2019年上海市崇明县中考数学二模试卷含答案解析
上海市2019年中考数学真题与模拟题分类 专题11 图形的性质之填空题(65道题)(解析版)(1)

专题11 图形的性质之填空题参考答案与试题解析一.填空题(共65小题)1.(2019•上海)如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=120度.【答案】解:∵D是斜边AB的中点,∴DA=DC,∴∠DCA=∠DAC=30°,∴∠2=∠DCA+∠DAC=60°,∵11∥l2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.【点睛】本题考查了直接三角形斜边上的中线:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).也考查了平行线的性质.2.(2019•上海)在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.【答案】解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,∴AB5,设AD=x,则BD=5﹣x,∵△ACD≌△C1A1D1,∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,∴∠C1D1B1=∠BDC,∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,∴∠B1C1D1=∠B,∴△C1B1D∽△BCD,∴,即2,解得x,∴AD的长为,故答案为.【点睛】本题考查了全等三角形的性质,勾股定理的应用,三角形相似的判定和性质,证得△C1B1D∽△BCD是解题的关键.3.(2019•上海)如图,在正边形ABCDEF中,设,,那么向量用向量、表示为2.【答案】解:连接CF.∵多边形ABCDEF是正六边形,AB∥CF,CF=2BA,∴2,∵,∴2,故答案为2.【点睛】本题考查平面向量,正六边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.4.(2018•上海)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是540度.【答案】解:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形.所以该多边形的内角和是3×180°=540°.故答案为540.【点睛】本题考查了多边形内角与外角:多边的内角和定理:(n﹣2)•180 (n≥3)且n为整数).此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形.5.(2017•上海)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.【答案】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC是正六边形的最短的对角线,∵△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴cos30°,∴λ6,故答案为.【点睛】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.6.(2019•浦东新区二模)已知一个角的度数为50度,那么这个角的补角等于130°.【答案】解:180°﹣50°=130°.故这个角的补角等于130°.故答案为:130°.【点睛】本题考查的是余角和补角的定义,如果两个角的和是一个直角,那么称这两个角互为余角.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.7.(2019•青浦区一模)对于封闭的平面图形,如果图形上或图形内的点S到图形上的任意一点P之间的线段都在图形内或图形上,那么这样的点S称为“亮点”.如图,对于封闭图形ABCDE,S1是“亮点”,S2不是“亮点”,如果AB∥DE,AE∥DC,AB=2,AE=1,∠B=∠C=60°,那么该图形中所有“亮点”组成的图形的面积为.【答案】解:如图,延长DE交BC于点M,延长AE交BC于点N.由题意:该图形中所有“亮点”组成的图形是△EMN,∵AB∥DE,AE∥DC,∴∠EMN=∠B=60°,∠ENM=∠C=60°,∴△EMN,△ABN是等边三角形,∴AN=AB=2,∵AE=1,∴EN=1,∴S△EMN12.【点睛】本题考查平行线的性质,等边三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.(2019•宝山区一模)如图,四边形ABCD中,AB∥DC,点E在CB延长线上,∠ABD=∠CEA,若3AE =2BD,BE=1,那么DC=.【答案】解:∵AB∥DC,∴∠ABD=∠BDC,∵∠ABD=∠CEA,∴∠AEB=∠BDC,∴∠EAB=180°﹣∠AEB﹣∠ABE,∠CBD=180°﹣∠ABD﹣∠ABE,∴∠EAB=∠CBD,∴△AEB∽△BDC,∴,∵3AE=2BD,BE=1,∴CD,故答案为:.【点睛】本题考查了平行线的性质,相似三角形的判定和性质,证得△AEB∽△BDC是解题的关键.9.(2019•青浦区二模)如图,△ABC的中线AD、BE相交于点G,若,,用、表示.【答案】解:如图,连接DE.∵BD=CD,AE=EC,∴DE∥AB,DE AB,∴,∴DG AD,∴,,,∴,∵,∴,故答案为:,【点睛】本题考查三角形的重心,平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(2019•嘉定区二模)各顶点都在方格纸横竖格子线的交错点上的多边形称为格点多边形,奥地利数学家皮克(G.Pick,1859~1942年)证明了格点多边形的面积公式:S=a b﹣1,其中a表示多边表内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图格点多边形的面积是6.【答案】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴格点多边形的面积S=a b﹣1=46﹣1=6.故答案为:6.【点睛】本题考查格点多边形面积的计算,解题的关键是根据图形正确统计出a,b的值.11.(2019•长宁区二模)我们规定:一个多边形上任意两点间距离的最大值称为该多边形的“直径”.现有两个全等的三角形,边长分别为4、4、.将这两个三角形相等的边重合拼成对角线互相垂直的凸四边形,那么这个凸四边形的“直径”为6或3.【答案】解:①如图1,由题意得,AB=AC=BD=CD=4,BC=2,∴四边形ABDC是菱形,∴AD⊥BC,BO=CO AC,AO=OD,∴AO3,∴AD=6>2BC,∴这个凸四边形的“直径”为6;②如图2,由题意得,AB=AC=AD=4,BC=CD=2,∴AC垂直平分BD,∴AC⊥BD,BO=DO,设AO=x,则CO=4﹣x,由勾股定理得,AB2﹣AO2=BC2﹣CO2,∴42﹣x2=(2)2﹣(4﹣x)2,解得:x,∴AO,∴BO,∴BD=2BO=3,∵BD=3>4=AC,∴这个凸四边形的“直径”为3,综上所述:这个凸四边形的“直径”为6或3,故答案为:6或3.【点睛】本题考查了全等三角形的性质,线段垂直平分线的判定和性质,菱形的判定和性质,勾股定理,正确的作出图形是解题的关键.12.(2019•黄浦区二模)如图,点O是△ABC的重心,过点O作DE∥AB,分别交AC、BC于点D、E,如果,那么a.(结果用表示).【答案】解:如图,连接CO并延长交AB于点M,∵点O是△ABC的重心,∴M是AB的中点,∵DE∥AB,∴△CDO∽△CAM,∴,∴DO AM a a.故答案为:a.【点睛】本题考查三角形重心的概念和性质,相似三角形的判定和性质.解题的关键是掌握三角形重心的概念和性质.13.(2019•金山区二模)在△ABC中,AB=AC,请你再添加一个条件使得△ABC成为等边三角形,这个条件可以是∠A=60°(只要写出一个即可).【答案】解:在△ABC中,AB=AC,再添加∠A=60°可得△ABC是等边三角形,故答案为:∠A=60°.【点睛】此题主要考查了等边三角形的判定,关键是掌握等边三角形的判定方法:(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.14.(2019•奉贤区二模)在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).如果小正方形的面积是25,大正方形的面积为49,直角三角形中较小的锐角为α,那么tanα的值是.【答案】解:∵小正方形的面积是25,∴EB=5,∵△ABC≌△DEB,∴AB=DE,∵大正方形的面积为49,∴AD=7,∴DB+DE=7,设BD=x,则DE=7﹣x,在Rt△BDE中:x2+(7﹣x)2=52,解得:x1=4,x2=3,当x=4时,7﹣x=3,当x=3时,7﹣x=4,∵α为较小的锐角,∴BD=4,DE=3,∴tanα ,故答案为:.【点睛】此题主要考查了勾股定理和锐角三角形函数,关键是掌握勾股定理的应用.15.(2019•杨浦区二模)如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设,,用,表示,那么.【答案】解:连接AG,延长AG交BC于F.∵G是△ABC的重心,DE∥BC,∴BF=CF,,∵,,∴,∵BF=CF,∴DG=GE,∵,,∴,∴,故答案为.【点睛】本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2019•闵行区一模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,点D、E分别在边AB上,且AD=2,∠DCE=45°,那么DE=.【答案】解:如图,将△BCE绕点C逆时针旋转90°得到△ACF,连接DF,∵∠ACB=90°,AC=BC=4,∴AB=8,∠CAB=∠ABC,∵AD=2,∴BD=6=DE+BE,∵将△BCE绕点C逆时针旋转90°得到△ACF∴△AFC≌△BEC∴AF=BE,CF=EC,∠F AC=∠ABC=45°=∠CAB,∠ACF=∠BCE,∴∠F AD=90°∵∠DCE=45°,∠ACB=90°,∴∠ACD+∠BCE=45°,∴∠ACD+∠FCA=45°=∠DCE,且CF=BC,CD=CD,∴△FCD≌△ECD(SAS)∴DE=DF,在Rt△ADF中,DF2=AD2+AF2,∴DE2=4+(6﹣DE)2,∴DE故答案为【点睛】本题考查了全等三角形判定和性质,等腰三角形的性质,旋转的性质,添加恰当的辅助线构造全等三角形是本题的关键.17.(2019•松江区一模)如图,在直角坐标平面xOy中,点A坐标为(3,2),∠AOB=90°,∠OAB=30°,AB与x轴交于点C,那么AC:BC的值为.【答案】解:如图所示:作AD⊥x轴,垂足为D,作BE⊥y轴,垂足为E.∵A(3,2),∴OA,∵∠OAB=30°,∠AOB=90°,∴,∵∠AOB=90°,∠EOC=90°,∴∠EOB=∠AOD,又∵∠BEO=∠ADO,∴△OEB∽△ODA,∴,即,解得:OE,∵AC:BC=S△AOC:S△OBC=AD:OE=2:,故答案为:.【点睛】本题主要考查的是含30°的直角三角形的性质,相似三角形的判定和性质,证得△OEB∽△ODA 是解答本题的关键.18.(2019•宝山区一模)Rt△ABC中,∠C=90°,AB=2AC,那么sin B=.【答案】解:由题意,得sin B,故答案为:.【点睛】本题考查了锐角三角函数的定义,利用锐角的正弦等于对边比斜边是解题关键.19.(2019•杨浦区模拟)如图,在Rt△ABC中,∠ACB=90°,点G是△ABC的重心,CG=2,sin∠ACG ,则BC长为4.【答案】解:延长CG交AB于D,作DE⊥BC于E,∵点G是△ABC的重心,∵CG=2,∴CD=3,点D为AB的中点,∴DC=DB,又DE⊥BC,∴CE=BE BC,∵∠ACG+∠DCE=∠DCE+∠CDE=90°,∴∠ACG=∠CDE,∵sin∠ACG=sin∠CDE,∴CE=2,∴BC=4故答案为:4.【点睛】本题考查的是三角形的重心的概念和性质以及锐角三角函数的定义,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.20.(2019•虹口区一模)如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC 于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8.【答案】解:连接BG并延长交AC于H,∵G为ABC的重心,∴2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴2,∴BE=8,故答案为:8.【点睛】本题考查了三角形重心的性质,平行线分线段成比例定理,相似三角形的判定与性质,难度适中.准确作出辅助线是解题的关键.21.(2019•长宁区一模)如图,在等腰△ABC中,AB=AC,AD、BE分别是边BC、AC上的中线,AD与BE交于点F,若BE=6,FD=3,则△ABC的面积等于9.【答案】解:过E作EG⊥BC于G,∵AD、BE分别是边BC、AC上的中线,∴点F是△ABC的重心,∴AD=3DF=9,∵AB=AC,AD是边BC上的中线,∴AD⊥BC,BD=CD,∵BE是边AC上的中线,∴AE=CE,∵AD⊥BC,EG⊥BC,∴EG∥AD,∴EG AD,CG CD,∵BE=6,∴BG,∴BC BG=2,∴△ABC的面积9×29,故答案为:9.【点睛】本题考查了三角形的重心,等腰三角形的性质,三角形的面积,平行线分线段成比例定理,正确的作出辅助线是解题的关键.22.(2019•静安区一模)在中△ABC,∠C=90°,AC=8,BC=6,G是重心,那么G到斜边AB中点的距离是.【答案】解:∵∠C=90°,AC=8,BC=6,∴AB10,∵CD为AB边上的中线,∴CD AB=5,∵点G是重心,∴DG CD.故答案为:.【点睛】本题考查的是三角形的重心的概念和性质,掌握三角形的重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.23.(2019•青浦区一模)在△ABC中,AB=AC,高AH与中线BD相交于点E,如果BC=2,BD=3,那么AE=.【答案】解:如图所示,连接DH,∵AB=AC,AH⊥BC,∴H为BC的中点,又∵D为AC的中点,∴DH为△ABC的中位线,∴DH∥AB,DH AB,∴△DEH∽△BEA,∴,又∵BD=3,∴BE=2,∴Rt△BEH中,EH,∴AE=2EH=2,故答案为:2.【点睛】本题主要考查了等腰三角形的性质以及相似三角形的性质的运用,解题时注意:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.24.(2019•虹口区一模)定义:如果△ABC内有一点P,满足∠P AC=∠PCB=∠PBA,那么称点P为△ABC 的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果P A=2,那么PC=.【答案】解:∵AB=AC,∴∠ACB=∠ABC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,∠∠,∴△ACP∽△CBP,∴,∵AC=5,BC=8,P A=2,∴PC.故答案为.【点睛】本题考查等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是证明△ACP∽△CBP,属于中考常考题型.25.(2019•崇明区一模)已知△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,那么CG=.【答案】解:△ABC中,∠ACB=90°,AC=6,BC=8,∴AB10,∵G为△ABC的重心,∴CD是△ABC的中线,∴CD AB=5,∵G为△ABC的重心,∴CG CD,故答案为:.【点睛】本题考查的是三角形的重心的概念和性质,勾股定理,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.26.(2019•宝山区一模)直角三角形的重心到直角顶点的距离为4cm,那么该直角三角形的斜边长为12cm.【答案】解:由题意得,CG=4,∵点G是△ABC的重心,∴CD CG=6,CD是△ABC的中线,在Rt△ACB中,∠ACB=90°,CD是△ABC的中线,∴AB=2CD=12(cm),故答案为:12cm.【点睛】本题考查的是三角形的重心的概念和性质,直角三角形的性质,掌握三角形的重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.27.(2019•杨浦区一模)在△ABC中,AB=AC=5,BC=8,如果点G为重心,那么∠GCB的余切值为4.【答案】解:作AD⊥BC于D,则点G在AD上,连接GC,∵AB=AC,AD⊥BC,∴CD BC=4,由勾股定理得,AD3,∵G为△ABC的重心,∴DG AD=1,∴cot∠GCB4,故答案为:4.【点睛】本题考查的是重心的概念和性质,锐角三角函数的定义,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.28.(2019•杨浦区模拟)如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为.【答案】解:∵△ABC的三条中位线组成△A1B1C1,∴A1B1=AC,B1C1=AB,A1C1=BC,∴△A1B1C1的周长△ABC的周长3,依此类推,△A2B2C2的周长△A1B1C1的周长,则△A5B5C5的周长为,故答案为:.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,求出后一个三角形的周长等于前一个三角形的周长的一半是解题的关键.29.(2019•静安区二模)已知△ABC中,G是△ABC的重心,则.【答案】解:设△ABC边AB上的高为h,∵G是△ABC的重心,∴△ABG边AB上的高为h,∴.故答案为:.【点睛】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键,本知识点在很多教材上已经不做要求.30.(2019•杨浦区一模)等边三角形的中位线与高之比为1:.【答案】解:设等边三角形的边长为2a,则中位线长为a,高线的长为a,所以等边三角形的中位线与高之比为a:a=1:,故答案为:1:.【点睛】本题考查了等边三角形的性质和三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.31.(2019•东台市一模)等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【答案】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点睛】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.32.(2019•浦东新区二模)在四边形ABCD中,向量、满足,那么线段AB与CD的位置关系是平行.【答案】解:∵,∴与是共线向量,由于与没有公共点,∴AB∥CD,故答案为:平行.【点睛】本题考查共线向量,解题的关键是熟练运用共线向量的定义,本题属于基础题型.33.(2019•浦东新区二模)已知梯形的上底长为5厘米,下底长为9厘米,那么这个梯形的中位线长等于7厘米.【答案】解:梯形的中位线长(5+9)=7(厘米)故答案为:7.【点睛】本题考查的是梯形中位线的计算,梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.34.(2019•静安区二模)如图,在平行四边形ABCD中,点E、F是AB的三等分点,点G是AD的中点,联结EC、FG交于点M.已知,,那么向量.(用向量,表示).【答案】解:如图,延长FG交CD的延长线于H.∵四边形ABCD是平行四边形,∴AB∥CH,∴1,∴AF=DH,设AE=EF=FB=a,则AB=CD=3a,AF=DH=2a,CH=5a,∵EF∥CH,∴,∴CM CE,∵,∴,故答案为.【点睛】本题考查平面向量,平行四边形的性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,灵活运用平行线分线段成比例定理解决问题,属于中考常考题型.35.(2019•虹口区二模)如图,AD∥BC,BC=2AD,AC与BD相交于点O,如果,,那么用、表示向量是2.【答案】解:∵AD∥BC,∴△ADO∽△CBO,∴,∴332,故答案为:.【点睛】本题考查平面向量,解题的关键是熟练运用平面向量的运算法则,本题属于基础题型.36.(2019•虹口区二模)我们知道,四边形不具有稳定性,容易变形.一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.如图,矩形ABCD的面积为5,如果变形后的平行四边形A1B1C1D1的面积为3,那么这个平行四边形的变形度为.【答案】解:过A1作A1D⊥B1C1,设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,∴ab=5,3=ah,∴b,h,∴B1D,∴,故答案为:.【点睛】本题考查了平行四边形的性质,矩形的性质,三角函数的定义,正确的理解题意是解题的关键.37.(2019•嘉定区二模)如图,平行四边形ABCD的对角线AC、BD交于点O,过点O的线段EF与AD、BC分别交于点E、F,如果AB=4,BC=5,OE,那么四边形EFCD的周长为12.