2019深圳中考数学模拟(一)
2019深圳中考数学第一轮《数与式》单元测试卷含答案

数与式单元测试卷班级____________姓名______________号数____________一、选择题(本题共12小题,每小题4分,共48分)1.在实数-,0.,,, 0.70107中,其中无理数的个数是 ()A.1B.2C.3D.42.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为 ()A.3.9×1010B.3.9×109C.0.39×1011D.39×1093.下列计算正确的是()A.(a3)2=a5B.(-a)7÷a3=-a4C.a2·a3=a6D.(-2a2)2=2a44.实数a,b在数轴上的位置如图D1-1所示,则化简-|a-b|正确的是()图D1-1A.-bB.bC.2a+bD.2a-b5.若|m-3|+(n+2)2=0,则m+2n的值为 ()A.-4B.-1C.0D.46.若分式-的值为零,则x的值为()A.3B.-3C.±3D.任意实数7.若y=-+--2,则x y的值为 ()A.2B.0C.D.无解8.要使-+-有意义,x应满足()A.≤x≤3B.x≤3且x≠C.<x<3D.<x≤39.下列计算正确的是()A.a2-2a-1=(a-1)2B.a2+a2=a4C.2a·(-3b)=-6abD.12a2b3c÷6ab2=2ab10.若m-=3,则m2+的值为()A.11B.9C.7D.611.关于()A.在数轴上不存在表示的点B.=+C.=±2.D.与最接近的整数是312.下列计算:(1)()2=2, (2)-=2, (3)(-2)2=12, (4)(+)(-)=-1,其中结果正确的个数为 ()A.1B.2C.3D.4二、填空题(本题共8小题,每小题4分,共32分)13 .-1的倒数是.14.计算:|2-|=.15.分解因式:2x2-8=.16. 8的立方根的平方根是.17.定义新运算⊗:对任意实数a,b,都有a⊗b=a2-b.例如3⊗2=32-2=7,那么2⊗1=.18.已知a、,b为两个连续的整数,且a<<b,则a+b=.19.若a x=2 ,a y=3,则a2x+3y20.按一定规律排列的一列数依次为:,,,,…按此规律排列下去,第10个数为_______三、解答题(共70分)21.(8分)计算:(-2)0+-1+4cos30°-|-|.22.(8分)计算:-22+ π-3.14)0+-1---2sin60°.23.(8分)化简:1+-÷--.24.(8分)先化简,再求值:-+--÷-,其中a=1+.25.(8分)先化简:---÷-,然后从不等式组--的解集中,选一个你认为符合题意的x的值代入求值.26.(10分)先化简,再求值:-÷--1,其中a=2sin60°-t an45°,b=1.27.(10分)先化简,再求值:(x-1)÷-1,其中x为方程x2+3x+2=0的根.28.(10分)如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为“智慧数”,比如4=22−02,12=42−22,20=62−42,则说明4,12,20都是“智慧数”。
2019年广东省深圳市中考数学一模试卷含答案解析(2套)

2019年广东省深圳市光明新区中考数学一模试卷选择题(共12小题,满分36分,每小题3分)1. -3的倒数是( )A. 3B.-c - -i D. - 32.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是(flA. 2q 3+q 2 = 3q 5B. (3。
)2=6a 3)C. (q +力)2=a 2+b 2D. la 9a —2a4.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()€55.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口 44亿,这个数用科学记数法表示为( )A. 44X108B. 4.4X109C. 4.4X108D. 4.4X1O 106.将一副三角板(ZA=30。
)按如图所示方式摆放,使得则匕1等于( )A. 75°B. 90°C. 105°D.115°7.如图,钟面上的时间是8: 30,再经过I 分钟,时针、分针第一次重合,则/为( )8.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米)4.50 4.60 4.65 4.70 4.75 4.80人数 232341则这些运动员成绩的中位数、众数分别是()C. 4.70、4.75 D. 4.70、4.70B. 4.65、4.75A. 4.65、4.70下列结论错误的是10.如图,正六边形ABCDEF 内接于0。
, C. c<0 D. abc>0半径为4,则这个正六边形的边心距OM 和由的长分别A.2,K~3 B. 2媚,n C. 73' D. 2面为( ))11.如图,在^ABCD 中,用直尺和圆规作ZBAD 的平分线AG 交BC 于点E.若BF=6, AB=5,则AE 的长为()A.4B.6C.8D.1012.在直线/上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S]、$2、S3、S4,则S1+S2+S3+S4等于()A.4B.5C.6D.14二.填空题(共4小题,满分12分,每小题3分)13.因式分解:a3- ab2=.14.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是.15.用棋子按下列方式摆图形,依照此规律,第"个图形有枚棋子.第1个第2个第3个16.如图,已知点。
深圳市名校联考2019-2020学年中考数学模拟教学质量检测试题

深圳市名校联考2019-2020学年中考数学模拟教学质量检测试题一、选择题1.已知关于x 的一元二次方程kx 2﹣2x+3=0有两个不相等的实数根,则k 的取值范围是( ) A .k <13B .k >﹣13C .k >﹣13且k≠0 D .k <13且k≠0 2.下列计算结果正确的是( ) A.(﹣a )2•a 6=﹣a 8B.(m ﹣n )(m 2+mn+n 2)=m 3﹣n 3C.(﹣2b 2)3=﹣6b 6D.3.如图圆O 直径AB 上一点P ,AB =2,∠BAC =20°,D 是弧BC 中点,则PD+PC 的最小值为( )A B .1C D4.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为x =﹣1.给出四个结论:①b 2>4ac ;②2a+b =0;③a ﹣b+c =0;④5a <b .其中正确的有( )A.1个B.2个C.3个D.4个5.如图,已知在平面直角坐标系中有两点A (0,1),B 0),动点P 在线段AB 上运动,过点P 作y 轴的垂线,垂足为点M ,作x 轴的垂线,垂足为点N ,连接MN ,则线段MN 的最小值为( )A .1B C D .6.若一个多边形的外角和是其内角和的12,则这个多边形的边数为( ) A.2B.4C.6D.87.已知抛物线2(0)y ax bx c a =++≠的对称轴为1x =-,与x 轴的一个交点在(3,0)-和(2,0)-之间,其部分图像如图所示,则下列结论:①点17(,)2y -,23(,)2y -,35(,)4y 是该抛物线上的点,则123y y y <<;②320b c +<;③()t at b a b +≤-(t 为任意实数).其中正确结论的个数是( )A .0B .1C .2D .38.如图,小亮从A 点出发前进10m ,向右转15º,再前进10m ,再右转15º,这样一直走下去,他第一次回到出发点A 时,一共走了多少米( )A .120米B .240米C .360米D .480米9.抛物线2y ax bx c =++的部分图象如图所示,则当y 0>时,x 的取值范围是( )A .x 1>-B .x 1≥-C .1x 3-≤≤D .1x 3-<<10.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A.20°B.35°C.40°D.70°11.如图,在44⨯正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是( )A .①B .②C .③D .④ 12.下列实数中,最大的数是( )A .﹣|﹣4|B .0C .1D .﹣(﹣3)二、填空题13.有一组单项式依次为﹣x 2,3456,,,3579x x x x --,…,则第n 个单项式为_____.14.用估算的方法求一元二次方程2t 2-t-2=0的解 列表:15.如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6,BD =4,则CD 的长为____.16.若直线232y x b =-++经过第一、二、四象限,则b 的取值范围是_____.17.一抛物线和另一抛物线y =﹣2x 2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),则该抛物线的解析式为_____. 18.已知直线经过第一、二、四象限,该直线解析式可以是______.三、解答题19.某幼儿园购买了A ,B 两种型号的玩具,A 型玩具的单价比B 型玩具的单价少9元,已知该幼儿园用了3120元购买A 型玩具的件数与用4200元购买B 型玩具的件数相等. (1)该幼儿园购买的A ,B 型玩具的单价各是多少元?(2)若A ,B 两种型号的玩具共购买200件,且A 型玩具数量不多于B 型玩具数量的3倍,则购买这些玩具的总费用最少需要多少元?20.如图,直线y =﹣x+4分别交x 轴、y 轴于A 、C 两点,抛物线y =﹣x 2+mx+4经过点A ,且与x 轴的另一个交点为点B .连接BC ,过点C 作CD ∥x 轴交抛物线于点D(1)求抛物线的函数表达式;(2)若点E 是抛物线上的点,求满足∠ECD =∠BCO 的点E 的坐标;(3)点M 在y 轴上且位于点C 上方,点N 在直线AC 上,点P 为第一象限内的抛物线上一点,若以点C 、M 、N 、P 为顶点的四边形是菱形,求菱形的边长.21.用两个全等的等边三角形△ABC 和△ACD 拼成菱形ABCD .把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A 重合,两边分别与AB ,AC 重合.将三角尺绕点A 按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC ,CD 相交于点E ,F 时,(如图1),通过观察或测量BE ,CF 的长度,你能得出什么结论并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC ,CD 的延长线相交于点E ,F 时(如图2),你在(1)中得到的结论还成立吗?简要说明理由.22.2011年,陕西西安被教育部列为“减负”工作改革试点地区.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?23.某报社为了解温州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,调查结果共分为四个等级:A.非常了解:B.比较了解:C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.请结合统计图表,回答下列问题:(1)本次参与调查的市民共有________人,m=________,n=________.(2)统计图中扇形D的圆心角是________度.(3)某校准备开展关于雾霾的知识竞赛,九(3)班郑老师欲从2名男生和1名女生中任选2人参加比赛,求恰好选中“1男1女”的概率(要求列表或画树状图).24.如图,某校准备给长12米,宽8米的矩形ABCD 室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形PQFG ),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点O 为矩形和菱形的对称中心,OP AB ,2OQ OP =,12AE PM =,为了美观,要求区域Ⅱ的面积不超过矩形ABCD 面积的18,若设OP x =米.(1)当3x =时,求区域Ⅱ的面积. (2)计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当x 为多少时,室内光线亮度最好,并求此时白色区域的面积.②三种瓷砖的单价列表如下,,m n 均为正整数,若当2x =米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时m =__________,n =__________. 25.化简:23a 31a a -⎛⎫-÷⎪⎝⎭【参考答案】*** 一、选择题13.n 1x (1)2n 1n+--14.1 15.5 16.23b >-; 17.y =﹣2(x+2)2+1. 18.y =-x +1(答案不唯一) 三、解答题19.(1)该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)购买这些玩具的总费用最少需要5650元.【解析】 【分析】(1)根据题意可以得到相应的分式方程,从而可以求得该幼儿园购买的A ,B 型玩具的单价各是多少元;(2)根据题意可以得到费用与购买A 型和B 型玩具之间的关系,从而可以解答本题. 【详解】解:(1)设购买A 型玩具的单价是x 元,则购买B 型玩具的单价是(x+9)元,312042009x x =+, 解得,x =26,经检验,x =26是原分式方程的解, ∴x+9=35,答:该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)设购买A 型玩具a 件,则购买B 型玩具(200﹣a )件,所需费用为w 元, w =26a+35(200﹣a )=﹣9a+7000, ∵a≤3(200﹣a ), ∴a≤150,∴当a =150时,w 取得最小值,此时w =﹣9×150+7000=5650, 答:购买这些玩具的总费用最少需要5650元. 【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答.20.(1)y =﹣x 2+3x+4;(2)E 的坐标为E 1175,416⎛⎫ ⎪⎝⎭或1351,416⎛⎫ ⎪⎝⎭;(3)﹣2.