人教版14.1.4__整式的乘法_第2课时

合集下载

人教版八年级数学上册课件14.1.4 整式的乘法(第2课时)

人教版八年级数学上册课件14.1.4 整式的乘法(第2课时)



(1)不能漏乘:即单项式要乘多项式的每一项.
(2)去括号时注意符号的变化.
探究新知
某地区在退耕还林期
间,有一块原长m米,宽为 b a米的长方形林区,若长增
加了n米,宽增加了b米, a
请你计算这块林区现在的
面积.
m
n
探究新知
你能用不同的形式表示所拼图的面积吗?
方法一: (m+n)(a+b)
b
mb
1
am
+a2n+b3m
4
+bn
34
“多乘多” 顺口溜:
多乘多,来计算,多项式各项都见面,
乘后结果要相加,化简、排列才算完.
探究新知
素养考点 1 用多项式乘以多项式法则进行计算
例1 计算: (1)(3x+1)(x+2);
(2)(x–8y)(x–y);
解: (1) 原式=3x·x+2·3x+1·x+1×2
2x2 4x 6 x2 2x 1 x2 2x 5;
3x
课堂检测
(2)(2x 3)(x 2) (x 1)2; 解:原式 2x 2 4x 3x 6 (x 2 12 )
2x2 7x 6 x2 1
运算法 则混淆
x2 7x 7.
(x 1)(x 1)
(x2 2x 1)
nb
方法二:
m(a+b)+n(a+b)
a
ma
na
方法三: ma+mb+na+nb
m
n
这块林区现在长为(m+n)米,宽为(a+b)米.
探究新知
由于(m+n)(a+b)和(ma+mb+na+nb)表示同一块地的 面积,故有:

人教版八年级上册14.1.4-整式的乘法(教案)

人教版八年级上册14.1.4-整式的乘法(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式乘法相关的实际问题,如计算不同几何图形的面积或体积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用代数表达式的形式来计算实际物体的面积或体积。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
-实际问题的应用:重点是能够将整式乘法应用于解决实际问题,如计算矩形面积。
-举例:一个长方形的长是2x + 3,宽是x,求面积。面积=长*宽=(2x + 3)*x=2x^2 + 3x。
2.教学难点
-难点1:理解并记忆整式乘法法则中的细节。
-例如,学生在进行多项式乘多项式的运算时,可能会忘记将一个多项式的每一项都与另一个多项式的每一项相乘。
-难点2:正确合并同类项。
-学生可能会在合并同类项时出现错误,如将不同字母的幂误认为同类项。
-难点3:将整式乘法应用于实际问题。
-学生可能难以理解如何将现实问题转化为整式乘法运算,特别是在问题涉及多个变量时。
-难点4:在计算过程中保持步骤的清晰和正确。
-学生在计算过程中可能会出现计算错误,步骤混乱,导致最终结果错误。
3.多项式乘以多项式的法则,通过具体例题展示如何将一个多项式的每一项分别与另一个多项式的每一项相乘,并将结果合并同类项。
4.举例说明整式乘法在实际问题中的应用,如面积、体积计算等。
5.通过巩固练习,让学生掌握整式乘法的基本操作,并能够熟练运用到解决问题中。
二、核心素养目标
本节课的核心素养目标主要包括:
-单项式乘以多项式的法则:重点是掌握分配律的应用。
-举例:5x * (2x^2 + 3x - 1) = 10x^3 + 15x^2 - 5x,强调将5x分别与括号内的每一项相乘。

八年级上册数学人教版 集体备课 14.1.4整式的乘法(2)单项式乘多项式

八年级上册数学人教版 集体备课 14.1.4整式的乘法(2)单项式乘多项式

初中数学集体备课活页纸
第二步:互助探究环节1:师友探究
为了扩大绿地的面积,要把街心花园的一块长p 米,宽b米的长方形绿地,向两边分别加宽a 米和c米,你能用几种方法表示扩大后的绿地的面积?
环节2:教师讲解
如果把它看成一个大长方形,那么它的宽为__________,面积可表示为_________.
如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____.
根据面积相等,你可以列出一个等式:
单项式乘以多项式的法则:。