【答案】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF(AAS),∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故答案为:12.【点睛】本题利用了平行四边形的性质,由已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.38.(2019•松江区二模)如图,在△ABC中,D、E分别是边AB、AC的中点.设,,用、表示为2.【答案】解:∵D、E分别是边AB、AC的中点,∴DE∥BC,BC=2DE,∵,∴2,∴2,故答案为2.【点睛】本题考查平面向量,三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.39.(2019•长宁区二模)如图,在平行四边形ABCD中,点E是边CD的中点,联结AE、BD交于点F,若,,用、表示.【答案】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴,,∵DE=DC,∴,∴,∵DE∥AB,∴EF:AF=DE:AB=1:2,∴EF AE,∴∴故答案为.【点睛】本题考查平面向量,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.40.(2019•宝山区二模)如图,平行四边形ABCD的对角线AC,BD交于O,过点O的线段EF与AD,BC 分别交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为12.【答案】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故答案为:12.【点睛】本题利用了平行四边形的性质和已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.41.(2019•崇明区二模)如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么∠GCD的正切值为.【答案】解:连接FD,设正多边形的边长为a,∵在△FED中,EF=ED=a,∠FED=120°,∴FD a.∴DG=DF+FG=(1)a.在Rt△GCD中,tan∠GCD.故答案为.【点睛】本题主要考查正多边形的内角和及解直角三角形,解题的关键是在正六边形中求出DF长度.42.(2019•闵行区二模)如图,在△ABC中,点D在边AC上,且CD=2AD.设,,那么.(结果用向量、的式子表示)【答案】解:∵CD=2AD,,∴,∵,∴,故答案为:.【点睛】本题考查平面向量,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.43.(2019•崇明区二模)如图,在△ABC中,D、E分别在边AB、AC上,DE∥BC,BD=2AD,,,那么用、表示为:.【答案】解:∵DE∥BC,∴,∵,∴3,∵BD AB,,∴,∵,∴3,故答案为3.【点睛】本题考查平面向量,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.44.(2019•奉贤区二模)已知△ABC,点D、E分别在边AB、AC上,DE∥BC,DE.如果设,,那么.(用向量、的式子表示)【答案】解:如图,∵DE∥BC,DE BC,,∴3,∵,∴3,故答案为3.【点睛】本题考查平面向量,平行向量的性质,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.45.(2019•普陀区二模)如图,AD、BE是△ABC的中线,交于点O,设,,那么向量用向量、表示是2.【答案】解:∵AD、BE是△ABC的中线,交于点O,∴AO=2OD,∴2,∵,∴2,故答案为2.【点睛】本题考查平面向量,三角形法则,三角形的重心的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.46.(2019•金山区二模)如图,在▱ABCD中,E是边BC上的点,AE交BD于点F,,,,那么(用、表示).【答案】解:∵四边形ABCD是平行四边形,∴AD∥BC,AC=BC,∵BE:BC=2:3,∴BE:AD=2:3,∴AD BE,∵,∴,∵,∴,故答案为.【点睛】本题考查平行四边形的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.47.(2019•崇明区一模)如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,∠AMB=90°,则点M为直角点.若点E、F分别为矩形ABCD边AB、CD上的直角点,且AB=5,BC,则线段EF的长为或.【答案】解:作FH⊥AB于点H,连接EF.∵∠AFB=90°,∴∠AFD+∠BFC=90°,∵∠AMD+∠DAM=90°,∴∠DAF=∠BFC又∵∠D=∠C,∴△ADF∽△FCB,∴,即,∴FC=2或3.∵点F,E分别为矩形ABCD边CD,AB上的直角点,∴AE=FC,∴当FC=2时,AE=2,EH=1,∴EF2=FH2+EH2=()2+12=7,∴EF.当FC=3时,此时点E与点H重合,即EF=BC,综上,EF或.故答案为:或.【点睛】此题考查了相似三角形的判定定理及性质和勾股定理,得出△ADF∽△FCB是解题关键.48.(2019•徐汇区一模)如图,在梯形ABCD中,AD∥BC,EF是梯形ABCD的中位线,AH∥CD分别交EF、BC于点G、H,若,,则用、表示.【答案】解:∵在梯形ABCD中,AD∥BC,则AD∥HC,AH∥CD,∴四边形AHCD是平行四边形.∴AD=HC.又EF是梯形ABCD的中位线,∴EF,且GF=AD.∴EG=EF﹣GF AD.∵,,∴.故答案是:.【点睛】考查了平面向量和梯形中位线定理,注意:向量既有大小又有方向.49.(2019•普陀区一模)如图,在梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,tan∠ABD,BC=5,那么DC的长等于2.【答案】解:∵AB⊥BC,∴∠ABD+∠DBC=90°,∵BD⊥DC,∴∠C+∠DBC=90°,∴∠ABD=∠C,∴tan C,∴BD CD,由勾股定理得,BD2+CD2=BC2,即(CD)2+CD2=52,解得,CD=2,故答案为:2.【点睛】本题考查的是梯形的性质,正切的定义,勾股定理,掌握梯形的性质,正切的定义是解题的关键.50.(2019•宝山区一模)若2||=3,那么3||=.【答案】解:由2||=3得到:||,故3||=3.故答案是:.【点睛】考查了平面向量的知识,解题时,可以与实数的运算法则联系起来考虑,属于基础题. 51.(2019•嘉定区一模)如果向量、、满足关系式2(3)=4,那么2(用向量、表示).【答案】解:2(3)=42340202故答案是:2.【点睛】考查平面向量,此题是利用方程思想求得向量的值的,难度不大.52.(2019•闵行区一模)化简:()=.【答案】解:()=()(1).故答案是:.【点睛】考查了平面向量的知识,实数的加减运算法则同样适用于平面向量的加减计算.53.(2019•青浦区一模)计算:3(2)﹣2(3)=.【答案】解:3(2)﹣2(3)=3323=(3﹣2)(﹣3+3).故答案是:.【点睛】考查了平面向量,熟练掌握平面向量的加法结合律即可解题,属于基础计算题.54.(2019•浦东新区一模)已知向量与单位向量的方向相反,||=4,那么向量用单位向量表示为﹣4.【答案】解:∵向量与单位向量的方向相反,||=4,∴4.故答案是:﹣4.【点睛】此题考查了平面向量的知识.此题比较简单,注意掌握单位向量的知识.55.(2019•虹口区一模)计算:2(3)=33【答案】解:原式=2333.故答案是:33.【点睛】考查了平面向量,掌握平面向量的加减计算法则即可解题,属于基础计算题.56.(2019•崇明区一模)化简:.【答案】解:原式.故答案是:.【点睛】考查了平面向量,解答此类题目时,直接去括号,然后计算加减法即可.57.(2019•黄浦区一模)如果向量与单位向量方向相反,且长度为2,那么向量﹣2(用单位向量表示).【答案】解:∵的长度为2,向量是单位向量,∴a=2e,∵与单位向量的方向相反,∴2.故答案为:﹣2.【点睛】本题考查的是平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.58.(2019•黄浦区一模)如图,平行四边形ABCD中,点E是BC边上的点,BE:EC=1:2,AE与BD交于点O,如果,,那么()(用向量、表示).【答案】解:∵,,∴.∵在平行四边形ABCD中,AD∥BC,AD=BC,BE:EC=1:2,∴.∴AO AE().故答案是:().【点睛】考查了平面向量和平行四边形的性质,解题时,需要熟练掌握向量的三角形法则,注意向量是有方向的.59.(2019•金山区一模)如图,已知O为△ABC内一点,点D、E分别在边AB、AC上,且,DE ∥BC,设、,那么(用、表示).【答案】解:∵,DE∥BC,∴,∴DE BC.∵、,,∴.故答案是:.【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.60.(2019•徐汇区一模)计算:(2)﹣47.【答案】解::(2)﹣4247.故答案是:7.【点睛】本题考查了平面向量的有关概念,是基础题.61.(2019•普陀区一模)化简:3()﹣2()=.【答案】解:3()﹣2()=322(3﹣2)(2).故答案是:.【点睛】考查了平面向量,解题的关键是掌握平面向量的计算法则.62.(2019•奉贤区一模)计算:32()=5.【答案】解:32()=325;故答案为5;【点睛】本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.63.(2019•奉贤区一模)如果正n边形的内角是它中心角的两倍,那么边数n的值是6.【答案】解:依题意有2,解得n=6.故答案为:6.【点睛】此题考查了多边形内角与外角,此题比较简单,解答此题的关键是熟知正多边形的内角和公式及中心角的求法.64.(2019•金平区一模)如果多边形的每个外角都是45°,那么这个多边形的边数是8.【答案】解:多边形的边数是:8,故答案为:8.【点睛】本题主要考查了多边形的外角和定理,理解多边形外角和中外角的个数与正多边形的边数之间的关系,是解题关键.。
上海市崇明县2019年中考数学模拟试卷(含答案)

- 1 -崇明县2019年初三学业考试模拟考数 学 试 卷(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1、下列计算中,正确的是…………………………………………………………………( ) (A )633a a a =+(B )532)(a a =(C )842a a a =⋅ (D )a a a =÷342、不等式组⎩⎨⎧<>-4201x x 的解集是……………………………………………………………( )(A )x >1(B )x <2(C )1<x <2(D )无解3、已知反比例函数xky =的图像经过点(3,2-),则k 的值是………………………( ) (A )6-(B )6(C )32 (D )32-4、把抛物线2x y =向右平移2个单位后得到的抛物线是 ………………………………( ) (A )22+=x y(B )22-=x y(C )2)2(+=x y(D )2)2(-=x y5、若是非零向量,则下列等式中,正确的是…………………………………………( ) (A )+0=(B0= (C=(D=-6、四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是 …………( ) (A )CD AB =(B )BC AB =(C )BC AD =(D )BD AC =二、填空题(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]- 2 -7、分解因式:=-92x . 8、方程x x =+2的解是________.9、已知x 、y 满足方程组⎩⎨⎧=+=+4252y x y x ,则y x -的值为 .10、如果关于x 的一元二次方程022=+-m x x 有两个不相等的实数根,那么m 的取值范围是 .11、某电动自行车厂三月份的产量为1000辆,由于市场需求不断扩大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 . 12、化简:=-+___________.13、在半径为5的圆中,︒30的圆心角所对弧的弧长为 (结果保留π). 14、在菱形ABCD 中,若︒=∠60A ,对角线8=BD ,则菱形的周长等于 . 15、在一个不透明的口袋中,装有若干个除顔色不同外其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为31,那么口袋中球的总数为 个.16、已知一斜坡的坡度3:1=i ,那么这一斜坡的坡角是 度. 17、已知⊙1O 和⊙2O 的半径分别为3cm 和5cm ,且它们相切,则圆心距=21O O cm . 18、如图,AB 是圆O 的直径,2=AB ,弦3=AC ,若D 为圆上一点,且1=AD ,则=∠DAC 度.三、解答题(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸上] 19、(本题满分10分)计算:31020098)45(cos )1(+-+-- π20、(本题满分10分) 解方程:212312=---x xx xB- 3 -21、(本题满分10分)如图:ABC ∆中,︒=∠90C ,21tan =A ,DE 是AB 的垂直平分线,2=BC . 求:(1)AED ∠sin 的值; (2)CE 的长.22、(本题满分10分)某学校为了解该校七年级学生的身高情况,抽样调查了部分同学身高,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm ,测量时精确到1cm ):(1)请根据所提供的信息补全频数分布直方图; (2)样本的中位数落在 (身高值)段中;(3)如果该校七年级共有500名学生,那么估计全校身高在160cm 或160cm 以上的七年级学生有 人;(4)如果上述七年级样本的平均数为157cm ,方差为0.8;该校八年级学生身高的平均数为159cm ,方差为0.6,那么_________学生的身高比较整齐.(填“七年级”或“八年级”)/cm165~170cm CAEDB- 4 -23、(本题满分12分)如图,在直角梯形纸片ABCD 中,AB ∥DC ,︒=∠90A ,AD CD >,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E 处,折痕为DF .连接EF 并展开纸片. (1)求证:四边形ADEF 是正方形;(2)取线段AF 的中点G ,连接EG ,如果CD BG =,试说明四边形GBCE 是等腰梯形.24、(本题满分12分)如图,抛物线32++=bx ax y 与y 轴交于点C ,与x 轴交于A 、B 两点,31tan =∠OCA , 6=∆ABC S .(1)求点B 的坐标;(2)求抛物线的解析式及顶点坐标;(3)设点E 在x 轴上,点F 在抛物线上,如果A 、C 、E 、F 构成平行四边形,请写出点E 的坐标(不必书写计算过程).ECBDA25、(本题满分14分)在等腰ABC=BC cm,动点P、Q分别从A、B两点同时出发,AB cm,6=AC=∆中,已知5沿AB、BC方向匀速移动,它们的速度都是1 cm/秒. 当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(秒).(1)当t为何值时,PQ⊥AB?(2)设四边形APQC的面积为y cm2,写出y关于t的函数关系式及定义域;(3)分别以P、Q为圆心,P A、BQ长为半径画圆,若⊙P与⊙Q相切,求t的值;(4)在P、Q运动中,BPQ∆能否相似?若能,请求出AP的长;若不能,请说明理由.∆与ABC(备用图)- 5 -- 6 -崇明县2009年初三学业考试模拟考数学试卷试卷答案09.5.8一、选择题:1、D ;2、C ;3、A ;4、D ;5、C ;6、B 二、填空题:7、)3)(3(-+x x ; 8、2=x ; 9、1; 10、1<m ; 11、10%; 12、; 13、π65; 14、32; 15、12; 16、30°; 17、2或8; 18、30或90 三、解答题:19、解:原式=2211+-+- …………………………………… 8分(每项各2分) =22- ………………………………………………………2分 20、解:)12(231222-=--x x x x )( ……………………………………2分 ∴01232=-+x x ………………………………………………2分 ∴311=x ,12-=x ………………………………………………4分 经检验:311=x ,12-=x 都是原方程的根……………………………1分 所以,原方程的根为311=x ,12-=x ………………………………1分 21、解:(1)∵∠C=900,tanA=21,BC=2 ∴ AC=4………………………………………2分 AB=416+=25…………………………1分∵ED ⊥AB∴sin ∠AED= sinB=552=AB AC ……………2分 (2) 方法一:∵sin ∠AED=AEAD…………………1分 ∴AE5552=………………………………1分 EDCBA- 7 -∴AE=25………………………………………1分 ∴CE =23254=-……………………………………………2分 方法二:∵∠A=∠A ,∠C=∠ADE∴△ADE ∽△ACB ……………………………………………2分 ∵AE=-4CE ∴45524=-CE ……………………………………………-1分 ∴CE=23………………………………………………………2分22、解:(1)略…………………………………………………………4分 (2)155——160………………………………………………2分(3)160…………………………………………………………2分 (4)八年级……………………………………………………2分23、解:(1)∵△ADF ≌△EDF∴∠DEF=∠A=90°……………………1分 ∵AB ∥DC∴∠ADE=90°…………………………1分 ∴四边形ADEF 为矩形………………2分 又∵DA=DE∴ADEF 为正方形……………………2分(2)过C 作CH ⊥AB ,垂足为H ……………………1分∵CE ∥BG ,CE≠BG∴EGBC 是梯形……………………………………1分 ∵CH ⊥AB ∴∠CHA=90°又∵∠CDA=∠DAH=90° ∴ CDAH 为矩形∴CD=AH …………………………………………1分 又∵BG=CD ∴BG=AH- 8 -∴BH=AG 又∵AG=GF∴GF=HB …………………………………………1分 又∵∠EFG=∠CHB ,EF=CH∴ △EFG ≌△CHB ………………………………1分 ∴EG=CB∴ EGBC 为等腰梯形……………………………1分24、解:(1)∵ 32++=bx ax y∴C (0,3) ………………………………………………1分 又∵tan ∠OCA=31∴A (1,0)……………………………………………1分 又∵S △ABC =6 ∴6321=⨯⨯AB ∴AB=4 …………………………………………………1分 ∴B (3-,0)…………………………………………1分 (2)把A (1,0)、B (3-,0)代入32++=bx ax y 得:⎩⎨⎧+-=++=339030b a b a …………………………………………1分∴1-=a ,2-=b∴322+--=x x y ……………………………………2分∵4)1(2++-=x y∴顶点坐标(1-,4)………………………………1分(3)①AC 为平行四边形的一边时E 1析(1-,0) ………………………………………1分 E 2(--27,0)………………………………1分 E 3(+-27,0)………………………………1分②AC 为平行四边形的对角线时E 4(3,0)…………………………………………1分- 9 - 25、解:(1)过A 作AH ⊥BC ,垂足为H∵AB=AC ,AH ⊥BC ∴BH =21BC =3…………………………………1分 又∵PQ ⊥AB ∴cos ∠B=BQBPAB BH =…………………………1分 ∴tt 553-= ∴t=825…………………………………………1分(2)过P 作PM ⊥BC ,垂足为M∵PM ⊥BC AH ⊥BC ∴PM ∥AH ∴AH PMBA BP =………………………………………………1分 ∴45t 5PM=- ∴PM=t 544-………………………………………………1分 ∴S △PBQ =2522t t -∴ 252212t t S S y PBQ ABC +-=-=∆∆…………………1分 定义域 0<t <5……………………………………………1分 (3)∵ PA=BQ=t∴ 两圆只能外切……………………………1分过Q 作QN ⊥AB ,垂足为N ∴ QN=t 54, BN=t 53,PN=t 585-又∵∠PNQ=90°- 10 - ∴222)54()585()2(t t t +-=………………1分 ∴212510+-=t ………………………………1分 (4)能,有二种情况:① ∵△BPQ ∽△BAC ∴BCBQBA BP =……………………………………1分 ∴6t5t 5=- ∴t=1130…………………………………………1分 ②∵△BPQ ∽△BAC ∴BA BQBC BP =……………………………………1分 ∴5t6t 5=- ∴t=1125…………………………………………1分 所以,当t=1130或t=1125秒时,两个三角形相似。