【解析】 【分析】(1)利用直线方程求得点A 、C 的坐标,根据点A 、C 坐标求得抛物线解析式; (2)分点E 在CD 上方、点E 在CD 下方两种情况,分别求解即可; (3)分CM 为菱形的一条边、CM 为菱形的对角线两种情况,分别求解即可. 【详解】解:(1)y =﹣x+4,令x =0,则y =4,令y =0,则x =4,则点A 、C 的坐标分别为(4,0)、(0,4), 将点A 的坐标代入抛物线的表达式并解得:m =3, 故抛物线的表达式为:y =﹣x 2+3x+4①, 令y =0,则x =﹣1或4,故点B (﹣1,0); (2)①当点E 在CD 上方时,tan∠BCO=14 OBOC,则直线CE的表达式为:y=14x+4②,联立①②并解得:x=0或114(舍去0),则点E(114,7516);②当点E在CD下方时,同理可得:点E′(134,5116);故点E的坐标为E(114,7516)或(134,5116);(3)①如图2,当CM为菱形的一条边时,过点P作PQ∥x轴,∵OA=OC=4,∴∠PMQ=∠CAO=45°,设点P(x,﹣x2+3x+4),则PM PQ x,C、M、N、P为顶点的四边形是菱形,则PM=PN,x=﹣x2+3x+4,解得:x=0或4(舍去0),x=﹣2;②如图3,当CM为菱形的对角线时,同理可得:菱形边长为;故:菱形边长为﹣2.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、菱形基本性质等,要注意分类求解、避免遗漏.21.(1)BE=CF.见解析;(2)BE=CF仍然成立.理由见解析.【解析】【分析】(1)根据图形中BE、CF的长度可以直接得出BE=CF的结论,当然也可以通过证明△ABE≌△ACF得出结论.(2)可以通过证明△ADF≌△ACE,得出CE=DF,进而得出BE=CF.【详解】(1)BE=CF.证明:在△ABE和△ACF中,∵∠BAE+∠EAC=∠CAF+∠EAC=60°,∴∠BAE =∠CAF .∵AB =AC ,∠B =∠ACF =60°,∴△ABE ≌△ACF (ASA ). ∴BE =CF ;(2)BE =CF 仍然成立. 证明:在△ACE 和△ADF 中,∵∠CAE+∠EAD =∠FAD+∠DAE =60°, ∴∠CAE =∠DAF , ∵∠BCA =∠ACD =60°, ∴∠FCE =60°, ∴∠ACE =120°, ∵∠ADC =60°, ∴∠ADF =120°, 在△ACE 和△ADF 中,FAD CAE AD ACADF ACE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△ACE , ∴CE =DF , ∴BE =CF. 【点睛】本题考查了菱形的性质、等边三角形的性质及全等三角形的判定,注意在含有三角形的图形中,线段的相等一般都会转化为三角形的全等的证明,三角形全等的判定是中考的热点,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件. 22.(1)200,(2)补图见解析;(3)54°;(4)680000人. 【解析】 【分析】(1)根据A 级有50人,所占的比例是25%,据此即可求解; (2)求得C 级所占的比例,乘以总人数即可求解,进而作出条形图; (3)利用360度,乘以C 级所占的比例即可求解; (4)总人数乘以A ,B 两级所占的比例的和即可求解. 【详解】解:(1)50÷25%=200(名);(2)C 级的人数是:200×(1﹣25%﹣60%)=30(人).; (3)C 级所占的圆心角的度数是:360×(1﹣25%﹣60%)=54°; (4)80000×(25%+60%)=68000(人).【点睛】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.23.(1)400;15;35;(2)126;(3)23【解析】 【分析】(1)利用本次参与调查的市民人数=A 等级的人数÷对应的百分比;用比较了解的人数除以总人数,求出m 的值,再用整体1减去其它对雾霾的了解程度的百分比,从而求出n 的值. (2)利用扇形统计图中D 部分扇形所对应的圆心角=360°×D 类的百分比.(3)画树状图展示所有6种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解. 【详解】(1)本次参与调查的市民共有:20÷5%=400(人), m%=60400×100%=15%,则m=15, n%=1-5%-45%-15%=35%,则n=35; 故答案为:400,15,35;(2)扇形统计图中D 部分扇形所对应的圆心角是360°×35%=126°. 故答案为:126; (3)根据题意画图如下:共有6种等可能的结果数,其中恰好选中1男1女的结果数为4种, 所以恰好选中1男1女的概率是4263=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图. 24.(1)8m 2;(2)68m 2;(3) 40,8 【解析】 【分析】(1)根据中心对称图形性质和,OP AB ,12OM AB =,12AE PM =可得42x AE -=,即可解当83x =时,4个全等直角三角形的面积;(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x 的代数式表示出菱形和四个全等直角三角形的面积,列出含有x 的解析式表示白色区域面积,并化成顶点式,根据04OP <<,06OQ <≤,1968II S ≤⨯,求出自变量的取值范围,再根据二次函数的增减性即可解答;(3)计算出x=2时各部分面积以及用含m 、n 的代数式表示出费用,因为m,n 均为正整数,解得m=40,n=8. 【详解】(1) ∵O 为长方形和菱形的对称中心,OP AB ,∴142OM AB ==∵12AE PM =,OP PM OM +=,∴42x AE -= ∴当83x =时,41223AE -==,21124468223II S AM AE m =⨯⋅=⨯⨯⨯= (2)∵()2211442422I S OP OQ x x x m =⨯⋅=⨯⋅=,()214(246)2II S AM AE x m =⨯⋅=- ∴I IIII I S AB BC S S =⋅--=-()22234672474.254x x x m ⎛⎫++=--+ ⎪⎝⎭,∵04OP <<,06OQ <≤,1968II S ≤⨯ ∴040261246968x x x ⎧⎪<<⎪<≤⎨⎪⎪-≤⨯⎩解不等式组得23x ≤≤,∵40a =-<,结合图像,当34x ≥时,III S 随x 的增大而减小. ∴当2x =时, III S 取得最大值为()2242627268m-⨯+⨯+=(3)∵当2x =时,S Ⅰ=4x 2=16 m 2,246II S x =-=12 m 2,III S =68m 2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n 均为正整数,解得m=40,n=8. 【点睛】本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x 的二次函数解析式表示出白色区面积. 25.a 【解析】 【分析】根据分式的减法和除法可以解答本题. 【详解】23a 31a a-⎛⎫-÷ ⎪⎝⎭ =2a 3a a a 3-⋅- =a . 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.。
2019年最新中考数学模拟试卷及答案931081

中考数学模拟试卷及答案解析学校:__________ 考号:__________题号一 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息评卷人得分 一、选择题1.一个长方体的主视图与左视图如图 所示(单位:cm ),则其俯视图的面积是( )A . l2cm 2B . 8cm 2C .6cm 2D .4cm 22.如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则S △DMN ∶S 四边形ANME 等于( )A .1∶5B .1∶4C .2∶5D .2∶73.下列各式中,是分式的是( )A .2-πx B . 31x 2 C .312-+x x D .21x 4.已知10x m =,10y n =,则2x 310y +等于( )A .23m n +B .22m n +C .6mnD .23m n 5.下列现象属于旋转的是( )A .吊机起吊物体的运动B .小树在风中“东倒西歪”C .汽车的行驶D .镜子中的人像 6.如果2(1)(3)x x x mx n -+=++,那么m ,n 的值分别是( )A .1m =,3n =B .4m =,5n =C .2m =,3n =-D .2m =-,3n =7.在一副完整的扑克牌中摸牌,第一张是红桃3,第二张黑桃7,第三张方片4,第四张是小王,那么第五张出现可能性最大的是( )A .红桃B .黑桃C .方片D .梅花8.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26 km/h ,现在该列车从甲站到乙站所用的时间比原来减少了1h,已知甲、乙两站的路程是312 km,若设列车提速前的速度是x(km/h),则根据题意所列方程正确的是()A.312312126x x-=+B.312312126x x-=+C.312312126x x-=-D.312312126xχ-=-9.如图,已知△ABC≌△CDE,其中AB=CD,那么列结论中,不正确的是()A.AC=CE B.∠BAC=∠DCE C.∠ACB=∠ECD D.∠B=∠D10.如图,已知∠1 和∠2 互补,∠3 = 125°,则∠4 的度数是()A.45°B.55°C.125°D.75°11.要组成一个等边三角形,三条线段的长度可取()A.1,2,3 B.4,6,11 C.1,1,5 D.3.5,3.5,3.512.如图,在ΔABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50°B.40°C.25°D.20°13.若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有()A.6桶B.7桶C.8桶D.9桶14.在等式(-a-b)()=a2-b2中,括号里应填的多项式是()A.a-b B.a+b C.-a-b D.b-a15.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.由六个大小一样的正方形所组成的图形是立方体的表面展开图C.立方体的各条棱长度都相等D.棱柱的各条校长度都相等16.“a和b的平方的和除以c”可表示为()A.2()a bc+B.2bac+C.22a bc+D.2a bc+17.有七个数由小到大依次排列,其平均数是38,如果这组数中前四个数的平均数是33, 后四个数的平均数是42,那么这七个数的中位数是()A . 16B .20C .34D .3818.下列调查工作需采用普查方式的是( )A .环保部门对淮河某段水域的水污染情况的调查B .电视台对正在播出的某电视节目收视率的调查C .质检部门对各厂家生产的电池使用寿命的调查D .企业在给职工做工作服前进行的尺寸大小的调查19.不等式025x >-的解集是( )A .25x <B .25x >C .52x <D .25-x < 20.下列各不等式中,变形正确的是( )A .36102x x +>+变形得54x >B .121163x x -+<,变形得612(21)x x --<+ C .3214x x -<+变形得3x <- D .733x x +>-,变形得5x <21.如果2m ,m ,1m -这三个实数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是( )A .0m <B .12m >C .0m >D .102m << 22.下列函数中,是二次函数的是( )A .1y x =-B .y x =-C .1y x =-+D .21y x =-+ 23.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( ) A .112k -<<- B .102k << C .01k << D .112k << 24.如图,P (x ,y )是以坐标原点为圆心、5为半径的圆周上的点,若x ,y 都是整数,则这样的点共有( )A .4个B .8个C .12个D .16个25.在平面直角坐标系中,点(-2,m-2)在第三象限,则m 的取值范围是( )A .m>2B .m<2C .m<-2D .m ≤226.半径为R,弧长为l的扇形可用计算公式12S lR=计算面积,其中变量是()A.R B.l C.S、R D.S、l、R27.“阳光体育”运动在我市轰轰烈烈开展,为了解同学们最爱好的阳光体育运动项目,小王对本班50名同学进行了跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目最喜爱人数的调查,并根据调查结果绘制了如上的人数分布直方图,若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为()A.120o B.144o C.180o D.72o28.已知一次函数y kx b=+的图象经过点(0,-3)与(1,5),则这个一次函数的表达式是()A .y=8x一3 B.y=-8x一3 C.y=8x+3 D.y=-8x+329.下列图形中不能折成一个立方体的是()A.B.C.D.30.钟表上l2时l5分时,时针与分针的夹角为()A.90° B 82.5° C.67.5° D.60°31.阅读下列命题:①圆是轴对称图形,每一条直径都是它的对称轴;②垂直于弦的直线平分这条弦,并且平分弦所对的两条弧;③平分弦的直径垂直于弦,并且平分弦所对的两条弧;④垂直于弦且平分这条弦的直线是这个圆的对称轴.判断其中不正确的命题个数是()A.1 个B.2 个C.3 个D.4 个32.7 的相反数的14减去-8 的倒数的 2 倍的差等于()A.2 B. -2 C.112-D.11233.计算 18÷6÷2 时,下列各式中错误的是()A.111862⨯⨯B. 18÷(6÷2)C.18÷(6×2)D.(l8÷6)÷234.数a 没有平方根,则 a 的取值范围是( )A .0a >B .0a ≥C .0a <D .0a =35.