n 的图象过点(,2),则所以幂函数的解析式为f (x )=x 3,且函数f (x )为22{m =1,(2)n =22⇒{m =1,n =3,单调递增函数.又ln 2<1<3,所以f (ln 2)<f (1)<f (3),即c<a<b ,故选B .4.给出幂函数:①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=.其中满足条件f (x 2>x 1>0)x 1x (x 1+x 22)>f (x 1)+f (x 2)2的函数的个数是( )A.1B.2C.3D.4,只有上凸的函数才满足题中条件,所以只有④满足,其他四个都不满足,故选A .5.若幂函数y=(m ,n ∈N *且m ,n 互质)的图象如图所示,则下列说法中正确的是 . x m n①m ,n 是奇数且<1;②m是偶数,n 是奇数,且>1;③m 是偶数,n 是奇数,且<1;④m ,n 是偶数,且>1.m n m n m n m n ,函数y=为偶函数,m 为偶数,n为奇数,又在第一象限向上“凸”,所以<1,选③.x mn m n 6.幂函数f (x )=(m 2-3m+3)·在区间(0,+∞)上是增函数,则实数m= . x m 2-2m +1f (x )=(m 2-3m+3)是幂函数,得m 2-3m+3=1,解得m=2或m=1.当m=2时,f (x )=x 是增函数;当x m 2-2m +1m=1时,f (x )=1是常函数.7.已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是 .{2x ,x ≥2,(x -1)3,x <2.,则当0<k<1时,关于x 的方程f (x )=k 有两个不同的实根.8.已知幂函数f (x )=(m-1)2在(0,+∞)上单调递增,函数g (x )=2x -k.x m 2-4m +2(1)求实数m 的值;(2)当x ∈(1,2]时,记ƒ(x ),g (x )的值域分别为集合A ,B ,若A ∪B=A ,求实数k 的取值范围.依题意得(m-1)2=1.∴m=0或m=2.当m=2时,f (x )=x -2在(0,+∞)上单调递减,与题设矛盾,舍去.∴m=0.(2)由(1)可知f (x )=x 2,当x ∈(1,2]时,函数f (x )和g (x )均单调递增.∴集合A=(1,4],B=(2-k ,4-k ].∵A ∪B=A ,∴B ⊆A.∴{2-k ≥1,4-k ≤4.∴0≤k ≤1.∴实数k 的取值范围是[0,1].9.已知幂函数f (x )=x (2-k )(1+k ),k ∈Z ,且f (x )在(0,+∞)上单调递增.(1)求实数k 的值,并写出相应的函数f (x )的解析式.(2)若F (x )=2f (x )-4x+3在区间[2a ,a+1]上不单调,求实数a 的取值范围.(3)试判断是否存在正数q ,使函数g (x )=1-qf (x )+(2q-1)x 在区间[-1,2]上的值域为,若存在,求出q 的值;[-4,178]若不存在,请说明理由.由题意知(2-k )(1+k )>0,解得-1<k<2.又k ∈Z ,∴k=0或k=1,分别代入原函数,得f (x )=x 2.(2)由已知得F (x )=2x 2-4x+3.要使函数在区间[2a ,a+1]上不单调,则2a<1<a+1,则0<a<.12(3)由已知,g (x )=-qx 2+(2q-1)x+1.假设存在这样的正数q 符合题意,则函数g (x )的图象是开口向下的抛物线,其对称轴为x==1-<1,因而,函数g (x )在[-1,2]上的最小值2q -12q 12q 只能在x=-1或x=2处取得,又g (2)=-1≠-4,从而必有g (-1)=2-3q=-4,解得q=2.此时,g (x )=-2x 2+3x+1,其对称轴x=∈[-1,2],∴g (x )在[-1,2]上的最大值为g =-2×+3×+1=,符合题34(34)(34)234178意.∴存在q=2,使函数g (x )=1-qf (x )+(2q-1)x 在区间[-1,2]上的值域为.[-4,178]。
2019秋高中数学第二章基本初等函数Ⅰ2.3幂函数练习含解析新人教A版必修1