上海市崇明县2019-2020学年中考数学第二次押题试卷含解析

上海市崇明县2019-2020学年中考数学第二次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,等边△ABC 内接于⊙O ,已知⊙O 的半径为2,则图中的阴影部分面积为( )A .8233π- B .433π- C .8333π- D .9344π- 2.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=25°,则∠2的度数是( )A .25°B .30°C .35°D .55°3.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定4.一元二次方程2240x x ++=的根的情况是( ) A .有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根D .没有实数根5.如图,在圆O 中,直径AB 平分弦CD 于点E ,且3AC ,OD,若∠A 与∠DOB 互余,则EB 的长是( )A.23B.4 C.3D.26.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限7.如图①是半径为2的半圆,点C是弧AB的中点,现将半圆如图②方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是( )A.43πB.43π3C.33πD.3﹣23π8.某车间20名工人日加工零件数如表所示:日加工零件数4 5 6 7 8人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、69.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是()A.y=3x2+2 B.y=3(x﹣1)2C.y=3(x﹣1)2+2 D.y=2x210.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55 135 149 191 乙55 135 151 110 某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③11.抛物线y=x2+2x+3的对称轴是( )A.直线x=1 B.直线x=-1C.直线x=-2 D.直线x=212.下列计算正确的是()A.a²+a²=a4B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b二、填空题:(本大题共6个小题,每小题4分,共24分.)13.据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为__________.14.如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=________.15.在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是_____.16.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=42,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.17.分式方程34xx=1的解为_________.18.函数的自变量的取值范围是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是⊙O的直径,点E是»AD上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.20.(6分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:两次取出的小球标号相同;两次取出的小球标号的和等于4.21.(6分)如图,抛物线y=﹣x 2+bx+c 与x 轴交于A ,B 两点(A 在B 的左侧),其中点B (3,0),与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)将抛物线向下平移h 个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC 的边界),求h 的取值范围;(3)设点P 是抛物线上且在x 轴上方的任一点,点Q 在直线l :x=﹣3上,△PBQ 能否成为以点P 为直角顶点的等腰直角三角形?若能,求出符合条件的点P 的坐标;若不能,请说明理由.22.(8分)计算:3﹣2)0+11()3+4cos30°﹣|12|.23.(8分)先化简,再求值:(x ﹣2y )2+(x+y )(x ﹣4y ),其中x =5,y =15. 24.(10分)(问题情境)张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC 中,AB =AC ,点P 为边BC 上任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D ,E ,过点C 作CF ⊥AB ,垂足为F ,求证:PD+PE =CF .小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE =CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE =CF.[变式探究]如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;请运用上述解答中所积累的经验和方法完成下列两题:[结论运用]如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;[迁移拓展]图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=213dm,AD=3dm,BD=37dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.25.(10分)解不等式组:10241xx x+>⎧⎨+≥-⎩,并把解集在数轴上表示出来。
上海市2019年中考数学真题与模拟题分类 专题17 图形的变化之解答题(1)(50道题)(解析版)

专题17 图形的变化之解答题(1)参考答案与试题解析一.解答题(共50小题)1.(2019•上海)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【答案】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(4570)厘米.答:点D′到BC的距离为(4570)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.2.(2019•上海)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.【答案】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.【点睛】本题考查了相似三角形的性质和判定,圆心角、弧、弦之间的关系,线段垂直平分线的性质,菱形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.3.(2019•上海)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【答案】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD∠BAC,同理∠ABD∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE(∠ABC+∠BAC)=90°∠C,∴∠E=90°﹣(90°∠C)∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,,∵BD:DE=2:3,∴cos∠ABC.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E∠C,∴∠ABC=∠E∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时2.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时2.综上所述,∠ABC=30°或45°,2或2.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.4.(2018•上海)如图,已知△ABC中,AB=BC=5,tan∠ABC.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.【答案】解:(1)作A作AE⊥BC,在Rt△ABE中,tan∠ABC,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC;(2)∵DF垂直平分BC,∴BD=CD,BF=CF,∵tan∠DBF,∴DF,在Rt△BFD中,根据勾股定理得:BD,∴AD=5,则.【点睛】此题考查了解直角三角形,线段垂直平分线的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.5.(2019•嘉定区二模)如图,在矩形ABCD中,点E是边AB的中点,△EBC沿直线EC翻折,使B点落在矩形ABCD内部的点P处,联结AP并延长AP交CD于点F,联结BP交CE于点Q.(1)求证:四边形AECF是平行四边形;(2)如果P A=PE,求证:△APB≌△EPC.【答案】证明:(1)由折叠得到EC垂直平分BP,设EC与BP交于Q,∴BQ=EQ∵E为AB的中点,∴AE=EB,∴EQ为△ABP的中位线,∴AF∥EC,∵AE∥FC,∴四边形AECF为平行四边形;(2)∵AF∥EC,∴∠APB=∠EQB=90°,由翻折性质∠EPC=∠EBC=90°,∠PEC=∠BEC,∵E为直角△APB斜边AB的中点,且AP=EP,∴△AEP为等边三角形,∠BAP=∠AEP=60°,∠CEP=∠CEB60°,在△ABP和△EPC中,∠∠,∴△ABP≌△EPC(AAS).【点睛】此题考查全等三角形的判定与性质,折叠的性质,熟练掌握全等三角形的判定与性质是解本题的关键.6.(2019•宝山区二模)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,联结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)如果P A=PE,联结BP,求证:△APB≌△EPC.【答案】证明:(1)由折叠得到EC垂直平分BP,设EC与BP交于Q,∴BQ=EQ∵E为AB的中点,∴AE=EB,∴EQ为△ABP的中位线,∴AF∥EC,∵AE∥FC,∴四边形AECF为平行四边形;(2)∵AF∥EC,∴∠APB=∠EQB=90°,由翻折性质∠EPC=∠EBC=90°,∠PEC=∠BEC∵E为直角△APB斜边AB的中点,且AP=EP,∴△AEP为等边三角形,∠BAP=∠AEP=60°,∠∠∠∠在△ABP和△EPC中,∴△ABP≌△EPC(AAS)【点睛】此题考查全等三角形的判定与性质,折叠的性质,熟练掌握全等三角形的判定与性质是解本题的关键.7.(2019•崇明区二模)如图,已知△ABC中,AB=6,∠B=30°,tan∠.(1)求边AC的长;(2)将△ABC沿直线l翻折后点B与点A重合,直线l分别与边AB、BC相交于点D、E,求的值.【答案】解:(1)过A作AH⊥BC,垂足为H,如图1所示:∵AB=6,∠B=30°,AH⊥BC,∴AH=3,∵tan∠ACB,∴CH=2,∴AC;(2)由翻折得:BD AB=3,AE=BE,∠BDE=90°,∵cos B,∴,∴BE=2,∴AE=2,∴EH,∴EC=CH+EH=2,∴46.【点睛】本题考查了翻折变换的性质、含30°角的直角三角形的性质、三角函数、勾股定理等知识;熟练掌握翻折变换的性质是解决问题的关键.8.(2019•青浦区二模)已知:如图,在菱形ABCD中,AB=AC,点E、F分别在边AB、BC上,且AE=BF,CE与AF相交于点G.(1)求证:∠FGC=∠B;(2)延长CE与DA的延长线交于点H,求证:BE•CH=AF•AC.【答案】证明:(1)∵四边形ABCD为菱形,∴AB=BC,而AB=AC,∴AB=BC=AC,∴△ABC为等边三角形,∴∠B=∠BAC=60°,在△ABF和△CAE中,∴△ABF≌△CAE(SAS),∴∠BAF=∠ACE,∵∠FGC=∠GAC+∠ACG=∠GAC+∠BAF=∠BAC=60°,∴∠FGC=∠B;(2)如图,∵四边形ABCD为菱形,∴∠B=∠D,AD∥BC,∴∠BCE=∠H,∴△BCE∽△DHC,∴,∵△ABF≌△CAE,∴CE=AF∵CA=CB=CD,∴,∴BE•CH=AF•AC.【点睛】本题考查了相似三角形的判定与性质:判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;同时灵活运用相似三角形的性质进行几何计算.也考查了菱形的性质.9.(2019•浦东新区二模)已知:如图,在直角梯形ABCD中,AD∥BC,DC⊥BC,AB=AD,AM⊥BD,垂足为点M,连接CM并延长,交线段AB于点N.求证:(1)∠ABD=∠BCM;(2)BC•BN=CN•DM.【答案】证明:(1)∵AB=AD,∴∠ABD=∠ADB,∵AD∥BC,∴∠ADB=∠MBC,∴∠ABD=∠MBC,∵AB=AD,AM⊥BD,∴BM=DM,∵DC⊥BC,∴∠BCD=90°,∴CM=BM=DM,∴∠MBC=∠BCM,∴∠ABD=∠BCM;(2)∵∠BNM=∠CNB,∠NBM=∠NCB,∴△NBM∽△NCB,∴BN:CN=BM:BC,而BM=DM,∴BN:CN=DM:BC,∴BC•BN=CN•DM.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.10.(2019•静安区二模)已知:如图5,在矩形ABCD中,过AC的中点M作EF⊥AC,分别交AD、BC于点E、F.(1)求证:四边形AECF是菱形;(2)如果CD2=BF•BC,求∠BAF的度数.【答案】(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴∠1=∠2,∵点M为AC的中点,∴AM=CM.在△AME与△CMF中∠∠∴△AME≌△CMF(ASA),∴ME=MF.∴四边形AECF为平行四边形,又∵EF⊥AC,∴平行四边形AECF为菱形;(2)解:∵CD2=BF•BC,∴,又∵四边形ABCD为矩形,∴AB=CD,∴又∵∠ABF=∠CBA,∴△ABF∽△CBA,∴∠2=∠3,∵四边形AECF为菱形,∴∠1=∠4,即∠1=∠3=∠4,∵四边形ABCD为矩形,∴∠BAD=∠1+∠3+∠4=90°,∴即∠1=30°.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了菱形的判定与性质和矩形的性质.11.(2019•虹口区二模)如图,在▱ABCD中,AC与BD相交于点O,过点B作BE∥AC,联结OE交BC 于点F,点F为BC的中点.(1)求证:四边形AOEB是平行四边形;(2)如果∠OBC=∠E,求证:BO•OC=AB•FC.【答案】证明:(1)∵BE∥AC,∴△COF∽△BFE∴∵点F为BC的中点,∴CF=BF,∴OC=BE∵四边形ABCD是平行四边形,∴AO=CO∴AO=BE∵BE∥AC,∴四边形AOEB是平行四边形(2)∵四边形AOEB是平行四边形,∴∠BAO=∠E∵∠OBC=∠E,∴∠BAO=∠OBC∵∠ACB=∠BCO,∴△COB∽△CBA∴∵四边形ABCD是平行四边形,∴AC=2OC∵点F为BC的中点,∴BC=2FC∴即BO•OC=AB•FC【点睛】此题考查相似三角形的判定和性质,关键是根据平行四边形的性质和相似三角形的判定和性质解答.12.(2019•普陀区二模)已知:如图,在四边形ABCD中,AD<BC,点E在AD的延长线上,∠ACE=∠BCD,EC2=ED•EA.(1)求证:四边形ABCD为梯形;(2)如果,求证AB2=ED•BC.【答案】(1)证明:∵EC2=ED•EA∴而∠E=∠E∴△ECA∽△EDC∴∠EAC=∠ECD又∵∠ACE=∠BCD∴∠ACE﹣∠ACD=∠BCD﹣∠ACD即∠ECD=∠BCA∴∠EAC=∠BCA∴AE∥BC,∵AD<BC,故四边形ABCD是梯形.(2)证明:由(1)可知△ECA∽△EDC∴即得而由已知可得∴CD=AB,即梯形ABCD是等腰梯形∴∠B=∠BCD而∠BCD=∠EDC∴∠B=∠EDC由(1)知∠BCA=∠ECD∴△ABC∽△EDC∴而AB=CD∴AB2=ED•BC故AB2=ED•BC得证.【点睛】本题考查的是相似三角形的判定与性质,以及等腰梯形的判定与性质,通过比例式得出对应线段相等也是证明线段相等的一种方法.13.(2019•长宁区二模)如图,平行四边形ABCD的对角线AC、BD交于点O,点E在边CB的延长线上,且∠EAC=90°,AE2=EB•EC.(1)求证:四边形ABCD是矩形;(2)延长DB、AE交于点F,若AF=AC,求证:AE=BF.【答案】证明:(1)∵AE2=EB•EC∴又∵∠AEB=∠CEA∴△AEB∽△CEA∴∠EBA=∠EAC而∠EAC=90°∴∠EBA=∠EAC=90°又∵∠EBA+∠CBA=180°∴∠CBA=90°而四边形ABCD是平行四边形∴四边形ABCD是矩形即得证.(2)∵△AEB∽△CEA∴即,∠EAB=∠ECA∵四边形ABCD是矩形∴OB=OC∴∠OBC=∠ECA∴∠EBF=∠OBC=∠ECA=∠EAB即∠EBF=∠EAB又∵∠F=∠F∴△EBF∽△BAF∴而AF=AC∴BF=AE即AE=BF得证.【点睛】本题考查的是相似三角形的判定与性质及矩形的性质,利用三角形的相似进行边与角的转化是解决本题的关键.14.(2019•张店区二模)如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.(1)求证:△ABE∽△DAF;(2)当AC•FC=AE•EC时,求证:AD=BE.【答案】证明:(1)∵AD∥BC,∴∠DAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠DAF=∠B,∵∠AEC=∠AED+∠DEC=∠B+∠BAE,∠AED=∠CAD=∠ACB,∴∠DEC=∠BAE,∵AD∥BC,∴∠DEC=∠ADF,∴∠BAE=∠ADF,∴△ABE∽△DAF.(2)∵AC•FC=AE•EC,AC=AB,∴AB•FC=AE•EC,∵∠B=∠FCE,∠BAE=∠FEC,∴△BAE∽△CEF,∴,∴,∴FC=EF,∴∠FEC=∠FCE,∵∠FCE=∠B,∴∠B=∠FEC,∴AB∥DE,∵AD∥BE,∴四边形ADEB是平行四边形,∴AD=BE.【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.15.(2019•普陀区二模)如图,已知点D、E分别在△ABC的边AB和AC上,DE∥BC,,△ADE 的面积等于3.(1)求△ABC的面积;(2)如果BC=9,且cot B,求∠AED的正切值.【答案】解:(1)∵DE∥BC,∴△ADE∽△ABC,∴()2,∵S△ADE=3,∴S△ABC=27.(2)如图,作AH⊥BC于H.∵S△ABC BC×AH=27,∴AH=6,∵cot B,∴BH=4,CH=9﹣4=5,∵DE∥BC,∴∠AED=∠C,∴tan∠AED=tan∠C.【点睛】本题考查相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.(2019•闵行区二模)如图1,点P为∠MAN的内部一点.过点P分别作PB⊥AM、PC⊥AN,垂足分别为点B、C.过点B作BD⊥CP,与CP的延长线相交于点D.BE⊥AP,垂足为点E.(1)求证:∠BPD=∠MAN;(2)如果sin∠,AB=2,BE=BD,求BD的长;(3)如图2,设点Q是线段BP的中点.联结QC、CE,QC交AP于点F.如果∠MAN=45°,且BE ∥QC,求的值.【答案】(1)证明:∵PB⊥AM,PC⊥AN,∴∠PBA=∠PCA=90°,∵∠BAC+∠PCA+∠BPC+∠PBA=360°,∴∠BAC+∠BPC=180°,∵∠BPD+∠BPC=180°,∴∠MAN=∠BPD;(2)解:∵BE⊥AP,∠D=90°,BE=BD,∴∠BPD=∠BPE.∴∠BPE=∠BAC,在Rt△ABP中,由∠ABP=90°,BE⊥AP,∴∠APB=∠ABE,∴∠BAC=∠ABE,∴sin∠BAC=sin∠ABE,∵AB=2,∴AE=6,∴BE2,∴BD=BE=2;(3)解:过点B作BG⊥AC,垂足为点G.过点Q作QH∥BD,设BD=2a,PC=2b,∵∠BPD=∠MAN=45°,∴DP=BD=2a,∴CD=2a+2b,在Rt△ABG和Rt△BDP中,∠BAC=∠BPD=45°,∴BG=AG,DP=BD,∵QH∥BD,点Q为BP的中点,∴PH PD=a.QH BD=a,∴CH=PH+PC=a+2b,∵BD∥AC,CD⊥AC,BG⊥AC,∴BG=DC=2a+2b.∴AC=4a+2b,∵BE∥QC,BE⊥AP,∴∠CFP=∠BEP=90°,又∠ACP=90°,∴∠QCH=∠P AC,∴△ACP∽△QCH,∴,即,解得,a=b,∴CH=3a.由勾股定理得,CQ a,∵∠QHC=∠PFC=90°,∠QCH=∠PCF,∴△QCH∽△PFC,∴,即,解得,FC a,∴QF=QC﹣FC a,∵BE∥QC,Q是PB的中点,∴PE=EF,∴△PQF与△CEF面积之比等于高之比,∴.