下列等式一定成立的是( )A .-a-b= -(a-b )B .-a+b= -(a-b )C .2-3x=-(2+3x )D .30-x= 5(6-x )36.下列方程中属于一元一次方程的是( )A .x-y=3B .-x+1=1C .11x x += D .2210x x -+=37.如图,在一块木板上均匀地钉了9颗钉子,用细绳可以像图中那样围成三角形,在这块木板上,还可以围成x 个与图中三角形全等但位置不同的三角形,则x 的值为( )A .8 8 12 C 15 D .1738.下列多项式不能用完全平方公式分解因式的是( )A .21124x x -+ B .20.010.2m m --- C .269y y -+- 224129a ab b ++39.甲、乙两地相距m 千米,原计划火车每小时行x 千米. 若火车实际每小时行50千米,则火车从甲地到乙地所需时间比原来减少( )A .50m 小时B .m x 小时C .(50m m x -)小时D .(50m m x-) 小时 40.化简1(1)(1)n n a a +-+-(n 为正整数)的结果为( )A .0B . -2C . 2D .2 或-241.一根绳子弯曲成如图2(1)所示的形状. 当用剪刀像图 2(2)那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图2(3)那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为 9段. 若用剪刀在虚线a 、b 之间把绳子再剪(1n -)次(剪刀的方向与a 平行),这时绳子的段数是( )A .41n +B . 42n +C .43n +D .45n +42.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利l5元,则这种服装每件的成本价是 ( )A .120元B .125元C .135元D .14043.如图,△ABC ≌△BAD ,A 与B ,C 与D 是对应点,若AB=4cm ,BD=4.5cm ,AD=1.5cm,则BC的长为()A.4cm B.4.5cm C.1.5cm D.不能确定44.刚刚喜迁新居的小华同学为估计今年六月份(30天)的家庭用电量,在六月上旬连续7天同一时刻观察电表显示的度数并记录如下:日期1号2号3号4号5号6号7号24273135424548电表显示数(度)你预计小华同学家六月份用电总量约是()A.1080度 B.124度 C.103度D.120度45.如图,两平行直线AB和CD被直线MN所截,交点分别为E、F,点G为射线FD上的一点,且EG=EF,若∠EFG=45°,则∠BEG为()A.300 B.45°C.60°D.90°46.若两个角互为补角,则这两个角()A.都是锐角 B.都是钝角C.一个是锐角,另一个是钝角 D.以上结论都不全对47.国家游泳中心——“水立方”是北京2008年奥运会场馆之-,它的外层膜的展开面积约为260 000平方米,用科学记数法表示260000,并保留二个有效数字,结果可表示为()A.26 B.26×104 C.2.6×105 D.2.6×10648.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋49.如图所示,一块正方形铁皮的边长为 a,如果一边截去6,另一边截去 5,那么所剩铁皮的面积(阴影部分)表示成:①(5)(6)a a --;②256(5)a a a ---;③265(6)a a a ---;④25630a a a --+其中正确的有( )A .1 个B . 2 个C .3 个D . 4 个 50.用代入法解方程组342(1)25(2)x y x y +=⎧⎨-=⎩ ,使得代入后化简比较容易的变形是( ) A .由①得243y x -=B . 由①得234x y -=C . 由②得53y x +=D . 由②得25y x =-51.关于x 的二次三项式249x kx -+是一个完全平方式,则 k 等于( )6+A .6B .6±C .-12D .12±52.某商店销售一批服装,每件售价 150 元,可获利 25%,求这种服装的成本价. 设这种服装的成本价为x 元,则得到方程( )A .15025%x =⨯B .25%150x ⋅=C .15025%x x -=D .15025%x -=53.如图,AB=AC, EB= EC,那么图中的全等三角形共有( )A .1 对B . 2 对 C. 3 对 D .4 对54.作△ABC 的高AD ,中线AE ,角平分线AF ,三者中有可能画在△ABC 外的是( )A .中线AEB .高ADC .角平分线AFD .都有可能55.如图,点D 、E 分别在AC 、AB 上,已知AB=AC ,添加下列条件,不能说明ΔABD ≌ΔACE 的是( )A .∠B=∠CB .AD=AEC .∠BDC=∠CEBD .BD=CE56.在△ABC 中,∠A 是锐角,那么△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定57.如右图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( )A .9015x y x y +=⎧⎨=-⎩B .90215x y x y +=⎧⎨=-⎩C .90152x y x y +=⎧⎨=-⎩D .290215x x y =⎧⎨=-⎩ 58.某商店一次同时卖出两套童装,每件都以135元售出,其中一套盈利25%,另一套亏本25%,则在这次买卖中,该商店( )A .不赚不赔B .赚9元C .赔18元D .赚 18元59.如图,在平面直角坐标系中,点P 在第一象限,⊙O 与x 轴相切于点Q ,与y 轴交于(02)M ,,(08)N ,两点,则点P 的坐标是( ) A .(53), B .(35), C .(54), D .(45),60.等腰三角形的两条边长是2和5,则它的周长是( )A .9B .12C .14D .9或1461.三角形的外心是( )A . 三条高线的交点B .三条中线的交点C .三条中垂线的交点D .三条内角平分线的交点62.如图,A 、B 、C 是⊙O 上的三点,若∠BOC=2∠BOA ,则∠CAB 是∠ACB 的( )A .2 倍B .4 倍C .12 D . 1倍63.如图,已知 AB ⊥CD ,垂足为 0,以 0为圆心的三个同心圆中,最大一个圆的半径为22㎝,则以下图形中和图上阴影部分面积相等的是( )A 2cm 的圆B 2的圆C 2 cm 的圆D .半径是12cm 的圆 64.已知:⊙O 的半径为5,PO=6,则点P 是在( )A .圆外B .圆上C .圆内D .不能确定65.若圆的一条弦把圆周角分度数的比为1:3的两条弧,则劣弧所对的圆周角等于( )A .45°B .90°C .135°D .270°66.如图,为了绿化环境,在矩形空地的四个角划出四个半径为1•的扇形空地进行绿化,则绿化的总面积是( )A .2πB .πC .2πD .4π67. 如图,△ABC 中,AC=8,AB = 12,BC = 10,E 是AC 中点,∠AED =∠B ,则△ADE 与△ACB 的周长之比为( ) A .1:2 B .1:3 C .2:3 D .2:568.如图,已知点 P 是△ABC 的边 AB 上一点,且满足△APC ∽△ACB ,则下列的比例式:①AP AC PC CB =;②AC AB AP AC=;③PC AC PB AP =;④AC PC AB PB =.其中正确的比例式的序号是( ) A .①② B .③④ C .①②③ D .②③④69.已知线段 AB=2,点 C 是 AB 的一个黄金分割点,且 AC>BC ,则 AC 的长是( )A 51-B 51C 35-D .3570.抛物线y=(x+3)2-2的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限71.已知函数y =ax 2+bx +c 的图像如图所示,那么此函数的解析式为( )A .y =-x 2+2x +3B .y =x 2―2x ―3C .y =―x 2―2x +3D .y =―x 2―2x ―372.⊙O 的半径为6,⊙O 的一条弦AB 长为3 ,以3为半径的同心圆与AB 的位置关系是( )A .相离B .相切C .相交D .无法确定 73.二次函数342++=x x y 的图象可以由二次函数2x y =的图象平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,再向上平移1个单位长度B .先向左平移2个单位长度,再向下平移1个单位长度C .先向右平移2个单位长度,再向上平移1个单位长度D .先向右平移2个单位长度,再向下平移1个单位长度74.半径分别为5和8的两个圆的圆心距为d ,若313d <≤,则这两个圆的位置关系一定是( )A .相交B .相切C .内切或相交D .外切或相交75.在△ABC 中,∠C= Rt ∠,AC :BC=2:3,则 tanB 的值等于 ( )A .23B .13C .21313D .3131376.小李沿着倾斜角为β的山坡从A 点前进a 米到达B 点,如图所示,则山坡 AB 的水平距离 AC 等于 ( )A .asln β米B .acos β米C .tan a β米D .tan a β米77.一个不透明的袋中装有除颜色外均相同的5个红球和 3 个黄球,从中随机摸出一个,摸到黄球的概率是( )A .18B .13C .38D .3578. 现有一批产品共 10 件,其中正品 9件,次品1件,从中任取 2 件,取出的全是正品的概率为( )A .45B .89C .910D .192079.如图,⊙O 内切于ABC △,切点分别为D E F ,,.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,那么EDF ∠等于( )A .40°B .55°C .65°D .70°80.如图所示是一个物体的三视图,则该物体的形状是( )A .圆锥B .圆柱C .三棱锥D .三棱柱81.有一实物如图所示,那么它的主视图是()A. B. C.D.82.如图所示,立方体图中灰色的面对着你,那么它的主视图是()A.B. C.D.83.下面设施并不是为了扩大视野、减少盲区而建造的是()A.建筑用的塔式起重机的驾驶室建在较高地方B.火车、汽车驾驶室要建在车头稍高处,且减少车头伸出部分C.指引航向的灯塔建在岸边高处,且灯塔建得也比较高D.建造高楼时首先在地下建造几层地下室84.下列图形中,不能..经过折叠围成正方体的是()85.反比例函数的图象在第一象限内经过点A,过点A分别向x轴,y轴引垂线,垂足分别为P Q,,已知四边形APOQ的面积为4,那么这个反比例函数的解析式为()A.4yx=B.4xy=C.4y x=D.2yx=86.如图所示,下面对图形的判断正确的是()A.是轴对称图形B.既是轴对称图形,又是中心对称图形C.是轴对称图形,非中心对称图形D.是中心对称图形,非轴对称图形87.如图所示的两同心圆中,大圆的半径 OA、OB、oO、OD 分别交小圆于E、F、G、H,∠AOB =∠GOH,则下列结论错误的是()A.EF=GH B.⌒EF = ⌒GH C.∠AOG=∠BOD D.⌒AB=⌒GH88.体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图).由图可知,最喜欢篮球的频率是()A.0.16 B.0.24 C.0.3 D.0.489.若一组数据11,12,13,x的极差为6,则x的值是()A.17 B.18 C.19 D.17或790.若—个矩形较短的边长为5,两条对角线所夹的锐角为60°,则这个矩形的面积是()A.50 B.25 C.253D.253 291.不能判定四边形ABCD为平行四边形的题设是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.A∥CD,AD∥BC92.点P(a,2)与Q(-1,b)关于坐标原点对称,则ba 的值为()A.1 B.-1 C.3 D.-393.如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,下列结论中错误的是()A.AE=EC′B.BE=DE C.C′B=AD D.∠C′DE=∠EDB 94.在□ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:3:4:2 C.1:1:2:2 D.3:4:3:4 95.小明3min共投篮80次,进了50个球,则小明进球的频率是()A.80 B.50 C.1.6 D.0.62596.若关于x的方程x2+2x+k=O有实数根,则()A.k<l B.k≤1 C.k≤-1 D.k≥-197.从正方形的铁片上,截去2 cm 宽的一条长方形铁片,余下铁片的面积是48cm 2,则原来正方形铁片的面积是( )A .6cm 2B .8 cm 2C .36 cm 2D .64 cm 2 98. 已知 2 是关于y 的方程23202y a -=的一个解,则21a -的值是( )A . 3B . 4C . 5D . 6 99.若220x y y -+-=,则2()xy -的值为( ) A .64 B .64- C .16 D .16-100.实数a 、b 在数轴上的对应位置如图所示,则(a -b)2+|b|的值为( )A .a -2bB .aC .-aD .a +2b101.用反证法证明“在同一平面内,若a ⊥b ,b ⊥c ,则a ∥c ”时,应假设( )A .a 不垂直于cB .a ,c 都不垂直bC .a ⊥cD .a 与c 相交 102.已知 y 与x 成反比例,当 x 增加 20% 时,y 将 ( )A .约减少20%B .约增加20%C .约增加80%D .约减少 80% 103.抛物线2(23)y x =-+的对称轴为( )A . 直线x=-3B .直线32x =-C .直线 y=3D .y 轴 104.下列各点在抛物线23y x =上的是( )A .(-1,-3)B .(一1,3)C .(-2,6)D .( 13,1) 105.如图,过反比例函数3y x=(x>0)图象上任意两点A 、B 分别作x 铀的垂线,垂足分别为 C .D ,连结 QA 、OB ,设△AOC 与△BQD 的面积分别为 S 1与S 2, 比较它们的大小可得( )A .S 1=S 2B .S 1>S 2C .S 1<S 2D .S 1与S 2大小关系不能确定106. 关于2y x=,下列判断正确的是( ) A .y 随x 的增大而增大B .y 随x 的增大而减小C .在每一个象限内,y 随x 的增大而增大D .在每一个象限内,y 随x 的增大而减小107.242y x x =--+化成2()y a x m k =++的形式是( )A .2(2)2y x =---B .2(2)6y x =--+C .2(2)2y x =-+-D .2(2)6y x =-++108.的结果的是( )A .-2B .2C .2±D .16 109.为了了解一批数据在各个范围所占比例的大小,将这批数据分组,落在各小组里的数据个数叫做( )A .频率B .频数C .众数D .中位数110.下列计算中正确的是() A .2 3 +3 2 =5 5B . 2 ·(-2)×(-4) =-4 ×-4 =(-2)×(-2)=4C . 6 ÷( 3 -1)= 6 ÷ 3 - 6 ÷1= 2 - 6D .(10 +3)2(10 -3)=10 +3111.sin65°与 cos26°之间的 系是( )A .sin65°<cos26°B .sin65°>cos26°C .sin65°= cos26°D .sin65°+cos26°= 1112.用科学记数法表示0.00038得( )A .53810-⨯B .43.810-⨯C .43.810⨯D .30.3810-⨯113.平面上互不重合的四条直线的交点个数是 ( )A .1或3或5B .0或3或5或6C .0或1或3或5或6D .0或1或3或4或5或。