2.3 幂函数A 级 基础巩固一、选择题1.下列函数中不是幂函数的是( ) A .y =x B .y =x3C .y =22xD .y =x -1解析:显然C 中y =22x=4x,不是y =x α的形式,所以不是幂函数,而A ,B ,D 中的α分别为12,3,-1,符合幂函数的结构特征.答案:C2.下列函数中既是偶函数又在(-∞,0)上是增函数的是( )A .y =x 43 B .y =x 32 C .y =x -2D .y =x -14解析:对于幂函数y =x α,如果它是偶函数,当α<0时,它在第一象限为减函数,在第二象限为增函数,则C 选项正确.答案:C3.幂函数y =x 2,y =x -1,y =x 13,y =x -12在第一象限内的图象依次是图中的曲线( )A .C 2,C 1,C 3,C 4B .C 4,C 1,C 3,C 2 C .C 3,C 2,C 1,C 4D .C 1,C 4,C 2,C 3解析:由于在第一象限内直线x =1的右侧时,幂函数y =x α的图象从上到下相应的指数α由大变小,故幂函数y =x 2在第一象限内的图象为C 1,同理,y =x -1在第一象限的图象为C 4,y =x 13在第一象限内的图象为C 2,y =x -12在第一象限内的图象为C 3.答案:D4.已知幂函数y =f (x )的图象过(4,2)点,则f ⎝ ⎛⎭⎪⎫12=( )A. 2B.12C.14D.22解析:设幂函数f (x )=x α,由图象经过点(4,2), 可得4α=2,即22α=2, 所以2α=1,α=12,即f (x )=x 12. 故f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1212=22.答案:D5.设a =⎝ ⎛⎭⎪⎫2525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫3525,则a ,b ,c 的大小关系是( ) A .a <b <c B .b <a <c C .c <a <bD .b <c <a解析:由于函数y =⎝ ⎛⎭⎪⎫25x在它的定义域R 上是减函数,所以a =⎝ ⎛⎭⎪⎫2525>b =⎝ ⎛⎭⎪⎫2535>0.由于函数y =x 25在它的定义域R 上是增函数,且35>25,故有c =⎝ ⎛⎭⎪⎫3525>a =⎝ ⎛⎭⎪⎫2525,故a ,b ,c 的大小关系是b <a <c .答案:B 二、填空题6.给出下面四个条件:①f (m +n )=f (m )+f (n );②f (m +n )=f (m )·f (n );③f (mn )=f (m )·f (n );④f (mn )=f (m )+f (n ).如果m ,n 是幂函数y =f (x )定义域内的任意两个值,那么幂函数y =f (x )一定满足的条件的序号为________.解析:设f (x )=x α,则f (m +n )=(m +n )α,f (m )+f (n )=m α+n α,f (m )·f (n )=m α·nα=(mn )α,f (mn )=(mn )α,所以f (mn )=f (m )·f (n )一定成立,其他三个不一定成立,故填③.答案:③7.幂函数f (x )=x 3m -5(m ∈N)在(0,+∞)上是减函数,且f (-x )=f (x ),则m 等于________.解析:因为幂函数f (x )=x 3m -5(m ∈N)在(0,+∞)上是减函数,所以3m -5<0,即m <53,又m ∈N ,所以m =0或m =1,因为f (-x )=f (x ),所以函数f (x )是偶函数, 当m =0时,f (x )=x -5,是奇函数; 当m =1时,f (x )=x -2,是偶函数. 所以m =1. 答案:18.若f (x )=x α是幂函数,且满足f (4)f (2)=3,则f ⎝ ⎛⎭⎪⎫12=________. 解析:因为f (4)f (2)=3,所以4α2α=3,即2α=3,所以f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12α=2-α=3-1=13.答案:13三、解答题9.已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时:(1)f (x )是幂函数? (2)f (x )是正比例函数? (3)f (x )是反比例函数? (4)f (x )是二次函数? 解:(1)因为f (x )是幂函数, 故m 2-m -1=1,即m 2-m -2=0, 解得m =2或m =-1. (2)若f (x )是正比例函数, 则-5m -3=1,解得m =-45.此时m 2-m -1≠0,故m =-45.(3)若f (x )是反比例函数, 则-5m -3=-1,则m =-25,此时m 2-m -1≠0,故m =-25.