【点睛】本题考查的是相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的判定定理和性质定理是解题的关键.17.(2019•闵行区二模)如图,已知四边形ABCD是菱形,对角线AC、BD相交于点O,BD=2AC.过点A作AE⊥CD,垂足为点E,AE与BD相交于点F.过点C作CG⊥AC,与AE的延长线相交于点G.求证:(1)△ACG≌△DOA;(2)DF•BD=2DE•AG.【答案】证明:(1)∵在菱形ABCD中,AD=CD,AC⊥BD,OB=OD,∴∠DAC=∠DCA,∠AOD=90°,∵AE⊥CD,CG⊥AC,∴∠DCA+∠GCE=90°,∠G+∠GCE=90°,∴∠G=∠DCA,∴∠G=∠DAC,∵BD=2AC,BD=2OD,∴AC=OD,在△ACG和△DOA中,∠∠∴△ACG≌△DOA(AAS);(2)∵AE⊥CD,BD⊥AC,∴∠DOC=∠DEF=90°,又∵∠CDO=∠FDE,∴△CDO∽△FDE,∴,即得OD•DF=DE•CD,∵△ACG≌△DOA,∴AG=AD=CD,又∵OD BD,∴DF•BD=2DE•AG.【点睛】本题考查了全等三角形的性质和判定,相似三角形的性质和判定,菱形的性质,能综合运用定理进行推理是解此题的关键.18.(2019•崇明区二模)如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,对角线AC、BD相交于点O.过点D作DE⊥BC,交AC于点F.(1)联结OE,若,求证:OE∥CD;(2)若AD=CD且BD⊥CD,求证:.【答案】证明:(1)∵∠ABD=90°,DE⊥BC,∴AB∥DE,∴,∵,∴,∴OE∥CD;(2)∵AD∥BC,AB∥DE,∴四边形ABED为平行四边形又∵∠ABD=90°,∴四边形ABED为矩形,∴AD=BE,∠ADE=90°,又∵BD⊥CD,∴∠BDC=∠BDE+∠CDE=90°,∠ADE=∠ADB+∠BDE=90°,∴∠CDE=∠ADB,∵AD=CD,∴∠DAC=∠DCA,在△ADO和△CDF中∠∠∴△ADO≌△CDF(ASA),∴OD=DF,∵AB∥DE,∴,∵AD∥BC,∴,∴.【点睛】本题考查了矩形的性质和判定,相似三角形的性质和判定,直角梯形的性质等知识点,能综合运用知识点进行推理是解此题的关键.19.(2019•黄浦区二模)如图,已知四边形ABCD,AD∥BC,对角线AC、BD交于点O,DO=BO,过点C作CE⊥AC,交BD的延长线于点E,交AD的延长线于点F,且满足∠DCE=∠ACB.(1)求证:四边形ABCD是矩形;(2)求证:.【答案】解:(1)证明∵AD∥BC,∴,∵DO=BO,∴AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AC,∴∠ACD+∠DCE=90°,∵∠DCE=∠ACB,∴∠ACB+∠ACD=90°,即∠BCD=90°,∴四边形ABCD是矩形;(2)∵四边形ABCD是矩形,∴AC=BD,∠ADC=90°,∵AD∥BC,∴,∴∴,∵∠ADC=∠ACF=90°,∴∠,∴.【点睛】本题主要考查对矩形的性质,成比例的线段性质的理解和掌握,此题难度不大.20.(2019•黄浦区二模)已知四边形ABCD中,AD∥BC,∠ABC=2∠C,点E是射线AD上一点,点F是射线DC上一点,且满足∠BEF=∠A.(1)如图1,当点E在线段AD上时,若AB=AD,在线段AB上截取AG=AE,联结GE.求证:GE=DF;(2)如图2,当点E在线段AD的延长线上时,若AB=3,AD=4,cos A,设AE=x,DF=y,求y 关于x的函数关系式及其定义域;(3)记BE与CD交于点M,在(2)的条件下,若△EMF与△ABE相似,求线段AE的长.【答案】解:(1)∵AG=AE,∴∠.∵AD∥BC,∴∠A+∠ABC=180°,∵∠ABC=2∠C,∴∠,∴∠AGE=∠C,∵AD∥BC,∴∠D+∠C=180°,又∠BGE+∠AGE=180°,∴∠BGE=∠D,∵∠BEF+∠FED=∠A+∠GBE,∵∠BEF=∠A,∴∠FED=∠GBE,又AB=AD,AG=AE,∴BG=ED,∴△GBE≌△DEF(ASA),∴GE=DF;(2)在射线AB上截取AH=AE,联结EH,∵∠HBE=∠A+∠AEB,∠DEF=∠BEF+∠AEB,又∠BEF=∠A,∴∠HBE=∠DEF.∵AD∥BC,∴∠EDC=∠C,∠A+∠ABC=180°.∵AH=AE,∴∠,又∠ABC=2∠C,∴∠H=∠C,∴∠H=∠EDC,∴△BHE∽△EDF,∴.过点H作HP⊥AE,垂足为点P.∵,AE=AH=x,∴,,,∴,∵AB=3,AD=4,AE=x,DF=y,∴,∴>;(3)记EH与BC相交于点N.∵△EMF∽△ABE,∠BEF=∠A,∴∠AEB=∠EMF,或∠AEB=∠EFM,若∠AEB=∠EMF,又∠AEB<∠EMF,矛盾,∴此情况不存在,若∠AEB=∠EFM,∵△BHE∽△EDF,∴∠BEH=∠EFM,∴∠AEB=∠BEH,∵AD∥BC,∴∠AEB=∠EBC,∴∠BEH=∠EBC,∴BN=EN=BH=x﹣3,∵AD∥BC,∴,∴,∴,∴线段AE的长为.【点睛】本题属于相似三角形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21.(2019•黄浦区一模)如图,在△ABC中,点D在边BC上,∠CAD=∠B,点E在边AB上,联结CE 交AD于点H,点F在CE上,且满足CF•CE=CD•BC.(1)求证:△ACF∽△ECA;(2)当CE平分∠ACB时,求证:.【答案】(1)证明:∵∠ACD=∠BCA,∠CAD=∠B,∴△ACD∽△BCA,∴,∴AC2=CD•BC,∵CF•CE=CD•BC,∴AC2=CF•CE,∴,∵∠ACF=∠ECA,∴△ACF∽△ECA;(2)证明:∵CF•CE=CD•BC,∴,∵∠DCF=∠ECB,∴△CFD∽△CBE,∴∠CFD=∠B,∵∠CAD=∠B,∴∠CFD=∠CAD,∴A,F,D,C四点共圆,∴∠AFC=∠ADC,∵△ACF∽△ECA,∴∠CAE=∠AFC,∴∠CAE=∠ADC,∵当CE平分∠ACB,∴∠ACE=∠DCH,∴△ACE∽△DCH,∴()2,∵AC2=CD•BC,∴.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.22.(2019•长宁区一模)已知锐角∠MBN的余弦值为,点C在射线BN上,BC=25,点A在∠MBN的内部,且∠BAC=90°,∠BCA=∠MBN.过点A的直线DE分别交射线BM、射线BN于点D、E.点F 在线段BE上(点F不与点B重合),且∠EAF=∠MBN.(1)如图1,当AF⊥BN时,求EF的长;(2)如图2,当点E在线段BC上时,设BF=x,BD=y,求y关于x的函数解析式并写出函数定义域;(3)联结DF,当△ADF与△ACE相似时,请直接写出BD的长.【答案】解:(1)∵在Rt△ABC中,∠BAC=90°,∴cos∠BCA=cos∠MBN,∴∴AC=15∴AB20∵S△ABC AB×AC BC×AF,∴AF12,∵AF⊥BC∴cos∠EAF=cos∠MBN∴AE=20∴EF16(2)如图,过点A作AH⊥BC于点H,由(1)可知:AB=20,AH=12,AC=15,∴BH16,∵BF=x,∴FH=16﹣x,CF=25﹣x,∴AF2=AH2+FH2=144+(16﹣x)2=x2﹣32x+400,∵∠EAF=∠MBN,∠BCA=∠MBN∴∠EAF=∠BCA,且∠AFC=∠AFC,∴△F AE∽△FCA∴,∠AEF=∠F AC,∴AF2=FC×EF∴x2﹣32x+400=(25﹣x)×EF,∴EF∴BE=BF+EF∵∠MBN=∠ACB,∠AEF=∠F AC,∴△BDE∽△CF A∴∴∴y(0<x)(3)如图,若△ADF∽△CEA,∵△△ADF∽△CEA,∴∠ADF=∠AEC,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠ADF=∠AEC=∠ABF,∴AB=AE,∵∠BAC=90°,∴∠ABC+∠ACB=90°,且∠ABF=∠AEC,∠ACB=∠MBN=∠EAF,∴∠AEC+∠EAF=90°,∠AEC+∠MBN=90°,∴∠BDE=90°=∠AFC,∵S△ABC AB×AC BC×AF,∴AF12,∴BF16,∵AB=AE,∠AFC=90°,∴BE=2BF=32,∴cos∠MBN,∴BE,如图,若△ADF∽△CAE,∵△ADF∽△CAE,∴∠ADF=∠CAE,∠AFD=∠AEC,∴AC∥DF∴∠DFB=∠ACB,且∠ACB=∠MBN,∴∠MBN=∠DFB,∴DF=BD,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠CAE=∠ABF,且∠AEC=∠AEC,∴△ABE∽△CAE∴设CE=3k,AE=4k,(k≠0)∴BE k,∵BC=BE﹣CE=25∴k∴AE,CE,BE∵∠ACB=∠F AE,∠AFC=∠AFE,∴△AFC∽△EF A,∴,设AF=7a,EF=20a,∴CF a,∵CE=EF﹣CF a,∴a,∴EF,∵AC∥DF,∴,∴,∴DF,综上所述:当BD为或时,△ADF与△ACE相似【点睛】本题是相似综合题,考查了相似三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.23.(2019•虹口区一模)如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【答案】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴,∴AF•BC=AD•BE.【点睛】本题考查了相似三角形的判定与性质、等腰三角形的性质以及余角,解题的关键是:(1)利用相似三角形的判定定理证出△AED∽△DEC;(2)利用相似三角形的判定定理证出△BCE∽△ADF.24.(2019•浦东新区一模)将大小两把含30°角的直角三角尺按如图1位置摆放,即大小直角三角尺的直角顶点C重合,小三角尺的顶点D、E分别在大三角尺的直角边AC、BC上,此时小三角尺的斜边DE 恰好经过大三角尺的重心G.已知∠A=∠CDE=30°,AB=12.(1)求小三角尺的直角边CD的长;(2)将小三角尺绕点C逆时针旋转,当点D第一次落在大三角尺的边AB上时(如图2),求点B、E 之间的距离;(3)在小三角尺绕点C旋转的过程中,当直线DE经过点A时,求∠BAE的正弦值.【答案】解:(1)在Rt△ABC中,AC=AB cos30°=6,BC=6,由重心的性质得:,则CD=4,DE=8;(2)连接BE,过点C作CH⊥AB交于点H,BH BC=3,CH=BC sin60°=3,AH=9,HD,AD=AH﹣HD=9,∵∠ACD=∠ECB,,∴△ADC∽△BEC,∴,即:AD BE,∴BE(9)=3;(3)①如图,当DE在AC下方时,∵△ADC∽△BEC,∴∠BEC=∠ADC=∠AEB+∠CED=∠DCE+∠DEC=90°+∠CED,即:∠AEB=90°,在Rt△ABE中,AE2+BE2=AB2,设:BE=x,则AD x,AB=12,AE=AD+DE x+8,即:(x+8)2+x2=122,解得:x=42,②当DE在AC上方时,求得:x=42;sin∠BAE.【点睛】本题是三角形相似综合题,核心是确定图象旋转后的位置,利用相似确定边角关系,此类题目难度在于作图的准确性.25.(2019•普陀区一模)如图,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点.(1)如图①,当∠ACB=90°,OC=2,求a的值;(2)如图②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ∥BC,并使∠QOC=∠B,求AQ:OQ的值.【答案】解:(1)如图①中,作CH⊥AB于H.∵CH⊥AB,∴∠AHC=∠BHC=90°,∵∠ACB=90°,∴∠ACH+∠BCH=90°,∵∠ACH+∠A=90°,∴∠BCH=∠A,∴△ACH∽△CBH,∴,∵OC=2,∠COH=60°,∴∠OCH=30°,∴OH OC=1,CH,∴,整理得:2a2﹣a﹣4=0,解得a或(舍弃).经检验a是分式方程的解.∴a.(2)如图②中,设OC=x.作CH⊥AB于H,则OH,CH x.在Rt△ACH中,∵AC2=AH2+CH2,∴(3a)2=(x)2+(2a x)2,整理得:x2+ax﹣5a2=0,解得x=(1)a或(1)a(舍弃),∴OC=(1)a,(3)如图②﹣1中,延长QC交CB的延长线于K.∵∠AOC=∠∠AOQ+∠QOC=∠ABC+∠OCB,∠QOC=∠ABC,∴∠AOQ=∠KCO,∵AQ∥BK,∴∠Q=∠K,∴△QOA∽△KCO,∴,∴,∵∠K=∠K,∠KOB=∠AOQ=∠KCO,∴△KOB∽△KCO,∴,∴【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.26.(2019•宝山区一模)如图,已知:梯形ABCD中,∠ABC=90°,∠DAB=45°,AB∥DC,DC=3,AB=5,点P在AB边上,以点A为圆心AP为半径作弧交边DC于点E,射线EP于射线CB交于点F.(1)若AP,求DE的长;(2)联结CP,若CP=EP,求AP的长;(3)线段CF上是否存在点G,使得△ADE与△FGE相似?若相似,求FG的值;若不相似,请说明理由.【答案】解:(1)如图1中,过点A,作AH∥BC,交CD的延长线于点H.∵AB∥CD,∴∠ABC+∠C=180°,∵∠ABC=90°,∴∠C=∠ABC=∠H=90°,∴四边形AHCB是矩形,∴AB=CH=5,∵CD=3,∴DH=CH﹣CD=2,∵∠HAB=90°,∠DAB=45°,∴∠HAD=∠HDA=45°∴HD=AH=2,AE=AP,根据勾股定理得,HE3,则ED=1;(2)连接CP,设AP=x.∵AB∥CD,∴∠EP A=∠CEP,即等腰△APE、等腰△PEC两个底角相等,∴△APE∽△PEC,∴,即:PE2=AE•CE,而EC=2PB=2(5﹣x),即:PC2=CE•AP=2(5﹣x)x,而PC2=PB2+BC2,即:PC2=(5﹣x)2+22,∴2(5﹣x)x=(5﹣x)2+22,解得:x(不合题意值已舍去),即:AP;(3)如图3中,在线段CF上取一点G,连接EG.设∠F=α,则∠APE=∠AEP=∠BPF=90°﹣α,则:∠EAP=180°﹣2∠APE=2α,∵△ADE∽△FGE,设∠DAE=∠F=α,由∠DAB=45°,可得3α=45°,2α=30°,在Rt△ADH中,AH=DH=2,在Rt△AHE中,∠HEA=∠EAB=2α=30°,∠HAE=60°,∴HE=AH•tan∠HAE=2,∴DE=HE﹣HD=22,EC=HC﹣HE=5﹣2,∵△ADE∽△FGE,∴∠ADC=∠EGF=135°,则∠CEG=45°,∴EG EC=52,∴,即:,解得:FG=31.【点睛】本题属于三角形相似综合题,涉及到解直角三角形、勾股定理等知识点,其中(3)中,利用三角形相似,确定α的大小,是本题的突破点,属于中考压轴题.27.(2019•黄浦区一模)在△ABC中,∠ACB=90°,BC=3,AC=4,点O是AB的中点,点D是边AC 上一点,DE⊥BD,交BC的延长线于点E,OD⊥DF,交BC边于点F,过点E作EG⊥AB,垂足为点G,EG分别交BD、DF、DC于点M、N、H.(1)求证:;(2)设CD=x,NE=y,求y关于x的函数关系式及其定义域;(3)当△DEF是以DE为腰的等腰三角形时,求线段CD的长.【答案】(1)证明:如图1中,∵OD⊥DF,BD⊥DE,∴∠ODF=∠BDE=90°,∴∠ODB=∠NDE,∵EG⊥AB,∴∠BGM=∠MDE=90°,∵∠BMG=∠EMD,∴OBD=∠DEN,∴△OBD∽△NED,∴.(2)解:如图1中,∵∠BCD=∠BDE=90°,∴tan∠DBC,∵,∴,在Rt△ABC中,AB5,∴OB=OA=2.5,∴,∴y x(0<x<2).(3)解:①如图2﹣1中,当DE=DF时,作OK⊥AC于K.∵∠OKD=∠DCF=∠ODF=90°,∴∠ODK+∠KOD=90°,∠ODK+∠CDF=90°,∴∠DOK=∠CDF,∴△OKD∽△DCF,∴,∴,∴CF x(2﹣x),∵DF=DE,DC⊥EF,∴∠CDE=∠CDF,∵∠CDE+∠CDB=90°,∠CBD+∠CDB=90°,∴∠∠CDE=∠CBD=∠CDF,∵∠DCF=∠DCB=90°,∴△DCF∽△BCD,∴,∴CD2=CF•CB,∴x2=x(2﹣x),解得x或0(舍弃)∴CD.如图2﹣2中,当DE=EF时,∵ED=EF,∴∠EDF=∠EFD,∴∠EDC+∠CDF=∠DBC+∠BDF,∵∠EDC=∠DBC,∴∠CDF=∠BDF,∵∠CDF+∠ADO=90°,∠BDF+∠BDO=90°,∴∠ADO=∠BDO,∵AO=OB,易知DA=DB,设DA=DB=4﹣x,在Rt△BCD中,∵BD2=CD2+BC2,∴(4﹣x)2=x2+32,∴x,∴CD.综上所述,CD的长为或.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题,属于中考压轴题.28.(2019•徐汇区一模)如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.【答案】(1)证明:∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)解:∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE AB BC,∴,∴BC2=2DF•BF.【点睛】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.29.(2019•奉贤区一模)如图,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,AB=2CD=6,E 是边BC上一点,过点D、E分别作BC、CD的平行线交于点F,联结AF并延长,与射线DC交于点G.(1)当点G与点C重合时,求CE:BE的值;(2)当点G在边CD上时,设CE=m,求△DFG的面积;(用含m的代数式表示)(3)当△AFD∽△ADG时,求∠DAG的余弦值.【答案】解:(1)如图,∵DC∥EF,DF∥CE∴四边形DCEF是平行四边形∴CD=EF,∵AB=2CD=6,∴AB=2EF,∵EF∥CD,AB∥CD,∴EF∥AB,∴△CFE∽△CAB∴∴BC=2CE,∴BE=CE∴EC:BE=1:1=1(2)如图,延长AG,BC交为于点M,过点C作CN⊥AB于点N,交EF于点H∵AD⊥CD,CN⊥CD∴AD∥CN,且CD∥AB∴四边形ADCN是平行四边形,又∵∠DAB=90°∴四边形ADCN是矩形,∴AD=CN=4,CD=AN=3,∴BN=AB﹣AN=3,在Rt△BCN中,BC5∴BE=BC﹣CE=5﹣m,∵EF∥AB∴,即∴ME=BE=5﹣m,∴MC=ME﹣CE=5﹣2m,∵EF∥AB∴∴HC m,∵CG∥EF∴即∴GC∴DG=CD﹣GC=3∴S△DFG DG×CH(3)过点C作CN⊥AB于点N,∵AB∥CD,∠DAB=90°,∴∠DAB=∠ADG=90°,若△AFD∽△ADG,∴∠AFD=∠ADG=90°∴DF⊥AG又∵DF∥BC∴AG⊥BC。
上海市崇明县中考数学二模试卷含答案解析