2019年深圳中考数学模拟题

2019年深圳市中考数学模拟题题赛试2019年初中数学命题比罗湖区韵翠园中学东晓校区命题人:杨紫第一部分选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个是正确的)1.下列各式中结果为负数的是()A.﹣(﹣2)B.| ﹣2| C.(﹣2)2 D.﹣| ﹣2|2.某正方体的每一个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体的表面上,与“国”字相对的面上的汉字是()A.厉B.害C.了D.我3.下列运算中,正确的是()2)3=x5 B.x2+2 x3=3x5 C.(﹣ab)3=a3b D.x3?x3=x6 A.(x4.如图,四个图标中是轴对称图形的是()A.B.C.D.5.某市元宵节灯展参观人数约为470000,将这个数用科学记数法表示为()6 B.4.7×105 C.0.47×106 D.47×104A.4.7×106.如图,在3×3 的方格中,已有两个小正方形被涂黑,若在其余空白小正方形中任选一个涂黑,率是()则所得图案是一个轴对称图形的概A.B.C.D.7.不等式组的解集是x>4,那么m 的取值范围是()A.m≤ 4 B.m≥ 4 C.m<4 D.m=48.如图,△A BC中,AB=AC,∠B=30°,点D 是AC的中点,过点 D 作DE⊥AC交BC于点E,连接E A.则∠B AE的度数为()A.30°B.80°C.90°D.110°9.小亮在同一直角坐标系内作出了y=﹣2x+2和y=﹣x﹣1的图象,方程组的解()A.B.C.D.10.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6B.60%x﹣x=6C.(1+60%)x﹣x=6D.(1+60%)x﹣x=611.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12间t(分钟)之间的点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时函数关系的是()A.B.C.D.12.已知:如图,在正方形A BCD外取一点E,连接A E,BE,DE,过点A作AE的垂线交D E 于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+.其中正确结论的序号是()A.①②③B.①②④C.②③④D.①③④第二部分非选择题填空题(本题共4小题,每小题3分,共12分)2b+ab2=.13.a +b=0,ab=﹣7,则a14.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.15.如图,按此规律,第行最后一个数是2017,则此行的数之和.16.在平面直角坐标系中,O为坐标原点,B在x 轴上,四边形OACB为平行四边形,且∠AOB=60°,反比例函数y=(k>0)在第一象限内过点A,且与BC交于点F.当F 为BC的中点,且S△AOF =12 时,OA的长为.解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20分8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:cos245°+ ﹣?tan30°.18.先化简,再求值:(+ )÷,其中x=.19.某校学生会向全校3800名学生发起了“献爱心”捐款活动.为了解捐款情况,学生会随机调息,解关信查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相:答下列问题(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数是、众数是和中位数是;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.20.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°,已知原传送带A B长为3米A C的长度;(1)求新传送带(2)如果需要在货物着地点C的左侧留出 2.5米的通道,请判断距离B点5米的货物MNQP是否需要挪走,并说明理由.(参考数据:≈ 1.4,≈ 1.7.)21.某网店准备经销一款儿童玩具,每个进价为35元,经市场预测,包邮单价定为50元时,每周可售出200个,包邮单价每增加1元销售将减少10个,已知每成交一个,店主要承付5元的快递费用,设该店主包邮单价定为x(元)(x>50),每周获得的利润为y(元).(1)求该店主包邮单价定为53元时每周获得的利润;(2)求y与x之间的函数关系式;(3)该店主包邮单价定为多少元时,每周获得的利润大?最大值是多少?22.如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交CE的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.23.如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图1,过点P作PE⊥y轴于点E.求△PAE面积S的最大值;(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.罗湖区赛试题2019年初中数学命题比参考答案与试题解析12小题)一.选择题(共1 2 3 4 5 6 7 8 9 10 11 12D D D C B A A C B C C A4小题)二.填空题(共2 .16.8 . 13.0 .14..15.673,1345解析:第12 题解析【考点】:全等三角形的判定与性质;LE:正方形的性质.菁优网版权所有【解答】解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∵在△APD 和△AEB 中,,∴△APD≌△AEB(SAS);;故此选项成立③∵△APD≌△AEB,∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PA E,∴∠BEP=∠PA E=90°,∴EB⊥ED;;故此选项成立②过B作BF⊥AE,交AE 的延长线于F,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°,又∵③中EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45°,又∵BE==,∴BF=EF=,故此选项正确;④如图,连接B D,在Rt△AEP中,∵AE=AP=1,∴EP=,又∵PB=,∴BE=,∵△APD≌△AEB,∴PD=BE=,∴S△ABP+S△ADP=S△ABD﹣S△BDP=S正方形ABCD﹣×DP×BE=×(4+)﹣××=+.故此选项不正确.①②③,综上可知其中正确结论的序号是故选:A.,【点评】此题分别考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理问题.解决才能综合性比较强,解题时要求熟练掌握相关的基础知识很好第16题解析【考点】:反比例函数系数k的几何意义;;平行四边形的性质.菁反比例函数图象上点的坐标特征有优网版权所A B.【解答】解:如图作A H⊥OB于H,连接∵四边形OACB是平行四边形,∴OA∥BC,∵∠AOB=60°,设O H=m,则A H=m,∵BF=CF,A、F在y=上,∴A(m,m),F(2m,m),∵S△AOF=12,∴?(m+m)?m=12,∴m=4(负根已经舍弃),∴OA=2OH=8,8.故答案为学是会【点评】本题考查反比例函数系数k的几何意义,平行四边形的性质等知识,解题的关键轴题.利用参数,构建方程解决问题,属于中考填空题中的压7小题)三.解答题(共245°+﹣?tan30°.17(5分).计算:cos【解答】解:原式=()2+﹣×⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分1=+﹣⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.(6分)先化简,再求值:(+)÷,其中x=.【解答】解:原式=[+]?=(+)?⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分=?=,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分1.当x=时,原式==﹣⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分【点评】本题主要考查分式的化简则.求值,解题的关键是熟练掌握分式的混合运算顺序和运算法方程求解.解分式方程一定注意要验根.19.(7分)【考点】全面调查与抽样调查;用样本估计总体;条形统计图;算术平均数;中位数;有众数.菁优网版权所【解答】解:(1)根据条形图4+16+12+10+8=50(人),⋯⋯⋯⋯⋯⋯⋯1分m=100﹣20﹣24﹣16﹣8=32,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分故答案为:50,32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:(15+15)=15;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分为10元的学生人数比例为32%,(3)∵在50名学生中,捐款金额∴由样本数据,估计该校3800名学生中捐款金额为10元的学生人数比例为32%,有3800×32%=1216,∴该校本次活动捐款金额为10元的学生约有1216人.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分.找中知识【点评】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.20.(8分)【考点】解直角三角形的应用﹣坡度坡角问题.菁优网版权所有【解答】解:(1)在Rt△ABD中,sin∠ABD=,∴AD=AB×sin∠ABD=3×=3,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∵∠ADC=90°,∠ACD=30°,∴AC=2AD=6,6米;答:新传送带AC的长度为⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分M NQP不需要挪走,(2)距离B点5米的货物理由如下:在Rt△ABD中,∠ABD=45°,∴BD=AD=3,由勾股定理得,CD==3≈ 5.1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CB=CD﹣BD≈ 2.1,PC=PB﹣CB≈ 2.9,∵2.9>2.5,∴距离B点5米的货物M NQP不需要挪走.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握锐角三角函数的定义、坡度坡角的概念是解题的关键.21.(8分)【考点】一元二次方程的应用.菁优网版权所有【解答】解:(1)(53﹣35﹣5)×[200﹣(53﹣50)×10]=13×170=2210(元).2210元;答:每周获得的利润为⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)由题意,y=(x﹣35﹣5)[200﹣10(x﹣50)]2+1100x﹣28000;即y与x之间的函数关系式为:y=﹣10x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分2+1100x﹣28000=﹣10(x﹣55)2+2250,(3)∵y=﹣10x∵﹣10<0,∴包邮单价定为55元时,每周获得的利润最大,最大值是2250元.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分关【点评】此题主要考查了一元二次方程的应用,二次函数的应用,找到关键描述语,找到等量.键系准确的列出方程是解决问题的关22.(9分)【考点】勾股定理;垂径定理;切线的判定与性质;相似三角形的判定与性质.菁优网版权所有【解答】(1)证明:∵OA=OB,DB=DE,∴∠A=∠OBA,∠DEB=∠DBE,∵EC⊥OA,∠DEB=∠AEC,∴∠A+∠DEB=90°,∴∠OBA+∠DBE=90°,∴∠OBD=90°,∵OB是圆的半径,∴BD是⊙O的切线;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分O E,(2)过点D作DF⊥AB于点F,连接∵点E是AB的中点,AB=12,∴AE=EB=6,OE⊥AB,又∵DE=DB,DF⊥BE,DB=5,DB=DE,∴EF=BF=3,∴DF==4,∵∠AEC=∠DEF,∴∠A=∠EDF,∵OE⊥AB,DF⊥AB,∴∠AEO=∠DFE=90°,∴△AEO∽△DFE,∴,即,得EO=4.5,∴△AOB的面积是:=27.