第三步:分层提高环节1 师友训练
例1.(-4x)·(2x2+3x-1)
2
21
2(2).
32
ab ab ab
-⋅
()
环节2 教师提升
思考:单项式乘以多项式实际上是如何转化的?
第四步:
总结归纳
环节1:师友归纳
•1.通过本节课的学习,学到了什么?
•这节课我想对师傅(学友)说……。

人教版八年级数学上册14.1.4《整式的乘法》课件第2课时(共17张PPT)

人教版八年级数学上册14.1.4《整式的乘法》课件第2课时(共17张PPT)

(4 3)(x2 x) (4x2 )
12x3 4x2;
例题讲解
解:(2)
2 3
ab2
2ab
1 2
ab
= 2 ab2 1 ab+(2ab) 1 ab
32
2
= 1 a2b3 a2b2 3
归纳总结
1.单项式与多项式相乘的实质是利用乘法分配 律把单项式乘多项式转化为单项式乘单项式.
探究新知
本图片资源总结了单项式与多项式相乘的法则及注意 事项,适用于单项式乘以多项式的教学.若需使用, 请插入图片【知识点解析】单项式与多项式相乘.
例题讲解
【例2】计算:
(1)(4x2)(3x 1)
;(2)
2 3
ab2
2ab
1 2
ab.
解:(1)(4x2 )(3x 1) (4x2 )(3x) (4x2 ) 1
探究新知
问题:三家连锁店以相同的价格m(单位:元 /瓶)销售某种商品,它们在一个月内的销售量( 单位:瓶)分别是a,b , c.你能用不同的方法计 算它们在这个月内销售这种商品总收入吗?
解法1:先求三家连锁店的总销量,再求总收 入,即总收入(单位:元)为:m(a+b+c) ①
探究新知
解法2:先分别求三家连锁店的收入,再求它 们的和,即总收入(单位:元)为:
ma+mb+mc ② 由于①和②表示同一个量,所以:
m(a+b+c)=ma+mb+mc. 由乘法分配律(a+b)c=ac+bc,也可推出结论
m(a+b+c)=ma+mb+mc.
探究新知
你能由此总结出单项式与多项式相乘的乘法法 则吗?

人教版八年级数学上册作业课件 第十四章 整式的乘法与因式分解 整式的乘法 第2课时 单项式乘以多项式

人教版八年级数学上册作业课件 第十四章 整式的乘法与因式分解 整式的乘法 第2课时 单项式乘以多项式

7.(3分)(易错题)要使x(x+a)+3x-2b=x2 +5x+4成立,则a,b的值分别 为( C )
A.a=-2,b=-2 B.a=2,b=2 C.a=2,b=-2 D.a=-2,b=2 8.(3分)已知单项式M,N满足3x(M-5x)=6x2y2+N, 则MN=_____-__3_0_x_3_y_2_______.
人教版
第十四章 整式的乘法与因式分解
14.1 整式的乘法
14.1.4 整式的乘法 第2课时 单项式乘以多项式
单项式乘多项式法则
1.(3 分)填空:3m(3m2-13 m)=3m·__3_m_2_____+3m·_(-__13___m_)___ =_____9_m__3_-__m_2____.
2.(3分)(柳州中考)计算:x(x2-1)=( B ) A.x3-1 B.x3-x C.x3+x D.x2-x 3.(3分)下列各题计算正确的是( D ) A.(ab-1)(-4ab2)=-4a2b3-4ab2 B.(3x2+xy-y2)·3x2=9x4+3x3y-y2 C.(-3a)(a2-2a+1)=-3a3+6a2 D.(-2x)(3x2-4x-2)=-6x3+8x2+4x
10.(8 分)先化简,再求值:(-13 xy)2·[xy(2x-y)-2x(xy-y2)],其 中 x=-112 ,y=-2. 解:原式=19 x2y2·(2x2y-xy2-2x2y+2xy2) =19 x2y2·xy2=19 x3y4.当 x=-112 ,y=-2 时, 原式=19 ×(-112 )3×(-2)4=-6
【素养提升】 11.(8 分)某同学在计算一个多项式乘以-3x2 时,算成了加上-3x2, 得到的答案是 x2-12 x+1,那么正确的计算结果是多少?