上海市崇明县中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数是()A.B.8C.D.﹣82.(4分)下列计算正确的是()A.B.a+2a=3a C.(2a)3=2a3D.a6÷a3=a23.(4分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)1213141516人数14375那么这20名同龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,154.(4分)某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是()A.B.C.D.5.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.菱形D.正五边形6.(4分)已知△ABC中,D、E分别是AB、AC边上的点,DE∥BC,点F是BC 边上一点,联结AF交DE于点G,那么下列结论中一定正确的是()A.B.C.D.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)因式分解:x2﹣9=.8.(4分)不等式组的解集是.9.(4分)函数y=的定义域是.10.(4分)方程的根是x=.11.(4分)已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机摸得1个红球的概率为,那么袋子中共有个球.12.(4分)如果关于x的方程x2+4x﹣k=0有两个相等的实数根,那么实数k的值是.13.(4分)如果将抛物线y=x2+2x﹣1 向上平移,使它经过点A(1,3),那么所得新抛物线的表达式是.14.(4分)某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按A,B,C,D 四个等级进行评分,然后根据统计结果绘制了如图两幅不完整的统计图,那么此次抽取的作品中等级为B的作品数为.15.(4分)已知梯形ABCD,AD∥BC,BC=2AD,如果,,那么=(用表示).16.(4分)如图,正六边形ABCDEF 的顶点B、C 分别在正方形AGHI 的边AG、GH 上,如果AB=4,那么CH的长为.17.(4分)在矩形ABCD中,AB=5,BC=12,点E是边AB上一点(不与A、B重合),以点A为圆心,AE为半径作⊙A,如果⊙C与⊙A外切,那么⊙C的半径r 的取值范围是.18.(4分)如图,△ABC 中,∠BAC=90°,AB=6,AC=8,点D是BC的中点,将△ABD,将△ABD沿AD翻折得到△AED,联结CE,那么线段CE的长等于.三、解答题(本大题共7题,满分78分)19.(10分)计算: +(﹣2)2+9﹣(π﹣3.14)020.(10分)解方程组:21.(10分)已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD⊥OP交圆O于点D.(1)如图1,当PD∥AB 时,求PD的长;(2)如图2,当BP平分∠OPD时,求PC的长.22.(10分)温度通常有两种表示方法:华氏度(单位:°F)与摄氏度(单位:℃),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:摄氏度数x (℃)…0…35…100…华氏度数y (℉)…32…95…212…(1)选用表格中给出的数据,求y关于x的函数解析式;(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56?23.(12分)如图,AM 是△ABC的中线,点D是线段AM上一点(不与点A 重合).DE∥AB交BC 于点K,CE∥AM,联结AE.(1)求证:;(2)求证:BD=AE.24.(12分)已知抛物线经过点A(0,3)、B(4,1)、C(3,0).(1)求抛物线的解析式;(2)联结AC、BC、AB,求∠BAC的正切值;(3)点P是该抛物线上一点,且在第一象限内,过点P作PG⊥AP交y轴于点G,当点G在点A 的上方,且△APG与△ABC相似时,求点P的坐标.25.(14分)如图,已知△ABC 中,AB=8,BC=10,AC=12,D是AC边上一点,且AB2=AD•AC,联结BD,点E、F分别是BC、AC上两点(点E不与B、C重合),∠AEF=∠C,AE与BD相交于点G.(1)求证:BD平分∠ABC;(2)设BE=x,CF=y,求y与x 之间的函数关系式;(3)联结FG,当△GEF 是等腰三角形时,求BE的长度.上海市崇明县中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数是()A.B.8 C.D.﹣8【解答】解:8的相反数是﹣8,故选:D.2.(4分)下列计算正确的是()A.B.a+2a=3a C.(2a)3=2a3D.a6÷a3=a2【解答】解:A、+,无法计算,故此选项错误;B、a+2a=3a,正确;C、(2a)3=8a3,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:B.3.(4分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)1213141516人数14375那么这20名同龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【解答】解:由于15岁出现次数最多,所以众数为15岁,中位数为第10、11个数据的平均数,所以中位数为=15(岁),4.(4分)某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是()A.B.C.D.【解答】解:设第一次买了x本画册,根据题意可得:,故选:A.5.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.菱形D.正五边形【解答】解:A、等边三角形不是中心对称图形,是轴对称图形,故本选项错误;B、平行四边形是中心对称图形,不是轴对称图形,故本选项错误;C、菱形是中心对称图形,也是轴对称图形,故本选项正确;D、正五边形是轴对称图形,不是中心对称图形,故本选项错误.故选:C.6.(4分)已知△ABC中,D、E分别是AB、AC边上的点,DE∥BC,点F是BC 边上一点,联结AF交DE于点G,那么下列结论中一定正确的是()A.B.C.D.【解答】解:∵DE∥BC,∴△ADG∽△ABF,△AEG∽△ACF,∴=,∴,二、填空题(本大题共12题,每题4分,满分48分)7.(4分)因式分解:x2﹣9=(x+3)(x﹣3).【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).8.(4分)不等式组的解集是﹣3<x<1.【解答】解:,解不等式①得:x<1,解不等式②得:x>﹣3,所以不等式组的解集是﹣3<x<1.故答案为:﹣3<x<1.9.(4分)函数y=的定义域是x≠2.【解答】解:根据题意得:x﹣2≠0解得:x≠2,故答案为:x≠2.10.(4分)方程的根是x=8.【解答】解:方程两边平方得:x+1=9,解得:x=8,经检验:x=8是方程的解.故答案是:8.11.(4分)已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机摸得1个红球的概率为,那么袋子中共有24个球.【解答】解:设袋子中共有x个球,∵红球有3个,从中随机摸得1个红球的概率为,∴=,解得:x=24(个).故答案为:24.12.(4分)如果关于x的方程x2+4x﹣k=0有两个相等的实数根,那么实数k的值是﹣4.【解答】解:∵关于x的方程x2+4x﹣k=0有两个相等的实数根,∴△=0,即42﹣4(﹣k)=0,解得k=﹣4,故答案为:﹣4.13.(4分)如果将抛物线y=x2+2x﹣1 向上平移,使它经过点A(1,3),那么所得新抛物线的表达式是y=x2+2x.【解答】解:∵将抛物线y=x2+2x﹣1 向上平移,使它经过点A(1,3),∴平移后的解析式为:y=x2+2x﹣1+h,则3=1+2﹣1+h,解得:h=1,故所得新抛物线的表达式是:y=x2+2x.故答案为:y=x2+2x.14.(4分)某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按A,B,C,D 四个等级进行评分,然后根据统计结果绘制了如图两幅不完整的统计图,那么此次抽取的作品中等级为B的作品数为48.【解答】解:∵30÷25%=120(份),∴一共抽取了120份作品,∴此次抽取的作品中等级为B的作品数120﹣36﹣30﹣6=48份,故答案为:48.15.(4分)已知梯形ABCD,AD∥BC,BC=2AD,如果,,那么=﹣(用表示).【解答】解:∵=,=,∴=﹣=﹣,∵AD∥BC,BC=2AD,∴==(﹣)=﹣.故答案为:﹣.16.(4分)如图,正六边形ABCDEF 的顶点B、C 分别在正方形AGHI 的边AG、GH 上,如果AB=4,那么CH的长为.【解答】解:正六边形的内角的度数==120°,则∠CBG=180°﹣120°=60°,∴∠BCG=30°,∴BG=BC=2,CG=BC=2,∴AG=AB+BG=6,∵四边形AGHI是正方形,∴GH=AG=6,∴CH=HG﹣CG=6﹣2,故答案为:6﹣2.17.(4分)在矩形ABCD中,AB=5,BC=12,点E是边AB上一点(不与A、B重合),以点A为圆心,AE为半径作⊙A,如果⊙C与⊙A外切,那么⊙C的半径r 的取值范围是8<r<13.【解答】解:∵四边形ABCD为矩形,∴∠B=90°,AD=BC=12,在Rt△ABC中,AC==13,∵以点A为圆心,AE为半径作⊙A,如果⊙C与⊙A外切,可得:⊙C的半径r的取值范围是8<r<13.故答案为:8<r<1318.(4分)如图,△ABC 中,∠BAC=90°,AB=6,AC=8,点D是BC的中点,将△ABD,将△ABD沿AD翻折得到△AED,联结CE,那么线段CE的长等于.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=8,AB=6,∴BC==10,∵CD=DB,∴AD=DC=DB=5,∵BC•AH=AB•AC,∴AH=,∵AE=AB,∴点A在BE的垂直平分线上.∵DE=DB=DC,∴点D在BE使得垂直平分线上,△BCE是直角三角形,∴AD垂直平分线段BE,∵AD•BO=BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故答案为三、解答题(本大题共7题,满分78分)19.(10分)计算: +(﹣2)2+9﹣(π﹣3.14)0【解答】解:原式=3+7﹣4+3﹣1=9﹣.20.(10分)解方程组:【解答】解:由①得:x+3y=0或x﹣3y=0③,由②得:x﹣y=2或x﹣y=﹣2④,由③和④组成方程组,,,,解得:,,,,所以原方程组的解为:,,,.21.(10分)已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD⊥OP交圆O于点D.(1)如图1,当PD∥AB 时,求PD的长;(2)如图2,当BP平分∠OPD时,求PC的长.【解答】解:如图1,联结OD∵直径AB=12∴OB=OD=6∵PD⊥OP∴∠DPO=90°∵PD∥AB∴∠DPO+∠POB=180°∴∠POB=90°又∵∠ABC=30°,OB=6∴∵在Rt△POD 中,PO2+PD2=OD2∴∴(2)如图2,过点O 作OH⊥BC,垂足为H ∵OH⊥BC∴∠OHB=∠OHP=90°∵∠ABC=30°,OB=6∴,∵在⊙O 中,OH⊥BC∴∵BP 平分∠OPD∴∴PH=OH•co t45°=3∴.22.(10分)温度通常有两种表示方法:华氏度(单位:°F)与摄氏度(单位:℃),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:摄氏度数x (℃)…0…35…100…华氏度数y (℉)…32…95…212…(1)选用表格中给出的数据,求y关于x的函数解析式;(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56?【解答】(1)解:设y=kx+b(k≠0)把x=0,y=32;x=35,y=95 代入y=kx+b,得,解得∴y 关于x 的函数解析式为(2)由题意得:解得x=30∴在30摄氏度时,温度计右边华氏度的刻度正好比左边摄氏度的刻度大56.23.(12分)如图,AM 是△ABC的中线,点D是线段AM上一点(不与点A 重合).DE∥AB交BC 于点K,CE∥AM,联结AE.(1)求证:;(2)求证:BD=AE.【解答】证明:(1)∵DE∥AB,∴∠ABC=∠EKC.∵CE∥AM,∴∠AMB=∠ECK,∴△ABM∽△EKC,∴=.∵AM是△ABC的中线,∴BM=CM,∴.(2)证明:∵CE∥AM,∴△KDM∽△KEC,∴=,∴,又∵,∴DE=AB.又∵DE∥AB,∴四边形ABDE是平行四边形,∴BD=AE.24.(12分)已知抛物线经过点A(0,3)、B(4,1)、C(3,0).(1)求抛物线的解析式;(2)联结AC、BC、AB,求∠BAC的正切值;(3)点P是该抛物线上一点,且在第一象限内,过点P作PG⊥AP交y轴于点G,当点G在点A 的上方,且△APG与△ABC相似时,求点P的坐标.【解答】解:(1)设所求二次函数的解析式为y=ax2+bx+c(a≠0),将A(0,3)、B(4,1),C(3,0)代入,得:,解得:,所以,这个二次函数的解析式为:;(2)∵A(0,3、B(4,1)、C(3,0 )∴AC=3,BC=,AB=2,∴AC2+BC2=AB2∴∠ACB=90°,∴;(3)过点P作PH⊥y轴,垂足为H设P则H∵A(0,3)∴,PH=x,∵∠ACB=∠APG=90°∴当△APG与△ABC相似时,存在以下两种可能:①∠PAG=∠CAB则tan∠PAG=tan∠CAB=,即∴,解得:x=11,∴点P 的坐标为(11,36);②∠PAG=∠ABC则tan∠PAG=tan∠ABC=3即∴解得:x=,∴点P 的坐标为,综上所述:点P 的坐标为或(11,36).25.(14分)如图,已知△ABC 中,AB=8,BC=10,AC=12,D是AC边上一点,且AB2=AD•AC,联结BD,点E、F分别是BC、AC上两点(点E不与B、C重合),∠AEF=∠C,AE与BD相交于点G.(1)求证:BD平分∠ABC;(2)设BE=x,CF=y,求y与x 之间的函数关系式;(3)联结FG,当△GEF 是等腰三角形时,求BE的长度.【解答】解:(1)∵AB=8,AC=12,又∵AB2=AD•AC,∴,∴,∵AB2=AD•AC,∴,又∵∠BAC是公共角,∴△ADB∽△ABC,∴∠ABD=∠C,,∴,∴BD=CD,∴∠DBC=∠C,∴∠ABD=∠DBC,∴BD平分∠ABC;(2)如图,过点A作AH∥BC,交BD的延长线于点H,∵AH∥BC,∴,∵,AH=8,∴,∴BH=12,∵AH∥BC,∴,∴,∴,∵∠BEF=∠C+∠EFC,∴∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE,∴,∴,∴;(3)当△GEF是等腰三角形时,存在以下三种情况:1°若GE=GF,则∠GEF=∠GFE=∠C=∠DBC,∴△GEF∽△DBC,∵BC=10,DB=DC=,∴==,又∵△BEG∽△CFE,∴,即,又∵,∴x=BE=4;2°若EG=EF,则△BEG与△CFE全等,∴BE=CF,即x=y,又∵,∴x=;3°若FG=FE,则同理可得==,由△BEG∽△CFE,可得,即,又∵,∴x=.。
上海市崇明县2019-2020学年中考数学考前模拟卷(2)含解析

上海市崇明县2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.162.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣91255,)B.(﹣12955,)C.(﹣161255,)D.(﹣121655,)3.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC 的周长为()A.16 B.14 C.12 D.104.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A.43.510⨯米B.43.510-⨯米C.53.510-⨯米D.93.510-⨯米5.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A .3B .﹣3C .6D .﹣66.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为( ) A .0.637×10﹣5 B .6.37×10﹣6 C .63.7×10﹣7 D .6.37×10﹣77.如图,取一张长为a 、宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边,a b 应满足的条件是( )A .2a b =B .2a b =C .2a b =D .2a b =8.如图,已知函数y=﹣3x 与函数y=ax 2+bx 的交点P 的纵坐标为1,则不等式ax 2+bx+3x>0的解集是( )A .x <﹣3B .﹣3<x <0C .x <﹣3或x >0D .x >09.如图,在△ABC 中,∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长度为( )A .152B .154C .3D .8310.如图,△ABC 中,AB =4,AC =3,BC =2,将△ABC 绕点A 顺时针旋转60°得到△AED ,则BE 的长为( )A .5B .4C .3D .211.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .10%x =330 B .(1﹣10%)x =330 C .(1﹣10%)2x =330D .(1+10%)x =33012.如图,在矩形ABCD 中,AB=5,BC=7,点E 为BC 上一动点,把△ABE 沿AE 折叠,当点B 的对应点B′落在∠ADC 的角平分线上时,则点B′到BC 的距离为( )A .1或2B .2或3C .3或4D .4或5二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.若代数式5xx +有意义,则实数x 的取值范围是____. 14.如图放置的正方形ABCD ,正方形11DCC D ,正方形1122D C C D ,…都是边长为3的正方形,点A 在y 轴上,点12,,,B C C C ,…,都在直线3y x =上,则D 的坐标是__________,n D 的坐标是______.15.一个多边形的每个内角都等于150°,则这个多边形是_____边形.16.如图,已知//9060 BC 24AD BC B C AD ∠=︒∠=︒==,,,,点M 为边BC 中点,点E F 、在线段AB CD 、上运动,点P 在线段MC 上运动,连接EF EP PF 、、,则EPF ∆周长的最小值为______.172,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.18.如图,直线y 1=mx 经过P(2,1)和Q(-4,-2)两点,且与直线y 2=kx +b 交于点P ,则不等式kx +b >mx >-2的解集为_________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,一次函数y=kx+b 的图象与反比例函数y= m x(x >0)的图象交于A (2,﹣1),B (12,n )两点,直线y=2与y 轴交于点C .(1)求一次函数与反比例函数的解析式; (2)求△ABC 的面积.20.(6分)某海域有A 、B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求: (1)∠C= °;(2)此时刻船与B 港口之间的距离CB 的长(结果保留根号).21.(6分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时. (1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加109m%小时,求m 的值. 22.(8分)如图,在平面直角坐标系xOy 中,以直线52x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于点D .(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使90APB ∠=︒,求k 的值.23.(8分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.24.(10分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:2≈1.41,3≈1.73)25.(10分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.如图1,当点E在边BC上时,求证DE=EB;如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH =1.求CG的长.26.(12分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?27.(12分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【详解】∵AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E , ∴DA=DB ,EA=EC ,则△ADE 的周长=AD+DE+AE=BD+DE+EC=BC=8, 故选A . 2.A 【解析】 【分析】直接利用相似三角形的判定与性质得出△ONC 1三边关系,再利用勾股定理得出答案. 【详解】过点C 1作C 1N ⊥x 轴于点N ,过点A 1作A 1M ⊥x 轴于点M ,由题意可得:∠C 1NO=∠A 1MO=90°, ∠1=∠2=∠1, 则△A 1OM ∽△OC 1N , ∵OA=5,OC=1, ∴OA 1=5,A 1M=1, ∴OM=4,∴设NO=1x ,则NC 1=4x ,OC 1=1, 则(1x )2+(4x )2=9, 解得:x=±35(负数舍去), 则NO=95,NC 1=125,故点C 的对应点C 1的坐标为:(-95,125). 故选A . 【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键. 3.B 【解析】 【分析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.4.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.D【解析】试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.考点:反比例函数系数k的几何意义.6.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】0.00000637的小数点向右移动6位得到6.37 所以0.00000637用科学记数法表示为6.37×10﹣6, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 7.B 【解析】 【分析】由题图可知:得对折两次后得到的小长方形纸片的长为b ,宽为14a ,然后根据相似多边形的定义,列出比例式即可求出结论. 【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为b ,宽为14a , ∵小长方形与原长方形相似,,14a b b a ∴=2a b ∴=故选B . 【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键. 8.C 【解析】 【分析】首先求出P 点坐标,进而利用函数图象得出不等式ax 2+bx+3x>1的解集. 