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分【点评】本题考查切线的判定与性质、垂径定理、勾股定理、相似三角形的判定与性质,解答本想解答.题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思23.(9分)此题来源于广东中山市【考点】二次函数综合题.菁优网版权所有2+b x+3经过A(﹣3,0)、B(1,0)两点,【解答】解:(1)∵抛物线y=ax∴,得,∴抛物线解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的顶点坐标为(﹣1,4),即该抛物线的解析式为y=﹣x2﹣2x+3,顶点D的坐标为(﹣1,4);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)设直线AD的函数解析式为y=kx+m,,得,∴直线AD的函数解析式为y=2x+6,∵点P是线段A D上一个动点(不与A、D重合),∴设点P的坐标为(p,2p+6),2+,∴S△PAE==﹣(p+)∵﹣3<p<﹣1,∴当p=﹣时,S△PAE取得最大值,此时S△PAE=,S的最大值是;即△PAE面积⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)抛物线上存在一点Q,使得四边形OAPQ为平行四边形,∵四边形OAPQ为平行四边形,点Q在抛物线上,∴OA=PQ,∵点A(﹣3,0),∴OA=3,∴PQ=3,∵直线AD为y=2x+6,点P在线段A D上,点Q在抛物线y=﹣x2x+3上,2﹣∴设点P的坐标为(p,2p+6),点Q(q,﹣q2q+3),2﹣∴,解得,或(舍去),22q+3=2﹣4,当q=﹣2+时,﹣q﹣4).即点Q的坐标为(﹣2+,2﹣⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分件条,【点评】本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的求出相应的函数解析式,利用二次函数的性质和数形结合的思想解答.。
2019年广东省深圳市中考数学一模试卷(解析版)

2019年广东省深圳市中考数学一模试卷一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A.﹣4B.4C.D.2.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A.B.C.D.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a54.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A.1.6×103吨B.1.6×104吨C.1.6×105吨D.1.6×106吨6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.40°B.30°C.20°D.10°7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定8.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A.①②B.①④C.②③D.③④10.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,11.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.1012.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本题共有4小题,每小题3分,共12分)13.因式分解:a3﹣4a=.14.从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是.15.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星个.16.如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k=.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分〕17.计算:sin30°+(﹣1)2013+(π﹣3)0﹣cos60°.18.解不等式组并写出它的所有非负整数解19.丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.20.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)21.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.22.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.23.如图,抛物线y =﹣x 2+bx +c 交x 轴于点A (﹣3,0)和点B ,交y 轴于点C (0,3). (1)求抛物线的函数表达式;(2)若点P 在抛物线上,且S △AOP =4S △BOC ,求点P 的坐标;(3)如图2,设点Q 是线段AC 上的一动点,作DQ ⊥x 轴,交抛物线于点D ,交x 轴于点E ,是否存在点Q ,使得直线AC 将△ADE 的面积分成1:2的两部分?若存在,求出所有点Q 的坐标;若不存在,请说明理由.2019年广东省深圳市中考数学一模试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A.﹣4B.4C.D.【分析】根据乘积是1的两数互为倒数可得答案.【解答】解:﹣4的倒数是﹣,故选:D.【点评】此题主要考查了倒数,关键是掌握倒数定义.2.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A.B.C.D.【分析】仔细观察图形找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层最右边有一个正方形.故选:C.【点评】本题主要考查了三视图的主视图的知识,主视图是从物体的正面看得到的视图,属于基础题.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a5【分析】根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.【解答】解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2•a3=2a5,故D选项正确,故选:D.【点评】本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A.1.6×103吨B.1.6×104吨C.1.6×105吨D.1.6×106吨【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将16万吨用科学记数法表示为:1.6×105吨.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.40°B.30°C.20°D.10°【分析】根据平行线的性质求出∠CFE,根据三角形的外角性质得出∠E=∠CFE﹣∠D,代入求出即可.【解答】解:∵AB∥CD,∠ABE=60°,∴∠CFE=∠ABE=60°,∵∠D=50°,∴∠E=∠CFE﹣∠D=10°,故选:D.【点评】本题考查了平行线的性质和三角形的外角性质的应用,解此题的关键是求出∠CFE的度数,注意:两直线平行,同位角相等.7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定【分析】此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.【解答】解:设赚了25%的衣服的成本为x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的成本为y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选:B.【点评】本题考查了一元一次方程的应用,注意赔赚都是在原价的基础上,故需分别求出两件衣服的原价,再比较.8.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.【解答】解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选:C.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A.①②B.①④C.②③D.③④【分析】令x=1代入可判断①;由对称轴x=﹣的范围可判断②;由图象与x轴有两个交点可判断③;由开口方向及与x轴的交点可分别得出a、c的符号,可判断④.【解答】解:由图象可知当x=1时,y<0,∴a+b+c<0,故①不正确;由图象可知0<﹣<1,∴>﹣1,又∵开口向上,∴a>0,∴b>﹣2a,∴2a+b>0,故②正确;由图象可知二次函数与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴△>0,即b2﹣4ac>0,故③正确;由图象可知抛物线开口向上,与y轴的交点在x轴的下方,∴a>0,c<0,∴ac<0,故④不正确;综上可知正确的为②③,故选:C.【点评】本题主要考查二次函数的图象和性质,掌握二次函数的开口方向、对称轴、与x轴的交点等知识是解题的关键.10.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选:D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.11.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选:C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.12.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.【解答】解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选:B.【点评】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.二、填空题(本题共有4小题,每小题3分,共12分)13.因式分解:a3﹣4a=a(a+2)(a﹣2).【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是.【分析】画出树状图,然后根据概率公式列式计算即可得解.【解答】解:根据题意画出树状图如下:一共有6种情况,积是正数的有2种情况,所以,P(积为正数)==.故答案为:.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.15.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星150个.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【解答】解:当n为奇数时:通过观察发现每一个图形的每一行有个,故共有3()个;当n为偶数时,中间一行有个,故共有+1个.所以当n=99时,共有3×=150个.故答案为150.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力,解题的关键是通过仔细观察发现规律.16.如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k=﹣15.【分析】根据内心的性质得OB平分∠ABC,再由点B的坐标是(2,0),点C的坐标是(0,﹣2)得到△OBC为等腰直角三角形,则∠OBC=45°,所以∠ABC=90°,利用勾股定理有AB2+BC2=AC2,根据两点间的距离公式得到(﹣3﹣2)2+b2+22+22=(﹣3)2+(b+2)2,解得b =5,然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:∵△ABC的内心在x轴上,∴OB平分∠ABC,∵点B的坐标是(2,0),点C的坐标是(0,﹣2),∴OB=OC,∴△OBC为等腰直角三角形,∴∠OBC=45°,∴∠ABC=90°,∴AB2+BC2=AC2,∴(﹣3﹣2)2+b2+22+22=(﹣3)2+(b+2)2,解得b=5,∴A点坐标为(﹣3,5),∴k=﹣3×5=﹣15.故答案为﹣15.【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了反比例函数图象上点的坐标特征和两点间的距离公式.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分〕17.计算:sin30°+(﹣1)2013+(π﹣3)0﹣cos60°.【分析】原式利用特殊角的三角函数值,乘方的意义,以及零指数幂法则计算即可求出值.【解答】解:原式=﹣1+1﹣=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式组并写出它的所有非负整数解【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有非负整数解即可.【解答】解:,解不等式①得:x>2,解不等式②得:x≤10,则不等式组的解集为2<x≤10,故不等式组的非负整数解为3,4,5,6,7,8,9,10,【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是72°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.【分析】(1)根据大鹿口的人数是30人,所占的百分比是10%,据此即可求得调查的总人数;(2)根据百分比的意义求得首先凤凰山的人数以及选择河口以及市区景区的人数所占的百分比,即可补全统计图;(3)利用360度乘以对应的百分比即可求解;(4)利用总人数2000乘以对应的百分比即可.