14.1.4 整式的乘法 课件(共19张PPT)人教版初中数学八年级上册

14.1.4 整式的乘法   课件(共19张PPT)人教版初中数学八年级上册

相同的字母
结合成一组
单独字母
不能遗漏
探究新知
根据以上计算,想一想如何计算单项式乘以单项式?
转化
单项式与单项式相乘
乘法交换律
和结合律
有理数的乘法与
同底数幂的乘法
知识要点
单项式与单项式的乘法法则
单项式与单项式相乘,把它们的系数、同底
数幂分别相乘,对于只在一个单项式里含有的字
母,则连同它的指数作为积的一个因式.
2
3
5
3
20 3 3 9

abc .
3
(4) 解原式 = 7xy2z • 4x2y2z2
= (7×4) • (x • x2) • (y2 • y2) • (z • z2)
= 28x3y4z3.
注意 有乘方运算,先算乘方,再算单项式相乘.
随堂练习
1. 计算 (-2a2) ·3a 的结果是 (
A.-6a2
3a2bc·2ab3 =3×2×a2×a×b×b3 ×c (乘法交换律)
=(3×2)×(a2×a)×(b×b3)×c (乘法结合律)
各系数因数
结合成一组
=6a2+1b1+3 c (同底数幂的乘法)
相同的字母
3
4
=6a b c 结合成一组
单独字母
不能遗漏
探究新知
绘制表格,对比分析
各系数因数
结合成一组
在一起,形成一个巨型的显示屏,直播升旗是的盛大场面和表演
的精彩瞬间.
b
a
从整体看,“显示屏”
的面积为:______;
3a·3b
从局部看,“显示屏”
的面积为:______.
9ab
b

14.1.4 整式的乘法(第2课时)说课稿2022-2023学年人教版八年级数学上册

14.1.4 整式的乘法(第2课时)说课稿2022-2023学年人教版八年级数学上册

14.1.4 整式的乘法(第2课时)说课稿一、教材分析本节课是《2022-2023学年人教版八年级数学上册》中第14章第1节的第4个课时,主要讲解整式的乘法。

本节课的教学内容包括整式的基本概念、整式的乘法法则、多项式的乘法等。

通过本节课的学习,学生将进一步巩固整式的概念和性质,掌握整式的乘法法则,培养学生解决实际问题的能力。

二、教学目标1.知识与技能:•掌握整式的基本概念及其表示方法;•理解整式的乘法法则;•掌握多项式的乘法运算。

2.过程与方法:•运用归纳法整理策略,提高整理信息的能力;•运用数学语言表达数学概念和数学推理,培养数学思维能力。

3.情感态度价值观:•培养学生对数学知识的兴趣和探究欲望;•培养学生的合作意识和共享精神。

三、教学重点•整式的乘法法则;•多项式的乘法运算。

四、教学难点•多项式的乘法运算。

五、教学过程本节课的教学过程分为四个环节:导入新课、讲解新知、练习巩固、课堂小结。

环节一:导入新课通过提问的方式引导学生回顾上节课所学内容,复习整式的基本概念和性质。

例如,让学生回答以下问题:1.什么是整式?它有哪些基本组成部分?2.你能用自己的话解释一下整式的加法和减法运算法则吗?环节二:讲解新知在导入环节复习之后,引入本节课的新知:整式的乘法法则。