【详解】∵函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,∴1=﹣3x,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+3x>1的解集是:x<﹣3或x>1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.9.A【解析】∵∠AED=∠B,∠A=∠A∴△ADE∽△ACB∴AE DE AB BC=,∵DE=6,AB=10,AE=8,∴8610BC=,解得BC=15 2.故选A.10.B【解析】【分析】根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【详解】解:∵△ABC绕点A顺时针旋转 60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.11.D【解析】解:设上个月卖出x 双,根据题意得:(1+10%)x=1.故选D .12.A【解析】【分析】连接B′D ,过点B′作B′M ⊥AD 于M .设DM=B′M=x ,则AM=7-x ,根据等腰直角三角形的性质和折叠的性质得到:(7-x )2=25-x 2,通过解方程求得x 的值,易得点B′到BC 的距离.【详解】解:如图,连接B′D ,过点B′作B′M ⊥AD 于M ,∵点B 的对应点B′落在∠ADC 的角平分线上,∴设DM=B′M =x ,则AM=7﹣x ,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:222''AM AB B M =-,即22(7)25x x -=-,解得x=3或x=4,则点B′到BC 的距离为2或1.故选A .【点睛】本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≠﹣5.【解析】【分析】根据分母不为零分式有意义,可得答案.【详解】由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【点睛】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.14.33,2 2⎛⎫+⎪⎪⎝⎭3333,222n n⎛⎫+++⎪⎪⎝⎭【解析】【分析】先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到nD的坐标即可.【详解】分别过点12,,D D D L作y轴的垂线交y轴于点12,,E E E L,∵点B在33y x=上设3()B mtan33AOBm∴∠==∴60AOB∠=︒3AB=Q32sin603ABOA∴===︒90AOB OAB∠+∠=︒Q30OAB∴∠=︒90,90EAD OAB EAD EDA∠+∠=︒∠+∠=︒Q30EDA OAB∴∠=∠=︒同理,1122,n n AD E AD E AD E V V L V 都是含30°的直角三角形∵322ED AD ==,122AE AD ==22OE OA AE ∴=+=+∴3(,22D同理,点n D 的横坐标为31)(1)2n n n x E D AD n n ===+=+纵坐标为1122(1)21)22n n AO AE AD n n +=+=++=+故点n D 的坐标为3322222n n ⎛⎫+++ ⎪ ⎪⎝⎭故答案为:322⎛⎫ ⎪⎪⎝⎭;33222n ⎛⎫+++ ⎪ ⎪⎝⎭. 【点睛】本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.15.1【解析】【分析】根据多边形的内角和定理:180°•(n-2)求解即可.【详解】由题意可得:180°•(n-2)=150°•n ,解得n=1.故多边形是1边形.16.【解析】【分析】作梯形ABCD 关于AB 的轴对称图形,将BC'绕点C'逆时针旋转120°,则有GE'=FE',P 与Q 是关于AB 的对称点,当点F'、G 、P 三点在一条直线上时,△FEP 的周长最小即为F'G+GE'+E'P ,此时点P 与点M 重合,F'M 为所求长度;过点F'作F'H ⊥BC',M 是BC 中点,则Q 是BC'中点,由已知条件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以HC'=1,在Rt △MF'H 中,即可求得F'M .【详解】作梯形ABCD 关于AB 的轴对称图形,作F 关于AB 的对称点G ,P 关于AB 的对称点Q ,∴PF=GQ ,将BC'绕点C'逆时针旋转120°,Q 点关于C'G 的对应点为F',∴GF'=GQ ,设F'M 交AB 于点E',∵F 关于AB 的对称点为G ,∴GE'=FE',∴当点F'、G 、P 三点在一条直线上时,△FEP 的周长最小即为F'G+GE'+E'P ,此时点P 与点M 重合,∴F'M 为所求长度;过点F'作F'H ⊥BC',∵M 是BC 中点,∴Q 是BC'中点,∵∠B=90°,∠C=60°,BC=2AD=4,∴C'Q=F'C'=2,∠F'C'H=60°,∴3HC'=1,∴MH=7,在Rt △MF'H 中,F'M ()2222F H MH 37213=+=+=' ∴△FEP 的周长最小值为13故答案为:13【点睛】本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键.17.35【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个, ∴抽到有理数的概率是:35. 故答案为35. 点睛:知道“,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.18.-4<x <1【解析】将P (1,1)代入解析式y 1=mx ,先求出m 的值为12,将Q 点纵坐标y=1代入解析式y=12x ,求出y 1=mx 的横坐标x=-4,即可由图直接求出不等式kx+b >mx >-1的解集为y 1>y 1>-1时,x 的取值范围为-4<x <1.故答案为-4<x <1.点睛:本题考查了一次函数与一元一次不等式,求出函数图象的交点坐标及函数与x 轴的交点坐标是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=2x ﹣5,2y x =-;(2)214. 【解析】【分析】【详解】试题分析:(1)把A 坐标代入反比例解析式求出m 的值,确定出反比例解析式,再将B 坐标代入求出n的值,确定出B 坐标,将A 与B 坐标代入一次函数解析式求出k 与b 的值,即可确定出一次函数解析式;(2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC 面积.试题解析:(1)把A (2,﹣1)代入反比例解析式得:﹣1=2m ,即m=﹣2,∴反比例解析式为2y x =-,把B (12,n )代入反比例解析式得:n=﹣4,即B (12,﹣4),把A 与B 坐标代入y=kx+b 中得:21{142k b k b +=-+=-,解得:k=2,b=﹣5,则一次函数解析式为y=2x﹣5;(2)如图,S△ABC=1113121 266323222224⨯-⨯⨯-⨯⨯-⨯⨯=考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用.20.(1)60;(2)302106+【解析】(1)由平行线的性质以及方向角的定义得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根据方向角的定义得出∠BAC=∠BAE+∠CAE=75°,利用三角形内角和定理求出∠C=60°;(2)作AD⊥BC交BC于点D,解Rt△ABD,得出BD=AD=302,解Rt△ACD,得出CD=106,根据BC=BD+CD即可求解.解:(1)如图所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故答案为60;(2)如图,作AD⊥BC于D,在Rt△ABD中,∵∠ABD=45°,AB=60,∴.在Rt △ACD 中,∵∠C=60°,,∴tanC=AD CD, ∴, ∴.答:该船与B 港口之间的距离CB 的长为()海里.21.(1)1600千米;(2)1【解析】试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出方程(80+120)(1-m%)(8+109m%)=1600,进而解方程求出即可. 试题解析:(1)设原时速为xkm/h ,通车后里程为ykm ,则有: ()()8120816320x y x y ⎧+⎪⎨++⎪⎩== , 解得:801600x y ⎧⎨⎩== . 答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1﹣m%)(8+109m%)=1600, 解得:m 1=1,m 2=0(不合题意舍去),答:m 的值为1. 22.(1)255y x x =-+.;(2)点G 坐标为()13,1G -;296744G ⎛+- ⎝⎭.(3)13k =-+. 【解析】分析:(1)根据已知列出方程组求解即可;(2)作AM ⊥x 轴,BN ⊥x 轴,垂足分别为M ,N ,求出直线l 的解析式,再分两种情况分别求出G 点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.详解:(1)由题可得:5, 225,1.baca b c⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a=,5b=-,5c=.∴二次函数解析式为:255y x x=-+.(2)作AM x⊥轴,BN x⊥轴,垂足分别为,M N,则34AF MQFB QN==.32MQ=Q,2NQ∴=,911,24B⎛⎫⎪⎝⎭,1,91,24k mk m+=⎧⎪∴⎨+=⎪⎩,解得1,21,2km⎧=⎪⎪⎨⎪=⎪⎩,1122ty x∴=+,12D,⎛⎫⎪⎝⎭.同理,152BCy x=-+.BCD BCGS S∆∆=Q,∴①//DG BC(G在BC下方),1122DGy x=-+,2115522x x x∴-+=-+,即22990x x-+=,123,32x x∴==.52x>Q,3x∴=,()3,1G∴-.②G在BC上方时,直线23G G与1DG关于BC对称.1211922G Gy x∴=-+,21195522x x x∴-+=-+,22990x x∴--=.52x>Q,9317x+∴=931767317G+-∴⎝⎭.综上所述,点G 坐标为()13,1G -;2G ⎝⎭. (3)由题意可得:1k m +=. 1m k ∴=-,11y kx k ∴=+-,2155kx k x x ∴+-=-+,即()2540x k x k -+++=.11x ∴=,24x k =+,()24,31B k k k ∴+++.设AB 的中点为'O , P Q 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ∴⊥轴,P ∴为MN 的中点,5,02k P +⎛⎫∴ ⎪⎝⎭. AMP PNB ∆∆Q ∽,AM PN PM BN∴=,••AM BN PN PM ∴=, ()2551314122k k k k k ++⎛⎫⎛⎫∴⨯++=+-- ⎪⎪⎝⎭⎝⎭,即23650k k +-=,960∆=>. 0k >Q,1k ∴==-+. 点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.23.(1)y=﹣2142x x ++;(1)点K 的坐标为(817,0);(2)点P 的坐标为:(1)或(1,1)或(,2)或(1,2).【解析】试题分析:(1)把A 、C 两点坐标代入抛物线解析式可求得a 、c 的值,可求得抛物线解析;(1)可求得点C 关于x 轴的对称点C′的坐标,连接C′N 交x 轴于点K ,再求得直线C′K 的解析式,可求得K 点坐标;(2)过点E 作EG ⊥x 轴于点G ,设Q (m ,0),可表示出AB 、BQ ,再证明△BQE ≌△BAC ,可表示出EG ,可得出△CQE 关于m 的解析式,再根据二次函数的性质可求得Q 点的坐标;(4)分DO=DF 、FO=FD 和OD=OF 三种情况,分别根据等腰三角形的性质求得F 点的坐标,进一步求得P 点坐标即可.试题解析:(1)∵抛物线经过点C (0,4),A (4,0),∴416840c a a =⎧⎨-+=⎩,解得124a c ⎧=-⎪⎨⎪=⎩ , ∴抛物线解析式为y=﹣12x 1+x+4;(1)由(1)可求得抛物线顶点为N(1,92),如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得924k bb⎧+=⎪⎨⎪=-⎩,解得1724kb⎧=⎪⎨⎪=-⎩,∴直线C′N的解析式为y=172x-4 ,令y=0,解得x=817,∴点K的坐标为(817,0);(2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,由﹣12x1+x+4=0,得x1=﹣1,x1=4,∴点B的坐标为(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴EG BQCO BA=,即246EG m+=,解得EG=243m+;∴S△CQE=S△CBQ﹣S△EBQ=12(CO-EG)·BQ=12(m+1)(4-243m+)=2128-333m m++=-13(m-1)1+2 .又∵﹣1≤m≤4,∴当m=1时,S△CQE有最大值2,此时Q(1,0);(4)存在.在△ODF中,(ⅰ)若DO=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此时,点F的坐标为(1,1).由﹣12x1+x+4=1,得x1=1+5,x1=1﹣5.此时,点P的坐标为:P1(1+5,1)或P1(1﹣5,1);(ⅱ)若FO=FD,过点F作FM⊥x轴于点M.由等腰三角形的性质得:OM=12OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣12x1+x+4=2,得x13x1=13.此时,点P的坐标为:P2(32)或P4(13,2);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴2.∴点O到AC的距离为2.而OF=OD=1<22矛盾.∴在AC上不存在点使得OF=OD=1.此时,不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为:(1)或(11)或(,2)或(1,2).点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.24.此车没有超过了该路段16m/s 的限制速度.【解析】分析:根据直角三角形的性质和三角函数得出DB ,DA ,进而解答即可.详解:由题意得:∠DCA=60°,∠DCB=45°,在Rt △CDB 中,tan ∠DCB=1200DB DB DC ==, 解得:DB=200,在Rt △CDA 中,tan ∠DCA=200DA DA DC ==解得:∴AB=DA ﹣200≈146米, 轿车速度14614.61610AB v t ===<, 答:此车没有超过了该路段16m/s 的限制速度.点睛:本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD 与BD 的长度,难度一般.25.(1)证明见解析;(2)ED=EB ,证明见解析;(1)CG=2.【解析】【分析】(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE ;(2)、取AB 的中点O ,连接CO 、EO ,根据△ACO 和△CDE 为等边三角形,从而得出△ACD 和△OCE 全等,然后得出△COE 和△BOE 全等,从而得出答案;(1)、取AB 的中点O ,连接CO 、EO 、EB ,根据题意得出△COE 和△BOE 全等,然后得出△CEG 和△DCO 全等,设CG=a ,则AG=5a ,OD=a ,根据题意列出一元一次方程求出a 的值得出答案.【详解】(1)∵△CDE 是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B ,∴DE=EB ;(2) ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.26.(1)200;(2)108°;(3)答案见解析;(4)600【解析】试题分析:(1)根据体育人数80人,占40%,可以求出总人数.(2)根据圆心角=百分比×360°即可解决问题.(3)求出艺术类、其它类社团人数,即可画出条形图.(4)用样本百分比估计总体百分比即可解决问题.试题解析:(1)80÷40%=200(人).∴此次共调查200人.(2)60200×360°=108°.∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图,(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人.【点睛】此题主要考查了条形图与统计表以及扇形图的综合应用,由条形图与扇形图结合得出调查的总人数是解决问题的关键,学会用样本估计总体的思想,属于中考常考题型.27.(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).【解析】试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.试题解析:(1)树状图如下图:则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),∴点M(x,y)在函数y=﹣的图象上的概率为:.考点:列表法或树状图法求概率.。
上海市崇明县2019年中考数学二模试题及答案

- 1 -上海市崇明县2019年中考数学二模试题(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是……………………………………………………………………()(A)1293=±(B)3273-=(C)030-=()(D)2139-=2.轨道交通给人们的出行提供了便捷的服务,.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为………………………()(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是………………………………………………………………()(A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是…………………………………………………………………()(A)12y y >(B)12y y <(C)12y y =(D)(D)无法判断无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………()(A) (B) (C) (D)6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是…………………………………………………………………()(A)AC BD =, AB CD ∥, AB CD =(B)AD BC ∥, A C∠=∠(C)AO BO CO DO ===, AC BD⊥(D)AO CO =, BO DO =, AB BC=二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ . 8. 8. 已知已知32x +=,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为的值为 ▲ .1010.已知关于.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为的值为▲ .1111.已知在方程.已知在方程222232x x x x ++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是式方程是 ▲ . 1212..布袋中有2个红球和3个黑球,它们除颜色外其他都相同,它们除颜色外其他都相同,那么从布袋中取出那么从布袋中取出1个球恰好是红球的概率为好是红球的概率为 ▲ .1313.某学校在开展“节约每一滴水”的活动中,从初三年级的.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:节水量(单位:吨)节水量(单位:吨)1 1.2 1.5 2 2.5 同学数同学数45632用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨.吨.1414.如图,在.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a =u u u r r ,AD b =u u u r r,如果用向量,a br r 表示向量BC u u u r ,那么BC =u u u r ▲ .1515..如图,已知ABC ∆和ADE ∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为的长度为 ▲ .16. 16. 如图,如图,已知在O e 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =, 那么CD = ▲ .1717.如果一个二次函数的二次项系数为.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将(第14题图)ABCD(第15题图)A BCE FD(第16题图)ABCDOE[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为数为 ▲ .1818.