【解答】解:(1)调查的总人数是:30÷10%=300(人);(2)凤凰山的人数是:300×20%=60(人),选择河口的人数所占的比例:×100%=33%,选择市内景区的所占比例:×100%=25%,;(3)“凤凰山”部分的圆心角是:360×20%=72°,故答案是:72;(4)估计首选去河口的人数约为:2000×33%=660(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)【分析】如图,过点C作CD⊥AB于点D,通过解直角△ACD和直角△BCD来求CD的长度.【解答】解:如图,过点C作CD⊥AB于点D,设CD=x.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=30.解得x=13.答:河的宽度的13米.【点评】本题考查了解直角三角形的应用.关键把实际问题转化为数学问题加以计算.21.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.【分析】(1)假设甲队单独完成需x天,则乙队单独完成需1.5x天,根据总工作量为1得出等式方程求出即可;(2)分别表示出甲、乙两队单独施工所需费用,得出不等式,求出即可.【解答】(1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得+=1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(2)设甲队每天的施工费为y元.根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15150.答:甲队每天施工费最多为15150元.【点评】此题主要考查了分式方程的应用,根据已知利用总工作量为1得出等式方程是解题关键.22.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.【分析】(1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;(2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.【解答】解:∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt △ACB 中,tan ∠OAB ===, ∴∠OAB =30°,∵∠ABO =90°,∴∠OBA =60°,∴∠ABC =∠OBC ==30°, ∴OC =OB •tan30°=1×=,∴AC =OA ﹣OC =, ∴∠ACE =∠ABC +∠OAB =60°,∴∠EAC =60°,∴△ACE 是等边三角形,∴AE =AC =, ∴AF =AE =,EF ==1,∴OF =OA ﹣AF =, ∴点E 的坐标为(,1).【点评】此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.23.如图,抛物线y =﹣x 2+bx +c 交x 轴于点A (﹣3,0)和点B ,交y 轴于点C (0,3). (1)求抛物线的函数表达式;(2)若点P 在抛物线上,且S △AOP =4S △BOC ,求点P 的坐标;(3)如图2,设点Q 是线段AC 上的一动点,作DQ ⊥x 轴,交抛物线于点D ,交x 轴于点E ,是否存在点Q ,使得直线AC 将△ADE 的面积分成1:2的两部分?若存在,求出所有点Q 的坐标;若不存在,请说明理由.【分析】(1)根据点A ,C 的坐标,利用待定系数法可求出抛物线的函数表达式;(2)利用二次函数图象上点的坐标特征可求出点B 的坐标,设点P 的纵坐标为m ,根据三角形的面积公式结合S △AOP =4S △BOC ,即可得出关于m 的含绝对值符号的一元一次方程,解之即可得出m 的值,再利用二次函数图象上点的坐标特征,即可求出点P 的坐标;(3)根据点A ,C 的坐标,利用待定系数法可求出直线AC 的函数表达式,设点Q 的坐标为(x ,x +3)(﹣3<x <0),则点D 的坐标为(x ,﹣x 2﹣2x +3),点E 的坐标为(x ,0),进而可得出DQ ,QE 的长度,结合直线AC 将△ADE 的面积分成1:2的两部分,即可得出关于x 的一元二次方程,解之即可得出x 的值,再将其代入点Q 的坐标即可求出结论.【解答】解:(1)将A (﹣3,0),C (0,3)代入y =﹣x 2+bx +c ,得: ,解得:,∴抛物线的函数表达式为y =﹣x 2﹣2x +3.(2)当y =0时,﹣x 2﹣2x +3=0,解得:x 1=﹣3,x 2=1,∴点B 的坐标为(1,0),∴S △BOC =×1×3=.设点P 的纵坐标为m ,则S △AOP =|m |,∵S △AOP =4S △BOC , ∴|m |=4×,∴m =±4.当y =4时,﹣x 2﹣2x +3=4,解得:x 1=x 2=﹣1,∴点P 的坐标为(﹣1,4);当y=﹣4时,﹣x2﹣2x+3=﹣4,解得:x1=﹣1﹣2,x2=﹣1+2,∴点P的坐标为(﹣1﹣2,﹣4)或(﹣1+2,﹣4).综上所述:点P的坐标为(﹣1,4)、(﹣1﹣2,﹣4)或(﹣1+2,﹣4).(3)设直线AC的函数表达式为y=kx+a(k≠0),将A(﹣3,0),C(0,3)代入y=kx+a,得:,解得:,∴直线AC的函数表达式为y=x+3.设点Q的坐标为(x,x+3)(﹣3<x<0),则点D的坐标为(x,﹣x2﹣2x+3),点E的坐标为(x,0),∴DQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,QE=x+3.∵直线AC将△ADE的面积分成1:2的两部分,且△AEQ和△ADQ等高,∴DQ=2QE或2DQ=QE,∴﹣x2﹣3x=2(x+3)或x+3=2(﹣x2﹣3x),解得:x1=﹣3(舍去),x2=﹣2,x3=﹣,∴点Q的坐标为(﹣2,1)或(﹣,).∴存在点Q(﹣2,1)或(﹣,),使得直线AC将△ADE的面积分成1:2的两部分.【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、三角形的面积,解含绝对值符号的一元一次方程、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线的函数表达式;(2)根据两三角形面积间的关系,求出点P的纵坐标;(3)由直线AC将△ADE的面积分成1:2的两部分,找出关于x的一元二次方程.。
2019年最新广东省中考数学模拟试卷及答案解析

2019年最新广东省中考数学模拟试卷及答案解析广东省中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.数字1的倒数是()。
A。
-2.B。
2.C。
1.D。
-12.下列图案中既是中心对称图形,又是轴对称图形的是()。
A。
B。
C。
D。
3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为xxxxxxxx00人,这个数用科学记数法表示为()。
A。
44×10^8.B。
4.4×10^9.C。
4.4×10^8.D。
4.4×10^104.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()。
A。
32,31.B。
31,32.C。
31,31.D。
32,355.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()。
A。
35°。
B。
45°。
C。
50°。
D。
55°6.下列运算正确的是()。
A。
2a+3b=5ab。
B。
a^2·a^3=a^5.C。
(2a)^3=6a^3.D。
a^6+a^3=a^97.一元二次方程x^2-4x+2=0的根的情况是()。
A。
有两个不相等的实数根。
B。
有两个相等的实数根C。
只有一个实数根。
D。
没有实数根8.若等腰三角形的两边长为3和7,则该等腰三角形的周长为()。
A。
10.B。
13.C。
17.D。
13或179.不等式组的解集在数轴上表示正确的是()。
A。
B。
C。
D。
10.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC-CD-DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm^2),则y关于x的函数图象是()。
完整版2019年广东省深圳市福田区中考数学模拟试卷4月份

2019年广东省深圳市福田区中考数学模拟试卷(4月份)一.选择题(本大题共12小题,每小题3分,共36分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答顺卡相应位置上),,其中最小的是()3分)给出四个数0,﹣1,﹣2(1..D.0B.﹣1C.﹣A22.(3分)马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是()3241258423xx=?x C2.=±2A.a÷a D=a B.a.?aa=23.(3分)下列图形中,既是轴对称又是中心对称图形的是().A.B.DC.4.(3分)由吴京特别出演的国产科幻大片《流浪地球》自今年1月放映以来实现票房与口碑双丰收,票房有望突破50亿元,其中50亿元可用科学记数法表示为()元.10891010510×D..B5×105C.×10A.0.5×5.(3分)如图,直线a∥b.将一直角三角形的直角顶点置于直线b上,若∠l=28°,则∠2的度数是()A.108°B.118°C.128°D.152°6.(3分)下列立体图形中,主视图是三角形的是()..B A页)30页(共1第.DC.7.(3分)下表来源市气象局2019年3月7日发布的全市六个监测点监测到空气质量指数(AQ)数据监测点福田罗田盐田大鹏南山宝安3817AQI59461359优优质量良良优优上述(AQI)数据中,中位数是()A.15B.42C.46D.598.(3分)在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74B.x+3 (30﹣x)=74D.﹣x)=74x+3 (26﹣x)=74263C.x+(9.(3分)定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=4∠B.则cos B?sadA=().D.C BA.1.10.(3分)如图仔细观察其中的两个尺规作图痕迹,两直线相交于点O,则下列说法中不正确的是()A.EF是△ABC的中位线页)30页(共2第°EOF=180B.∠BAC+∠的内心O是△ABC C.的面积等于△ABC的面积的D.△AEF2的P的图象开口向下,且经过第三象限的点P=ax.若点+bxy11.(3分)如图,二次函数))x+b的图象大致是(a横坐标为﹣1,则一次函数y =(﹣bBA..DC..,.DEBCE.连接AE分)如图,正方形ABCD中,以BC为边向正方形内部作等边△(12.3④∠ECD=DEF~△BAE;③tan△下列结论:连接BD交CE于F,①∠AED=150°②)个.):2,其中正确的结论有(△BEC的面积:△BFC的面积(+1.1.2D A.4B.3C分,不需要写出解答过程.请把答案直接12小题,每小题3分,共4二.填空题(本大题共填写在答题卡相应位置上)22.+4b的值为aba10b﹣分)已知(13.3a2=,则代数式﹣414.(3分)深圳市去年中考首次对九年级学生进行了物理,化学实验操作考试,其中化学第3页(共30页)个考题中3、BC供学生选择,每个学生都可以从实验操作考试有3个考题[分别记为A、随机抽取一个考题进行操作,如果每一个考题被抽到的机会均等,那么甲乙两个学生抽.的概率是到的考题都是A15.(3分)如图在平面直角坐标系中,周长为12的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上.点B,在反比例函数y=位于第一象限的图象上.则k的值为.16.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CB于点F.交CD于点E.若AC=6,sin B=,则DE的长为.三、解答题(本题共7小题,其中第17题5分,第18题7分,第19题6分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)1﹣.﹣()5|﹣|+17.(5分)计算:﹣2cos60°18.(7分)先化简,再求值:(1+)÷,其中x是不等式组的整数解.19.(6分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000第4页(共30页),统计结果如图所示:步以上)请依据统计结果回答下列问题:)本次调查中,一共调查了位好友.(1(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?20.(8分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=.OE=2,求线段CE的长.21.(8分)如图所示,要在某东西走向的A、B两地之间修一条笔直的公路,在公路起点A处测得某农户C在A的北偏东68°方向上.在公路终点B处测得该农户c在点B的北偏西45°方向上.已知A、B两地相距2400米.(1)求农户C到公路AB的距离;(参考数据:sin22°≈,cos22°≈,tan22°≈)(2)现在由于任务紧急,要使该修路工程比原计划提前4天完成,需将该工程原定的工作效率提高20%,求原计划该工程队毎天修路多少米?第5页(共30页)上为ABD,OCR△ABC中,∠=90°,AD平分∠BAC交BC于点.22(9分)如图,在,F、E 一点.经过点A,D两点的⊙O分別交AB,AC于点⊙O的切线;(1)求证:BC是AE的值;(2)已知AD=2,试求AB?和根号)(结果保留(3)在(2)的条件下,若∠B=30°,求图中阴影部分的面积,π2cbx+=﹣x+轴交于点+4分)如图,直线y=﹣x与x轴交于点A,与yB.抛物线y(23.9轴的另外一个交点为C,B两点,与x经过A.的坐标为Cc,=)填空:(1b,点=的,设点PAB于点QOP(2)如图1,若点P是第一象限抛物线上的点,连接交直线的比值OQPQ 与,求yy与m的数学关系式,并求出与横坐标为m.PQOQ的比值为的最大值.CBO∠PBA+APP)如图2,若点是第四象限的抛物线上的一点.