(4)若f (x )是二次函数,则-5m -3=2, 即m =-1,此时m 2-m -1≠0,故m =-1.10.已知幂函数f (x )的图象过点(25,5). (1)求f (x )的解析式;(2)若函数g (x )=f (2-lg x ),求g (x )的定义域、值域. 解:(1)设f (x )=x α,则由题意可知25α=5, 所以α=12,所以f (x )=x 12.(2)因为g (x )=f (2-lg x )=2-lg x , 所以要使g (x )有意义,只需2-lg x ≥0, 即lg x ≤2,解得0<x ≤100. 所以g (x )的定义域为(0,100],又2-lg x ≥0,所以g (x )的值域为[0,+∞).B 级 能力提升1.对于幂函数f (x )=x 45,若0<x 1<x 2,则f ⎝ ⎛⎭⎪⎫x 1+x 22,f (x 1)+f (x 2)2的大小关系是( ) A .f ⎝ ⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2B .f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2 C .f ⎝⎛⎭⎪⎫x 1+x 22=f (x 1)+f (x 2)2 D .无法确定解析:幂函数f (x )=x 45在(0,+∞)上是增函数,大致图象如图所示.设A (x 1,0),C (x 2,0),其中0<x 1<x 2,则AC 的中点E 的坐标为⎝⎛⎭⎪⎫x 1+x 22,0,|AB |=f (x 1),|CD |=f (x 2), |EF |=f ⎝⎛⎭⎪⎫x 1+x 22.因为|EF |>12(|AB |+|CD |),所以f ⎝⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2.答案:A2.已知函数f (x )=⎩⎪⎨⎪⎧a x,x ≤03a -x 12,x >0(a >0,且a ≠1)是R 上的减函数,则实数a 的取值范围是________.解析:当x ≤0时,由f (x )=a x为减函数,知0<a <1;当x >0时,由f (x )=3a -x 12为减函数,知a ∈R ,且要满足a 0≥3a ,解得a ≤13.综上,可知实数a 的取值范围为⎝ ⎛⎦⎥⎤0,13.答案:⎝ ⎛⎦⎥⎤0,133.已知幂函数f (x )=x1m 2+m(m ∈N *). (1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解:(1)因为m 2+m =m (m +1),m ∈N *, 所以m 与m +1必定有一个为偶数, 所以m 2+m 为偶数,所以函数f (x )=x 1m 2+m (m ∈N *)的定义域为[0,+∞),并且该函数在其定义域上为增函数. (2)因为函数f (x )经过点(2,2), 所以2=21m 2+m ,即212=21m 3+m ,所以m 2+m =2,即m 2+m -2=0. 所以m =1或m =-2. 又因为m ∈N *,所以m =1.因为f (x )在[0,+∞)上是增函数, 所以由f (2-a )>f (a -1)得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32.故m 的值为1,满足条件f (2-a )>f (a -1)的实数a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章基本初等函数(1)
2.3 幂函数
测试题
知识点:幂函数的概念
1、下列函数中是幂函数的是( )
A.y=
B.y=2x-2
C.y=x+1
D.y=1
2、下列函数中,是幂函数的是( )
A.y=2x
B.y=2x3
C.y=
D.y=2x2
3、已知幂函数的图象过点(8,2),则其解析式是( )
A.y=x+2
B.y=
C.y=
D.y=x3
4、下列幂函数中过点(0,0),(1,1)的偶函数是( )
A.y=
B.y=x4
C.y=x-2
D.y=
5、下列函数:①y=x2+1;②y=;③y=3x2-2x+1;④y=x-3;⑤y=+1.其中是幂函数的是( )
A.①⑤
B.①②③
C.②④
D.②③⑤
6、(2014·石家庄高一检测)已知幂函数y=f(x)的图象过点,则f(25)= .
7、若函数f(x)是幂函数,且满足=3,则f的值等于.