如图,在.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合,重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值的值 为 ▲ .三、解答题(本大题共7题,满分78分) 1919.(本题满分.(本题满分10分)分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-.2020.(本题满分.(本题满分10分)分)解方程组:222230x y x xy y -=⎧⎨--=⎩2121..(本题满分10分,第分,第(1)(1)(1)小题小题5分、第分、第(2)(2)(2)小题小题5分)分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点,的中点,AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =.(1)求线段AE 的长;的长;(2)求sin DAE ∠的值.的值.2222.(本题满分.(本题满分10分,第分,第(1)(1)(1)小题小题4分,第分,第(2)(2)(2)小题小题6分)分)周末,小明骑电动自行车从家里出发到野外郊游.小明骑电动自行车从家里出发到野外郊游.从家出发从家出发0.5小时后到达甲地,小时后到达甲地,游玩游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)(km)与小明离家时间与小明离家时间x (h)(h)的函数图像.已知妈妈驾车的速度是小明的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.倍. (1)小明骑电动自行车的速度为)小明骑电动自行车的速度为 千米千米千米//小时,小时,在甲地游玩的时间为在甲地游玩的时间为 小时;小时;小时; (2)小明从家出发多少小时的时候被妈妈追上?)小明从家出发多少小时的时候被妈妈追上?BA C FED(第18题图)(第21题图) CAB E D y (km)此时离家多远?此时离家多远?2323.(本题满分.(本题满分12分,每小题各6分)分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形;是菱形; (2)求证:2DH HE HC =⋅.2424.(本题满分.(本题满分12分,每小题各6分)分)如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C . (1)求这个抛物线的解析式,并写出顶点坐标;)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.的坐标.(第24题图)B AC O x y BC O xyA BDHG FEC(第23题图)2525.(本题满分.(本题满分14分,第分,第(1)(1)(1)小题小题5分,第分,第(2)(2)(2)小题小题5分,第分,第(3)(3)(3)小题小题4分)分)如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,点,以点P 为圆心,PA 为半径的P e 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E ,点Q 是线段BE 的中点.的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域;定义域;(2)以点Q 为圆心,QB 为半径的Q e 和P e 相切时,求P e 的半径;的半径;(3)射线PQ 与P e 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.长.(第25题图)AP DC EQ B(备用图1)BACB崇明县2019学年第二学期教学调研卷九年级数学参考答案及评分说明参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分)分) 1.D ; 2 2..C ;3 3..A ; 4.B ; 5 5..D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)分)7.(2)(2)x x x +- 8 8..1 91 9..210. 10 11. 2320y y -+= 12. 2513. 540 14.22b a -r r15.216.43 17.[]68, 18. 35三、解答题:(本大题共7题,满分78分)分) 1919.(本题满分.(本题满分10分)分)先化简,再求值:先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-o . 解:原式解:原式==21(1)212x x x x x --+-+g (2)2分122x x x x -=-++ ………………………………………………………………………………………………………………………………………………………………………22分12x =+ ………………………………………………………………………………………………………………………………………………………………………………………………22分∵6302x tan =-o3622323=⨯-=- ………………………………………………………………………………………………………………………22分 ∴原式∴原式==13623=………………………………………………………………………………………………………………………………………………………………………………………………22分20. 20. (本题满分(本题满分10分)分)解方程组:解方程组:222230x y x xy y -=⎧⎨--=⎩ (1) (2)解:由(解:由(22)可得:(3)()0x y x y -+=∴∴30x y -=,0x y += ………………………………………………………………………………………………22分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,20x y x y -=⎧⎨+=⎩ ………………………………………………………………………………44分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩………………………………………………………………………………………………44分2121..(本题满分10分,第(分,第(11)小题5分、第(分、第(22)小题5分)分)(1)解:909oBAC AC ∠==∵,93cos 5AC C AB BC ===∴ ………………………………………………………………………………………………………………………………11分 15BC =∴ ………………………………………………………………………………………………………………………………………………………………………………………………22分90oBAC ∠=∵,点E 是BC 的中点的中点11522AE BC ==∴ ………………………………………………………………………………………………………………………………………………………………22分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴ 3cos 95CD CD C AC ===∴ 275CD =∴ ………………………………………………………………………………………………………………………………………………………22分∵点∵点E 是BC 的中点,的中点,BC=15 BC=15 ∴∴CE=152 ∴∴DE=2110………………………………………………………………………………11分 ∵∵90oADB ∠=∴∴sin DAE ∠=2127101525DE AE =⨯= ………………………………………………………………………………………22分22. 22. (本题满分(本题满分10分,第(分,第(11)小题4分,第(分,第(22)小题6分)分)(1) 20 20;;0.5 0.5 .....................................................................各 (2)(2)解:设小明出发x 小时的时候被妈妈追上.小时的时候被妈妈追上. 420(1)10203()3x x -+=⨯- …………………………………………………………………………33分解得:解得:74x =………………………………………………………………………………………………………………………………………………………………11分 ∴∴320(1)102010254x -+=⨯+= ………………………………………………………………………………………11分答:当小明出发答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…千米.…11分2323.(本题满分.(本题满分12分,每小题各6分)分) (1)证明:∵点D 、E 分别是BC BC、、AC 的中点的中点 ∴∴DE//AB DE//AB,,BC=2BD BC=2BD ………………………………………………………………………………………………………………………………………………………11分 ∵∵AF//BC∴四边形∴四边形ABDF 是平行四边形是平行四边形 ………………………………………………………………………………………………………………………………………22分 ∵∵BC=2AB∴AB=BD AB=BD ………………………………………………………………………………………………………………………………………………………………………………………………………11分 ∴四边形ABDF 是菱形.是菱形. ……………………………………………………………………………………………………22分(2)证明:∵四边形ABDF 是菱形是菱形 ∴∴AF=DF∵点∵点G 是AF 的中点的中点 ∴∴FG=12AF∵点∵点E 是AC 的中点的中点 ∴∴AE=CE ∵∵AF//BC AF//BC ∴∴1EF AEDE CE== ∴∴EF=112DF DF,, ∴∴FG=EF FG=EF ………………………………………………………………………………………………………………………………………………………………………………………11分在△在△在△AFE AFE 和△和△DFG DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△∴△∴△AFE AFE AFE≌△≌△≌△DFG DFG DFG((S.A.S S.A.S)) ∴∠∴∠∴∠FAE=FAE=FAE=∠∠FDG FDG ………………………………………………………………………………………………………………………………………………………………………11分 ∵∵AF//BC∴∠∴∠∴∠FA FA E=E=∠∠C ∴∠∴∠∴∠FDG=FDG=FDG=∠∠C C ………………………………………………………………………………………………………………………………………………………………………11分 又∵∠又∵∠又∵∠EHD=EHD=EHD=∠∠DHC DHC(公共角)(公共角)(公共角) ∴△∴△∴△HED HED HED∽△∽△∽△HDC HDC HDC ………………………………………………………………………………………………………………………………………………………………22分 ∴∴HEHDHD HC =∴∴2DH HE HC =g …………………………………………………………………11分2424.(本题满分.(本题满分12分,每小题各6分)分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩………………………………………………………………………………………………………………………………………………………………11分解得方程组的解为解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………………………………………………………………………………………………………22分∴这个抛物线的解析式为:∴这个抛物线的解析式为:2142y x x =-- ………………………………………………………………11分 顶点为顶点为9(1,)2- ………………………………………………………………………………………………………………………………………………………………………………………22分(2)如图:取OA 的中点,记为点N ∵∵OA=OC=4OA=OC=4,∠,∠,∠AOC=90AOC=90AOC=90°° ∴∠∴∠∴∠ACB=45ACB=45ACB=45°°∵点N 是OA 的中点的中点 ∴∴ON=2 又∵又∵OB=2 OB=2 OB=2 ∴∴OB=ON 又∵∠又∵∠BON=90BON=90BON=90°° ∴∠∴∠ONB=45ONB=45ONB=45°° ∴∠∴∠ACB=ACB=ACB=∠∠ONB ∵∠∵∠OMB+OMB+OMB+∠∠OAB=OAB=∠∠ACB ∠∠NBA+NBA+∠∠OAB=OAB=∠∠ONB∴∠∴∠OMB=OMB=OMB=∠∠NBA NBA ………………………………………………………………………………………………………………………………………………………………………………………………22分1° 当点M 在点N 的上方时,记为M 1∵∠∵∠BAN=BAN=BAN=∠∠M 1AB AB,∠,∠,∠NBA=NBA=NBA=∠∠OM 1B , ∴△∴△ABN ABN ABN∽△∽△∽△AM AM 1B ∴1AN ABAB AM=又∵又∵AN=2AN=2AN=2,,AB=25∴110AM = 又∵又∵又∵A A (0,—,—44)∴1(0,6)M ………………………………………………………………………………………………………………………………………………………………………………………………………………………22分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ………………………………………………………………………………………………………………22分 综上所述,点M 的坐标为(0,6)或(0,6)-2525.(本题满分.(本题满分14分,第(分,第(11)小题5分,第(分,第(22)小题5分,第(分,第(33)小题4分)分) (1)解:过点P 作PH PH⊥⊥AD AD,垂足为点,垂足为点H∵∠∵∠∵∠ACB=90ACB=90ACB=90°,°,43tanB = ∴∴35sinA=∵∵PA x = ∴∴35PH x = ∵∠∵∠∵∠PHA=90PHA=90PHA=90°° ∴∴222PH AH PA += ∴∴45AH x = ………………………………………………………………11分 ∵在⊙∵在⊙∵在⊙P P 中,中,PH PH PH⊥弦⊥弦AD ∴∴45DH AH x ==, ∴∴85AD x = 又∵又∵AC=8 AC=8 AC=8 ∴∴885CD x =- ………………………………………………………………………………………………………………………………………………11分∵∠∵∠PHA=PHA=PHA=∠∠BCA=90BCA=90°,°,°,∴PH PH∥∥BE BE ∴∴PH DHCE CD =∴∴3455885x xy x =- ………………………………………………………………………………………11分 ∴665y x =- ((x 0<<5) (1)(2)∵)∵PA=PD PA=PD PA=PD,,PH PH⊥⊥AD ∴∠∴∠∴∠1=1=1=∠∠2 ∵∵PH PH∥∥BE∴∠∴∠∴∠1=1=1=∠∠B ,∠,∠2=2=2=∠∠3 ∴∴PB=PE ∵∵Q 是BE 的中点的中点∴∴PQ PQ⊥⊥BE BE ………………………………………………………………………………………………………………………………………………………………………………………………………………………11分 ∴∴43PQ tanB =BQ = ∴∴35BQ cosB =BP =∵∵PA x = ∴∴10PB x =- ∴∴365BQ x =-, 485PQ x =- 1°当⊙Q 和⊙P 外切时:外切时:PQ=AP+BQ PQ=AP+BQ∴∴438655x x x -=+- ……………………………………………………………………………………………………………………11分53x = ………………………………………………………………………………………………………………………………………………………………………………………………………11分2°当⊙°当⊙Q Q 和⊙和⊙P P 内切时,此时⊙内切时,此时⊙P P 的半径大于⊙的半径大于⊙Q Q 的半径,则PQ=A P —BQ ∴∴438(6)55x x x -=-- ……………………………………………………………………………………………………………………11分321HQ ABP C ED- 11 - 356x = ………………………………………………………………………………………………………………………………………………………………………………………………………………11分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356. (3)当△)当△PMC PMC 是等腰三角形,存在以下几种情况:是等腰三角形,存在以下几种情况:1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴∴45MQ x = 若M 在线段PQ 上时,上时,PM+MQ=PQ PM+MQ=PQ∴44855x x x +=- 4013x = …………………………………………………………………………………………………………………………………………11分 若M 在线段PQ 的延长线上时,的延长线上时,PM PM PM——MQ=PQ ∴44855x x x -=- 8x = ……………………………………………………………………………………………………………………………………………………11分 2°当CP=CM 时∵CP=CM CP=CM,,CQ CQ⊥⊥PM∴PQ=QM=1122PM x =∴41852x x -= 8013x = ………………………………………………………………………………………………………………………………………………………………………………………………………………………………11分 3°当PM=PC x =时∵AP x = ∴∴PA=PC PA=PC 又∵又∵又∵PH PH PH⊥⊥AC AC ∴∴AH=CH ∵PH PH∥∥BE∴1AP AH BP CH==∴110x x=- 5x = ………………………………………………………………………………………………………………………………………………………………………………………………………………………………11分 综上所述:当△综上所述:当△PMC PMC 是等腰三角形时,是等腰三角形时,AP AP 的长为4013或8013或5或8.。
上海市崇明县2019-2020学年中考数学模拟试题(2)含解析