连接PB与,当∠3(的面积.°时.求△=45PBA306第页(共页)2019年广东省深圳市福田区中考数学模拟试卷(4月份)参考答案与试题解析一.选择题(本大题共12小题,每小题3分,共36分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答顺卡相应位置上),,其中最小的是()3分)给出四个数0,﹣1,﹣21.(.D.0B.﹣1CA.﹣2【分析】根据有理数大小比较的法则,正数大于0,负数小于0,对于﹣1与﹣2通过绝对值比较即可.【解答】解:∵|﹣2|=2,|﹣1|=1而1<2,∴﹣1>﹣2∴>0>﹣1>﹣2∴四个数中最小的是﹣2.故选:A.【点评】本题考查的是有理数的大小比较,正数大于0,负数小于0,重点是要会利用绝对值对两个负数进行大小比较.2.(3分)马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是()3212345842x=2xx?a=a2C2.=±D a A..÷a=a B.a?【分析】直接利用同底数幂的除法运算法则以及单项式乘以单项式运算法则求出答案.844,故此选项错误;a÷a=【解答】解:A、a347,故此选项错误;aaB、a=?、=2,故此选项错误;C325,正确.xx=2、D2x?故选:D.【点评】此题主要考查了同底数幂的除法运算法则以及单项式乘以单项式,正确掌握运算法则是解题关键.3.(3分)下列图形中,既是轴对称又是中心对称图形的是()第7页(共30页).BA...CD【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,不是中心对称图形.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)由吴京特别出演的国产科幻大片《流浪地球》自今年1月放映以来实现票房与口碑双丰收,票房有望突破50亿元,其中50亿元可用科学记数法表示为()元.10891010.5×.510×.A0.5×105B.×10D C n﹣,其中1≤|a|<10,10【分析】用科学记数法表示较大的数时,一般形式为a×n为整数,据此判断即可.9元.1050亿元=5×解:【解答】故选:C.n﹣|a1≤×【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a10|,其中<10,确定a与n的值是解题的关键.5.(3分)如图,直线a∥b.将一直角三角形的直角顶点置于直线b上,若∠l=28°,则∠2的度数是()第8页(共30页)A.108°B.118°C.128°D.152°【分析】依据AB∥CD,即可得出∠2=∠ABC=∠1+∠CBE.【解答】解:如图,∵AB∥CD,∴∠2=∠ABC=∠1+∠CBE=28°+90°=118°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.(3分)下列立体图形中,主视图是三角形的是()..AB.D.C【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【解答】解:A主视图是矩形,C主视图是正方形,D主视图是圆,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.【点评】本题考查了简单几何体的三视图,圆锥的主视图是三角形.7.(3分)下表来源市气象局2019年3月7日发布的全市六个监测点监测到空气质量指数(AQ)数据监测点福田罗田盐田大鹏南山宝安381713465959AQI优优优质量良良优第9页(共30页)上述(AQI)数据中,中位数是()A.15B.42C.46D.59【分析】先把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,从而可得答案.【解答】解:把这些数从小到大排列为:13,17,38,46,59,59,则这组数据的中位数是=42;B.故选:本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新【点评】,叫做这组数据的中位数.如果中排列后,最中间的那个数(或最中间两个数的平均数)位数的概念掌握得不好,不把数据按要求重新排列,就会出错.号止,蓝月亮曼城队在联赛122018﹣2019赛季英超足球联赛中,截止到3月8.(3分)在个积分暂列积分榜第一74前30场比赛中只输4场,其它场次全部保持不败.共取得了场,则可x分,平一场得1分,负一场得0分,设曼城队一共胜了位.已知胜一场得3)列方程为()=74﹣B)=74.x+3 (30x30A.3x+(﹣x74x+(26﹣x)=74x)=D.x+3 (26﹣3C.【分析】设曼城队一共胜了x场,则平了(30﹣x﹣4)场,根据总积分=3×获胜场数+1×踢平场数,即可得出关于x的一元一次方程,此题得解.【解答】解:设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=4∠B.则cos B?sadA=()第10页(共30页)..BD.CA.1【分析】根据题意可以求得∠B的度数,然后根据锐角三角函数可以表示出AB和BC的值,从而可以求得sadA和cos A的值,进而求得cos B?sadA的值.【解答】解:∵在△ABC中,AB=AC,∠A=4∠B,∴∠B=∠C,∵∠A+∠B+∠C=180°,∴6∠B=180°,解得,∠B=30°,作AD⊥BC于点D,设AD=a,=a,,BD则AB=2a BD,BC∵=2,∴BC=a2=B∴sadA,=cos,=sadA=,cos∴B?.B故选:【点评】本题考查新定义、解直角三角形、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.(3分)如图仔细观察其中的两个尺规作图痕迹,两直线相交于点O,则下列说法中不正确的是()A.EF是△ABC的中位线B.∠BAC+∠EOF=180°C.O是△ABC的内心第11页(共30页)的面积的的面积等于△ABC D.△AEF【分析】观察图形可知,作的两条直线是AB、AC边的垂直平分线,由此可知EF是△ABC的中位线,进而可以进行判断.【解答】解:∵所作的两条直线是AB、AC边的垂直平分线,∴EF是△ABC的中位线,∠AEO=∠AFO=90°,∴∠BAC+∠EOF=360°﹣90°﹣90°=180°,故选项A、B都正确;∵EF是△ABC的中位线,∴EF是BC的一半,EF∥BC,∴△AEF∽△ABC,∴△AEF的面积等于△ABC的面积的四分之一故选项D是正确的;只有选项C是错误的,因为三角形的内心就是三角形三个内角角平分线的交点.故选:C.【点评】本题考查的是线段垂直平分线的作图、三角形中位线定理、相似三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2+bx的图象开口向下,且经过第三象限的点P.若点分)如图,二次函数y=axP的.11(3横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()..BA第12页(共30页)..CD【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.12.(3分)如图,正方形ABCD中,以BC为边向正方形内部作等边△BCE.连接AE.DE,=④tan∠ECD△DEF~△BAE;③=CE连接BD交于F,下列结论:①∠AED150°②)个.+1):2BEC△的面积:△BFC,其中正确的结论有(的面积(A.4B.3C.2D.1【分析】①利用正方形的性质,等边三角形的性质,等腰三角形的性质及三角形的内角和,周角求得判定即可②由①可得到∠ADE的度数,再利用正方形的性质即可得∠DEF=∠ABE,即可判定°的直角三角形的性质即可分别求出°作比较tan30=ECD∠tan③可利用含30再与,即可④两个三角形的底相同,由高的比进行判定即可【解答】解:∵△BEC为等边三角形页(共第1330页)∴∠EBC=∠BCE=∠ECB=60°,AB=EB=EC=BC=DC∵四边形ABCD为正方形∴∠ABE=∠ECD=90°﹣60°=30°∴在△ABE和△DCE中,AB=DC∠ABE=∠ECDBE=EC∴△ABE≌△DCE(SAS)==75°∴∠AEB=∠DEC∴∠AED=360°﹣60°﹣75°×2=150°故①正确由①知AE=ED∴∠EAD=∠EDA=15°∴∠EDF=45°﹣15°=30°∴∠EDF=∠ABE由①知∠AEB=∠DEC,∴△DEF~△BAE故②正确过点F作FM⊥DC交于M,如图=x DFFM=x,DM设=x,则°∵∠FCD=30MCx=∴=BDDBC中,△则在Rt=﹣DF=∴BFBD则°=tan30∠ECD=tan∵=ECD tan∴∠正确故③第14页(共30页)G,得⊥BC交于交于H,过F作FG如图过点E作EH⊥BCFG,MC由③知MC===∴FG=BC=DC∵x=∴BH°=60EBC∵∠EH=∴====∴正确故④.故选:A此题主要考查了正方形的性质,等边三角形的性质,等腰三角形的性质及三角【点评】30°的直角三角形的性质.形的内角和,相似三角形,全等三角形的判定及含分,不需要写出解答过程.请把答案直接分,共12填空题(本大题共4小题,每小题3二.填写在答题卡相应位置上)22.100ab﹣4+4b b13.(3分)已知a﹣2=10,则代数式a的值为22因式分解,然后根据a﹣2b=10,即可解答本题.【分析】将代数式a4﹣ab+4b【解答】解:∵a﹣2b=10,2222=100,﹣2b)=10∴a4﹣ab+4b=(a故答案为:100.【点评】本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式因式分解,求出相应的式子的值.14.(3分)深圳市去年中考首次对九年级学生进行了物理,化学实验操作考试,其中化学实验操作考试有3个考题[分别记为A、B、C供学生选择,每个学生都可以从3个考题中第15页(共30页)随机抽取一个考题进行操作,如果每一个考题被抽到的机会均等,那么甲乙两个学生抽.到的考题都是A的概率是【分析】画树状图列出所有等可能结果,找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有9种等可能结果,其中甲乙两个学生抽到的考题都是A的有1种结果,所以甲乙两个学生抽到的考题都是A的概率为,故答案为:.【点评】此题考查了画树状图求概率,用到的知识点是概率=所求情况数与总情况数之比.15.(3分)如图在平面直角坐标系中,周长为12的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上.点B,在反比例函数y=位于第一象限的图象上.则k的值为k=.【分析】分析题意,要求k的值,结合图形只需求出点B的坐标即可;设y轴与BC的交点为M,连接OB,根据周长为12的正六边形ABCDEF的对称中心与原点O重合可知OB=2,BM=1,OMLBC;接着,利用直角三角形勾股定理求出OM的值,结合点B在反比例函数位于第一象限的图象上,可以得到点B的坐标;【解答】解:如图,连接OB第16页(共30页)∵周长为12的正六边形ABCDEF的对称中心与原点O重合,∴正六边形ABCDEF的边长为2,2,BM=1,=∴OB∵OMLBC,===∴OM=在反比例函数y位于第一象限的图象上,?点B.,)1点B的坐标为==中,得.1,)代入yk将点(=故故答案为k本题考查了正多边形性质,锐角三角函数,反比例函数的性质,等边三角形的【点评】性质和判定的应用,关键是求出B的坐标.,CABAB°,CD⊥,垂足为D.AF平分∠ABC16.(3分)如图,在Rt△中,∠ACB=90.DE的长为.若CB于点F.交CD于点EAC=6,sin B=,则交【分析】先由AF平分∠CAB,CD⊥AB,过点E作EG垂直于AC,利用角平分线的性质定理得EG等于DE,易得Rt△AED全等于Rt△AEG以及∠DCA等于∠B,从而求得AD,AG,CG,然后在Rt△CEG中,由勾股定理求出EG,即为DE的长度.【解答】解:过点E作EG⊥AC于点G,又∵AF平分∠CAB,CD⊥AB,交CB于点F.交CD于点E,第17页(共30页)∴EG=ED,在Rt△AED和Rt△AEG中,∴Rt△AED≌Rt△AEG(HL),AG=AD.∵∠ACB=90°,CD⊥AB,∴∠B+∠BAC=∠DCA+∠BAC=90°,∴∠DCA=∠B,=,B=6,sin∵AC=,DCA=sin B∴sin∠=,∴=AD∴,=,∴DC===AD∴﹣ACAGAG==,,CG=222,CE+=EGCG∴在Rt△CEG中,2222CG=EG)DC=(﹣EG)+ED∴(DC﹣∴,=,∴EG=∴DE.故答案为:.【点评】本题综合运用了角平分线的性质定理,全等三角形判断,勾股定理等知识,难第18页(共30页)度较大.三、解答题(本题共7小题,其中第17题5分,第18题7分,第19题6分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)1﹣.﹣)5|5(﹣分)计算:﹣2cos60°+|(17.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.1﹣﹣)5|﹣解:﹣2cos60°+|(【解答】×+4﹣25=3﹣=3﹣1﹣1=1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.是不等式组x(,其中1+的整)÷18.(7分)先化简,再求值:数解.解不等式组,先求出满足不等式组的整数解.化简分式,把不等式组的整数解【分析】代入化简后的分式,求出其值.【解答】解:不等式组解①,得x<3;.1,得x>②解<3.1∴不等式组的解集为<x.x ∴不等式组的整数解为=2)÷1+∵(=(=4x)﹣1.19第30页(共页)﹣1)=2时,原式=4×(2当x=4.本题考察了解一元一次不等式组、分式的化简求值.求出不等式组的整数解是【点评】解决本题的关键.分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时.(619“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把尚.”