8、比较下列各组数的大小:
(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;
(3)0.20.3,0.30.3,0.30.2.
9、(2015·长治高一检测)若幂函数y=(m2-3m+3)x m-2的图象不过原点,则m的取值范围为( )
A.1≤m≤2
B.m=1或m=2
C.m=2
D.m=1
10、函数y=x-2在区间上的最大值是( )
A. B. C.4 D.-4
11、在下列函数中,定义域为R的是( )
A.y=
B.y=
C.y=2x
D.y=x-1
12、幂函数f(x)=xα过点,则f(x)的定义域是.
13、(2015·铁岭高一检测)若y=a是幂函数,则该函数的值域是.
知识点:常见幂函数的图像和性质
14、(2015·沈阳高一检测)下列幂函数在(-∞,0)上为减函数的是( )
A.y=
B.y=x2
C.y=x3
D.y=
15、函数y=x-2在区间上的最大值是( )
A. B. C.4 D.-4
16、幂函数y=x-2的图象大致是( )
17、(2014·宿州高一检测)已知函数f(x)=(m2+2m),m为何值时,f(x)是(1)正比例函数.(2)反比例函数.(3)二次函数.(4)幂函数.
18、(2014·济宁高一检测)当x∈(0,+∞)时,幂函数y=(m2-m-1)x m为减函数,则实数m的值为.
19、若函数f(x)是幂函数,且满足=3,则f的值等于.
【参考答案】
1
【解析】选A.y==符合幂函数的定义,而B,C,D均不是幂函数.
【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项2
C中y==x-1符合幂函数的特征.
【解析】选B.设幂函数解析式为y=xα,因为图象过点(8,2),所以8α=2,所以α=,所3
以y=.
【解析】选B.因为y=是非奇非偶函数,y=是奇函数,y=x-2图象不过点(0,0),所以4
A,C,D均不正确.
5 【解析】选C.由幂函数所具有的特征可知②④符合,而①③⑤中有常数项1,均不符合
幂函数的特征.
6 【解析】设f(x)=xα,代入得9α=. 即32α=3-1,所以2α=-1,所以α=-.
所以f(x)=,所以f(25)=2=.
答案:
7 【解析】依题意设f(x)=xα,则有=3,得α=log
2
3,
则f(x)=,于是f====. 答案:
8 【解析】(1)由于函数y=x0.1在第一象限内单调递增,
又因为1.1<1.2,所以1.10.1<1.20.1.
(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.
(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.
再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.
所以0.20.3<0.30.3<0.30.2.
9 【解析】选D.由题意得解得m=1.
10
【解析】选C.y=x-2在区间上单调递减,
所以x=时,取得最大值为4.
11
【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).
12 【解析】因为幂函数f(x)过点,所以=2α, 所以α=-1,所以f(x)=x-1=,
所以函数f(x)的定义域是(-∞,0)∪(0,+∞). 答案:(-∞,0)∪(0,+∞)
13 【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).
答案:[0,+∞)
14
【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数.
15
【解析】选C.y=x-2在区间上单调递减,
所以x=时,取得最大值为4.
16
【解析】选B.因为y=x-2=,所以y=x-2是定义域为{x|x≠0}的偶函数,故选B.
17 【解析】(1)当m2+m-1=1,且m2+2m≠0时,即m=1,f(x)是正比例函数.
(2)当m2+m-1=-1,且m2+2m≠0时,即m=-1,f(x)是反比例函数.
(3)当m2+m-1=2,且m2+2m≠0时,即m=,f(x)是二次函数.
(4)当m2+2m=1时,即m=-1±,f(x)是幂函数.
18 【解析】由于函数y=(m2-m-1)x m为幂函数,
所以m2-m-1=1,解得m=-1或m=2.
当m=2时函数在(0,+∞)上递增,所以要舍去. 当m=-1时函数在(0,+∞)上递减,
所以m=-1符合题意,故填-1.
答案:-1
19 【解析】依题意设f(x)=xα,则有=3,得α=log23,
则f(x)=,于是f====. 答案:。