上海市崇明县2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH ,若EH=3,EF=4,那么线段AD 与AB 的比等于( )A .25:24B .16:15C .5:4D .4:32.下列各数中,最小的数是( )A .0B .2C .1D .π-3.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k < B .0k ≠ C .1k <且0k ≠ D .0k >4.如图,AB ∥CD ,直线EF 与AB 、CD 分别相交于E 、F ,AM ⊥EF 于点M ,若∠EAM=10°,那么∠CFE 等于( )A .80°B .85°C .100°D .170°5.一个多边形的边数由原来的3增加到n 时(n >3,且n 为正整数),它的外角和( ) A .增加(n ﹣2)×180°B .减小(n ﹣2)×180°C .增加(n ﹣1)×180°D .没有改变 6.下列运算,结果正确的是( )A .m 2+m 2=m 4B .2m 2n÷12mn=4m C .(3mn 2)2=6m 2n 4 D .(m+2)2=m 2+4 7.在如图的计算程序中,y 与x 之间的函数关系所对应的图象大致是( )A.B.C.D.8.如图中任意画一个点,落在黑色区域的概率是()A.1πB.12C.πD.509.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()10.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.8011.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=kx的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是()A.10 B.212C.454D.1512.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_____.14.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.15.太阳半径约为696000千米,数字696000用科学记数法表示为千米.16.边长为6的正六边形外接圆半径是_____.17.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.18.分解因式:x2y﹣2xy2+y3=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB 上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF 交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.20.(6分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.21.(6分)如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF =EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.22.(8分)解不等式组21114(2) xx x+-⎧⎨+>-⎩…23.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC 的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC 的长.24.(10分)如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD.BE平分∠ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.(1)求证:△ADC≌△FDB;(2)求证:1CE BF2=;(3)判断△ECG的形状,并证明你的结论.25.(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元.请解答以下问题:(1)填空:每天可售出书 本(用含x 的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?26.(12分)某超市对今年“元旦”期间销售A 、B 、C 三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售 个绿色鸡蛋,A 品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B 种品牌的绿色鸡蛋的个数?27.(12分)如图,在四边形ABCD 中,BD 为一条对角线,AD BC ∥,2AD BC =,90ABD ∠=︒.E 为AD 的中点,连结BE .(1)求证:四边形BCDE 为菱形;(2)连结AC ,若AC 平分BAD ∠,1BC =,求AC 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.2.D【解析】【分析】根据实数大小比较法则判断即可.【详解】π-<0<1,故选D .【点睛】本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.3.C【解析】【分析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论.【详解】解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,∴ 20(6)490k k ≠⎧⎨=--⨯>⎩V , 解得:k<1且k≠1.故选:C .【点睛】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键.4.C【解析】【分析】根据题意,求出∠AEM,再根据AB ∥CD ,得出∠AEM 与∠CFE 互补,求出∠CFE .【详解】∵AM ⊥EF ,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故选C.【点睛】本题考查三角形内角和与两条直线平行内错角相等.5.D【解析】【分析】根据多边形的外角和等于360°,与边数无关即可解答.【详解】∵多边形的外角和等于360°,与边数无关,∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选D.【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.6.B【解析】【分析】直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.【详解】A. m2+m2=2m2,故此选项错误;B. 2m2n÷12mn=4m,正确;C. (3mn2)2=9m2n4,故此选项错误;D. (m+2)2=m2+4m+4,故此选项错误.故答案选:B.【点睛】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.7.A【解析】函数→一次函数的图像及性质8.B【分析】抓住黑白面积相等,根据概率公式可求出概率. 【详解】因为,黑白区域面积相等,所以,点落在黑色区域的概率是1 2 .故选B【点睛】本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.9.D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选:D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.10.C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理. 11.C【解析】A ,C 之间的距离为6,点Q 与点P 的水平距离为3,进而得到A ,B 之间的水平距离为1,且k=6,根据四边形PDEQ 的面积为()6 1.534524+⨯=,即可得到四边形PDEQ 的面积. 【详解】A ,C 之间的距离为6,2017÷6=336…1,故点P 离x 轴的距离与点B 离x 轴的距离相同,在y=4x+2中,当y=6时,x=1,即点P 离x 轴的距离为6,∴m=6,2020﹣2017=3,故点Q 与点P 的水平距离为3, ∵6,1k = 解得k=6, 双曲线6,y x =1+3=4,63,42y == 即点Q 离x 轴的距离为32, ∴32n =, ∵四边形PDEQ 的面积是()6 1.534524+⨯=. 故选:C .【点睛】考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.12.D【解析】【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n ,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50°【解析】【分析】直接利用圆周角定理进行求解即可.【详解】∵弧AB 所对的圆心角是100°,∴弧AB 所对的圆周角为50°,故答案为:50°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.25【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球, ∴从中任意摸出一个球,则摸出白球的概率是25. 故答案为:25. 【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.m n15.56.9610 .【解析】试题分析:696000=6.96×1,故答案为6.96×1. 考点:科学记数法—表示较大的数.16.6【解析】【分析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.【详解】解:正6边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为6的正六边形外接圆半径是6,故答案为:6.【点睛】本题考查了正多边形和圆,得出正六边形的外接圆半径和正六边形的边长将组成一个等边三角形是解题的关键.17.【解析】【分析】先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.【详解】解:根据题意得2π×PA=3×2π×1,所以PA=3,所以圆锥的高OP=故答案为.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.y(x﹣y)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可【详解】x2y﹣2xy2+y3=y(x2-2xy+y2)=y(x-y)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)AE=DF,AE⊥DF,理由见解析;(2)成立,2或2;(3)51【解析】试题分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出2a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出2a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a 即可;(3)由(1)(2)知:点P 的路径是一段以AD 为直径的圆,设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最大,再由勾股定理可得QC 的长,再求CP 即可.试题解析:(1)AE=DF ,AE ⊥DF ,理由是:∵四边形ABCD 是正方形,∴AD=DC ,∠ADE=∠DCF=90°,∵动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动,∴DE=CF ,在△ADE 和△DCF 中AD DC ADE DCF DE CF =⎧⎪∠=∠⎨⎪=⎩,∴ADE DCF ∆≅∆,∴AE=DF ,∠DAE=∠FDC ,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE ⊥DF ;(2)(1)中的结论还成立,有两种情况:①如图1,当AC=CE 时,设正方形ABCD 的边长为a ,由勾股定理得,222AC CE a a a =+, 则:2:2CE CD a a ==②如图2,当AE=AC 时,设正方形ABCD 的边长为a ,由勾股定理得: 222AC AE a a a ==+=,∵四边形ABCD 是正方形,∴∠ADC=90°,即AD ⊥CE ,∴DE=CD=a ,∴CE:CD=2a:a=2;即22;(3)∵点P 在运动中保持∠APD=90°, ∴点P 的路径是以AD 为直径的圆,如图3,设AD 的中点为Q ,连接CQ 并延长交圆弧于点P ,此时CP 的长度最大,∵在Rt △QDC 中,2222215QC CD QD =+=+=∴51CP QC QP =+=,即线段CP 51.点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大. 20.证明见解析【解析】证明:(1)∵DF ∥BE ,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.21.(1)见解析;(2)四边形BFGN是菱形,理由见解析.【解析】【分析】(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN 为菱形.【详解】(1)证明:过F作FH⊥BE于H点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°−90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,NAB EHF90AB HFNBA EFH∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四边形,∵EF=BF,∴NB=BF,∴平行四边NBFG是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.22.﹣1≤x<1.【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<1,则不等式组的解集为﹣1≤x<1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.23.(1)60°;(2)证明略;(3)8 3π【解析】【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180πg=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键. 24.(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)首先根据AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,进一步得到∠ACD=∠DBF,结合CD=BD,即可证明出△ADC≌△FDB;(2)由△ADC≌△FDB得到AC=BF,结合CE=AE,即可证明出结论;(3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,结合BE⊥AC,即可判断出△ECG的形状.【详解】解:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC∵CD⊥AB∴∠ACD=∠ABE(同角的余角相等)又∵CD=BD∴△ADC≌△FDB(2)∵AB=BC,BE平分∠ABC∴AE=CE则CE=12AC由(1)知:△ADC≌△FDB ∴AC=BF∴CE=12BF(3)△ECG为等腰直角三角形,理由如下:由点H是BC的中点,得GH垂直平分BC,从而有CG=BG,则∠EGC=2∠CBG=∠ABC=45°,又∵BE⊥AC,故△ECG为等腰直角三角形.【点睛】本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大.25.(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.26.(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:4002400×360°=60°;故答案为2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B种品牌的绿色鸡蛋为:8002400×1500=500个.27.(1)证明见解析;(2)3【解析】【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)只要证明△ACD是直角三角形,∠ADC=60°,AD=2即可解决问题;【详解】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)连接AC,如图所示:∵∠ADB=30°,∠ABD=90°,∴AD=2AB,∵AD=2BC,∴AB=BC,∴∠BAC=∠BCA,∵AD∥BC,∴∠DAC=∠BCA,∴∠CAB=∠CAD=30°∴AB=BC=DC=1,AD=2BC=2,∵∠DAC=30°,∠ADC=60°,在Rt△ACD中,223AD CD-=【点睛】考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年上海市崇明县中考数学二模试卷
一、选择题(本大题共6题,每题4分,满分24分)
1.(4分)8的相反数是()
A.B.8C.D.﹣8
2.(4分)下列计算正确的是()
A.B.a+2a=3a C.(2a)3=2a3D.a6÷a3=a2
3.(4分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:
那么这20名同学年龄的众数和中位数分别是()
A.15,14 B.15,15 C.16,14 D.16,15
4.(4分)某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是()
A.B.
C.D.
5.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()
A.等边三角形B.平行四边形C.菱形D.正五边形
6.(4分)已知△ABC中,D、E分别是AB、AC边上的点,DE∥BC,点F是BC 边上一点,联结AF交DE于点G,那么下列结论中一定正确的是()
A.B.C.D.
二、填空题(本大题共12题,每题4分,满分48分)
7.(4分)因式分解:x2﹣9=.
8.(4分)不等式组的解集是.
9.(4分)函数y=的定义域是.
10.(4分)方程的根是x=.
11.(4分)已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机
摸得1个红球的概率为,那么袋子中共有个球.
12.(4分)如果关于x的方程x2+4x﹣k=0有两个相等的实数根,那么实数k的值是.
13.(4分)如果将抛物线y=x2+2x﹣1 向上平移,使它经过点A(1,3),那么所得新抛物线的表达式是.
14.(4分)某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按A,B,C,D 四个等级进行评分,然后根据统计结果绘制了如图两幅不完整的统计图,那么此次抽取的作品中等级为B的作品数为.
15.(4分)已知梯形ABCD,AD∥BC,BC=2AD,如果,,那么=
(用表示).
16.(4分)如图,正六边形ABCDEF 的顶点B、C 分别在正方形AGHI 的边AG、GH 上,如果AB=4,那么CH的长为.
17.(4分)在矩形ABCD中,AB=5,BC=12,点E是边AB上一点(不与A、B重合),以点A为圆心,AE为半径作⊙A,如果⊙C与⊙A外切,那么⊙C的半径r 的取值范围是.
18.(4分)如图,△ABC 中,∠BAC=90°,AB=6,AC=8,点D是BC的中点,将△ABD,将△ABD沿AD翻折得到△AED,联结CE,那么线段CE的长等于.
三、解答题(本大题共7题,满分78分)
19.(10分)计算: +(﹣2)2+9﹣(π﹣3.14)0
20.(10分)解方程组:
21.(10分)已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD⊥OP交圆O于点D.
(1)如图1,当PD∥AB 时,求PD的长;
(2)如图2,当BP平分∠OPD时,求PC的长.
22.(10分)温度通常有两种表示方法:华氏度(单位:°F)与摄氏度(单位:℃),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:
(1)选用表格中给出的数据,求y关于x的函数解析式;
(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56?
23.(12分)如图,AM 是△ABC的中线,点D是线段AM上一点(不与点A 重合).DE∥AB交BC 于点K,CE∥AM,联结AE.
(1)求证:;
(2)求证:BD=AE.
24.(12分)已知抛物线经过点A(0,3)、B(4,1)、C(3,0).
(1)求抛物线的解析式;
(2)联结AC、BC、AB,求∠BAC的正切值;
(3)点P是该抛物线上一点,且在第一象限内,过点P作PG⊥AP交y
轴于点G,当点G在点A 的上方,且△APG与△ABC相似时,求点P的坐标.
25.(14分)如图,已知△ABC 中,AB=8,BC=10,AC=12,D是AC边上一点,
且AB2=AD•AC,联结BD,点E、F分别是BC、AC上两点(点E不与B、C重合),∠AEF=∠C,AE与BD相交于点
G.
(1)求证:BD平分∠ABC;
(2)设BE=x,CF=y,求y与x 之间的函数关系式;
(3)联结FG,当△GEF 是等腰三角形时,求BE的长度.
2018年上海市崇明县中考数学二模试卷
参考答案与试题解析
一、选择题(本大题共6题,每题4分,满分24分)
1.(4分)8的相反数是()
A.B.8 C.D.﹣8
【解答】解:8的相反数是﹣8,
故选:D.
2.(4分)下列计算正确的是()
A.B.a+2a=3a C.(2a)3=2a3D.a6÷a3=a2
【解答】解:A、+,无法计算,故此选项错误;
B、a+2a=3a,正确;
C、(2a)3=8a3,故此选项错误;
D、a6÷a3=a3,故此选项错误;
故选:B.
3.(4分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:
那么这20名同学年龄的众数和中位数分别是()
A.15,14 B.15,15 C.16,14 D.16,15
【解答】解:由于15岁出现次数最多,
所以众数为15岁,
中位数为第10、11个数据的平均数,
所以中位数为=15(岁),
故选:B.
4.(4分)某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是()
A.B.
C.D.
【解答】解:设第一次买了x本画册,根据题意可得:,
故选:A.
5.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()
A.等边三角形B.平行四边形C.菱形D.正五边形
【解答】解:A、等边三角形不是中心对称图形,是轴对称图形,故本选项错误;
B、平行四边形是中心对称图形,不是轴对称图形,故本选项错误;
C、菱形是中心对称图形,也是轴对称图形,故本选项正确;
D、正五边形是轴对称图形,不是中心对称图形,故本选项错误.
故选:C.
6.(4分)已知△ABC中,D、E分别是AB、AC边上的点,DE∥BC,点F是BC 边上一点,联结AF交DE于点G,那么下列结论中一定正确的是()
A.B.C.D.
【解答】解:∵DE∥BC,
∴△ADG∽△ABF,
△AEG∽△ACF,
∴=,
∴,。