表示~50005000步)(说明:“0他们6月1日那天行走的情况分为四个类别:A(0~15000(15000步),D~10000步),C(10001~5001,大于等于0小于等于5000,下同),B(,统计结果如图所示:步以上)请依据统计结果回答下列问题:位好友.30(1)本次调查中,一共调查了倍.D类好友人数的52()已知A类好友人数是请补全条形图;①度.120”对应扇形的圆心角为②扇形图中,“A③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【分析】(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.【解答】解:(1)本次调查的好友人数为6÷20%=30人,故答案为:30;第20页(共30页)(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:°×=120°,A”对应扇形的圆心角为360②扇形图中,“;故答案为:12070人.1日这天行走的步数超过10000步的好友人数为150×=6③估计大约月【点评】此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.(8分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE.(1)求证:四边形ABCD是菱形;=.OE=2,求线段(2)若ABCE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,根据相似三角形的性质即可得出结论.第21页(共30页)【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴?ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC=2,==1∴OB,∵∠AOB=∠AEC=90°,∠OAB=∠EAC,∴△AOB∽△AEC,∴,,=∴=CE.∴【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,角平分线的定义,勾股定理,判断出OE=OA=OC是解本题的关键.第22页(共30页)21.(8分)如图所示,要在某东西走向的A、B两地之间修一条笔直的公路,在公路起点A处测得某农户C在A的北偏东68°方向上.在公路终点B处测得该农户c在点B的北偏西45°方向上.已知A、B两地相距2400米.°≈),tan22°≈,cos22°≈(1)求农户C到公路AB的距离;(参考数据:sin22(2)现在由于任务紧急,要使该修路工程比原计划提前4天完成,需将该工程原定的工作效率提高20%,求原计划该工程队毎天修路多少米?【分析】(1)农户C到公路的距离,也就是求C到AB的距离.要构造直角三角形,再解直角三角形;(2)设原计划x天完成,则由等量关系“原工作效率×(1+25%)=提前完成时的工作效率”列方程求解.【解答】解:(1)如图,过C作CH⊥AB于H.设CH=x,由已知有∠EAC=68°,∠FBC=45°,则∠CAH=22°,∠CBA=45°.在Rt△BCH中,BH=CH=x,=,HBC∠Rt△HBC中,tan在∴HB==,,=AB∵AH+HB2400∴x,+x=解得x,=(米)到公路的距离C∴农户米.(2)设原计划完成这项工程需要y天,则实际完成工程需要(y﹣4)天.,)×根据题意得:1+20%=(.=解得:y24是原方程的根,=经检验知:y24页(共23第30页)2400÷24=100(米).答:原计划该工程队毎天修路100米.【点评】考查了构造直角三角形解斜三角形的方法和分式方程的应用.22.(9分)如图,在R△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点.经过点A,D两点的⊙O分別交AB,AC于点F、E,(1)求证:BC是⊙O的切线;2,试求AB?=AE的值;(2)已知AD(3)在(2)的条件下,若∠B=30°,求图中阴影部分的面积,(结果保留π和根号)【分析】(1)连接OC,先证OD与AC平行,证得∠ODB=90°,根据切线的判定即可证明BC 是⊙O的切线;2=12,再证△AFE?AC=AD∽AFED(2)连接FD,,FE,先证△AFD∽△ADC,得到△ABC,即可得到AB?AE=AF?AC=12;(3)连接OE,FD,过点O作OH⊥AE于点H,先在Rt△AFD中求出直径AF的长,再证明△AOE是等边三角形,求出△AOE的高,用扇形OAE的面积减去△OAE的面积即可.【解答】(1)证明:如图1,连接OC,∵AD平分∠BAC,第24页(共30页)∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线;(2)解:如图2,连接FD,ED,FE,由题意知,AF为⊙O的直径,∴∠ADF=∠C=∠AEF=90°,由(1)知,∠FAD=∠DAC,∴△AFD∽△ADC,=,∴2AD=,∵2=12,=AD∴AF?AC∵∠C=∠AEF=90°,∴FE∥BC,∴△AFE∽△ABC,=,∴∴AB?AE=AF?AC=12;第25页(共30页)AE于点H,,FD,过点O作OH⊥)解:如图(33,连接OE=30°,∵∠B°=60°,∴∠BAC=90°﹣30=30=∠DAC°,=∠BAC∴∠FAD2△AFD中,AD=,Rt在×=24∴AF=,OE,=60°,OA=∵∠BAC为等边三角形,AOE∴△,=AF=AE=∠OAH=60°,OA=OE=2∴∠A0E中,在Rt△AOH=×2OH=,=S﹣S∴S OAEOAE△阴影扇形2=×﹣×﹣.=本题考查了切线的判定定理,三角形相似的判定与性质,扇形的面积公式等,【点评】解题的关键是对圆的相关性质要非常熟练.2cx+bx轴交于点,与yB.抛物线y+=﹣A+4直线(23.9分)如图,y=﹣x与x轴交于点x 轴的另外一个交点为CB经过A,两点,与0).(﹣,点=,c4C的坐标为2,1=)填空:(1b(2)如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的第26页(共30页)横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值.(3)如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.【分析】(1)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=0便可得C点坐标.(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成,﹣m2+m+4),Q点坐标(n比例,找到,设点=P坐标为(m,﹣n+4),表示之间的关系,再次利用、nOD等长度即可得y与m=即可求解.出ED、(3)求得P点坐标,利用图形割补法求解即可.【解答】解:(1)∵直线y=﹣x+4与x轴交于点A,与y轴交于点B.∴A(4,0),B(0,4).又∵抛物线过B(0,4)∴c=4.2+bx+4y得,=﹣x0把A(4,)代入2+4b+4,解得,b=104=﹣×.2+x+4x.∴抛物线解析式为,y=﹣2+x+4=x令﹣0,解得,x=﹣2或x=4.∴C(﹣2,0).(2)如图1,第27页(共30页)D.x轴交轴于点E、P、Q作PE、QD垂直于x分别过),,﹣n+4+42+m),Q(P设(mn,﹣m2.=﹣n+4+m+4,QD则PEm=﹣.=y又∵==.n∴又∵==,即把n═代入上式得,=2.+2m整理得,4y=﹣m2m=﹣m+.∴yy.==max的比值的最大值为.PQ即与OQ,3()如图23028第页(共页)45°+∠PBA=∵∠OBA=∠OBP45°∠CBO=∠PBA+=∠CBO∴∠OBP).2,0此时PB过点(+4.y=kx设直线PB解析式为,.2k+42,0)代入上式得,0=把点(2解得,k=﹣.2x+4∴直线PB解析式为,y=﹣2+4+4x+=﹣xx令﹣22.=x0﹣3x整理得,.=6=0(舍去)或x解得,x=﹣8=﹣2×6+4=当x6时,﹣2x+4).(6,﹣8∴P H.⊥y轴于点过P作PH.=40(=4+6)×8则SOA=(+PH)?OH AOHP四边形8.4×4S==OA?OB=×OAB△.12=BH36=×6×?S=PH BHP△12.36=﹣+=∴SSSS40+8﹣=BHPAPBAOHPOAB△△四边形△本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物【点评】线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积3029第页(共页)的方法.第30页(共30页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳中考数学模拟(一)
第一部分选择题
一、(本部分共12小题,每小题3分共36分.每小题4个选项,其中只有一个是正确的)
1. -2的绝对值等于【】
A.2 B.-2 C.1
2
D.±2
2. 长城总长约为6700010米,用科学记数法表示是(保留两个有效数字)【】
A、6.7×105米
B、6.7×106米
C、6.7×107米
D、6.7×108米
3. 下列交通标志图案是轴对称图形的是【】
A.B.C.D.
4. 下列计算正确的是【】
A.a3a2=a6B.a2+a4=2a2C.(a3)2=a6D.(3a)2=a6
5. 在公式I=U
R
中,当电压U一定时,电流I与电阻R之间的函数关系可用图象大致表示为【】
A. B.C.D.
6.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点煌距离是【】
A.200米 B.2003米 C.2203米 D.100(3+1)米
7. 如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD
的各边上,EF∥HG,EH∥FG,则四边形EFGH的周长是【】
A.10 B.13 C.210 D.213
8. 如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差▲ km/h。
9. 下列说法中错误的是【】
A.某种彩票的中奖率为1%,买100张彩票一定有1张中奖
B.从装有10个红球的袋子中,摸出1个白球是不可能事件
C.为了解一批日光灯的使用寿命,可采用抽样调查的方式
D.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是
6
1
10. 甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植
70棵树所用天数相等.若设甲班每天植树x棵,则根据题意列出方程正确的是【】
A.
6070
x2x
=
+
B.
6070
x x2
=
+
C.
6070
x2x
=
-
D.
6070
x x2
=
-
11. 如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:
①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;④使得M=1的x值是或.
其中正确的是【】
A.①②B.①④C.②③D.③④
12. 如图,菱形纸片ABCD中,∠A=600,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,
EF为折痕,当D’F⊥CD时,CF
FD
的值为【】
A. 31
2
-
B.
3
6
C.
231
6
-
D.
31
8
+
第二部分非选择题
二、填空题(本题共4小题,每小题3分,共12分).
13. 分解因式:3a a
-=
14. 如图,AB是⊙O的切线,切点为A,OA=1,
∠AOB=600,则图中阴影部分的面积是.
15. 如图,点A(3,n)在双曲线y=
3
x
上,过点A 作 AC ⊥x 轴,垂足为C .线段OA 的垂直平分线交OC 于点B ,则△ABC 周长的值是 .
16. 如图,在直线m 上摆故着三个正三角形:△ABC 、△HFG 、△DCE,已知BC=
1
2
CE ,F 、G 分别是BC 、CE 的中点,FM ∥AC ,GN ∥DC .设图中三个平行四边形的面积依次是S 1,S 2,S 3,若S 1+S 3=10,则S 2= .
三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) 17. 计算:2sin60°+|-3|--
.
18.先化简,再求值:2
2x 4x 3
1(x 1)(x 2)x 1⎡⎤-++÷⎢⎥+--⎣⎦
,其中x =6.
19. 某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:
(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?
20. 如图,梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,AC BD,E、F、G、H分别为AB、BC、CD、DA的中点
(1)求证:四边形EFGH为正方形;
(2)若AD=2,BC=4,求四边形EFGH的面积。
21. 已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物
一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:
(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
22. 如图1,点A在⊙O外,射线AO交⊙O于F,C两点,点H在⊙O上,FH=2GH.D是FH上的一个动点 (不运动至F,H),BD是⊙O 的直径,连结AB,交⊙O于点C,CD交OF于点E.且AO=BD=2.
(1)设AC=x,AB=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(2)当AD与⊙O相切时(如图2),求tanB的值;
(3)当DE=DO时(如图3),求EF的长.
23. 在平面直角坐标系xoy中,一块含60°角的三角板作如图摆放,斜边 AB在x轴上,直角顶点C在y
轴正半轴上,已知点A(-1,0).
(1)请直接写出点B、C的坐标:B(,)、C(,);并求经过A、B、C三点的抛物线解析式;
(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于第一象限的点M.
①设AE=x,当x为何值时,△OCE∽△OBC;
②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形,若存在,请求点
P的坐标;若不存在,请说明理由.。