首先,提供一个具体的例子让学生观察和思考,例如:已知:(3x + 4)(2x - 5)请你计算乘积(3x + 4)(2x - 5)的结果。

通过学生的思考,引导他们观察并总结出整式的乘法法则,例如:整式的乘法法则:将每个被乘数的每一项依次与乘数的每一项相乘,然后将各项的乘积相加即可。

接下来,通过几个具体的例子向学生展示整式的乘法运算步骤,并注重解释每一步的原理和获得结果的意义。

同时,可以引导学生发现和讨论与整数有关的乘法特殊法则,例如相同项乘积的规律等。

环节三:练习巩固在讲解新知环节结束后,安排一些练习题,以巩固学生对整式的乘法法则的理解和运用能力。

14.1.4 整式的乘法 第2课时 单项式与多项式相乘【习题课件】八年级上册人教版数学

14.1.4 整式的乘法 第2课时 单项式与多项式相乘【习题课件】八年级上册人教版数学

14.1.4 整式的乘法
第2课时 单项式与多项式相乘
基础通关
能力突破
9. 若( x2+ ax +1)(-6 x3)的展开式中不含 x4项,则 a 的值为(
A. -6

C.

B. 0
B
素养达标
)
D. -1
【解析】( x2+ ax +1)(-6 x3)=-6 x5-6 ax4-6 x3,
∵展开式中不含 x4项,
1
2
3
4
(-2 x2+11 x )平方米
5
6
7
8
9
10
.

11
12
13
14
15
16
14.1.4 整式的乘法
第2课时 单项式与多项式相乘
基础通关
能力突破
素养达标
14. 先化简,再求值:3 a (2 a2-4 a +3)-2 a2(3 a +4),其中 a =-2.
解:3 a (2 a2-4 a +3)-2 a2(3 a +4)=6 a3-12 a2+9 a -6 a3-8 a2=
第十四章
整式的乘法与因式分解
14.1
14.1.4
第2课时
整式的乘法
整式的乘法
单项式与多项式相乘
14.1.4 整式的乘法
第2课时 单项式与多项式相乘
基础通关
能力突破
素养达标
单项式与多项式相乘
1. 下列计算中错误的是(
C
)
A. x ( x -1)= x2- x
B. (- x )(2- x )=-2 x + x2
B. 互为相反数
C. 互为倒数
D. 前式是后式的- a 倍
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【答案】
(1) (2) (3)
-20m3n2+30m2n3. 80a4x2-48a3x4. 27x8y5-18x7y6.
(4)
14a2b2-21ab.
3.化简:x(x2-1)+2x2(x+1)-3x(2x-5). 【解析】原式=x3-x+2x3+2x2-6x2+15x =3x3-4x2+14x.
1. (连云港·中考)下列计算正确的是(
A.a+a= a2 C.(a2) 3=a5 B.a·a2 =a3 D.a2 (a+1)=a3+1

【答案】B
2.计算: (1)-10mn·(2m2n-3mn2). (2)(-4ax)2·(5a2-3ax2). (3)(3x2y-2xy2)·(-3x3y2)2. (4)7a(2ab2-3b).
14.1.4 整式的乘法
第2课时
单项式乘以单项式的法则有几点? ①各单项式的系数相乘; ②相同字母的幂按同底数的幂相乘; ③单独字母连同它的指数照抄.
口算: (1)5x2y2·(-3x2y) (2) (x2)2 ·(-2x3y2) (3)(-2mx2)2·(-3m2x)3
-15x4y3 -2x7y2
2-3xy2 6x 2 3x·(2x-y )=__________________.
2+15xy-18xz -6x 3. -3x·(2x-5y+6z)=__________________.

4.
5-8a4b+4a4c 2 2 -4a (-2a ) ·(-a-2b+c)=________________.
【规律方法】整式的运算是在数的运算的基础上发展 起来的,所以在解决问题时类比数的运算律,将单项 式乘以多项式转化为单项式的乘法.并且不能漏乘,注
意符号的变化.
1.本节课学了哪些内容?你有哪些收获和体会? 2.单项式与多项式的运算过程中,你要特别注意什么? 3.单项式与多项式相乘,就是用单项式去乘多项式的每 一项,再把所得的积相加.
只要能收获甜蜜,荆棘丛中也会有蜜蜂忙 碌的身影. ——塞内加
-108m8x7
探究:
计算: 24 (
1 1 1 ) 2 3 4 =12-8+6
根据乘法分配律, 不难算出结果吧!
=10
试一试 计算:2a2·(3a2-5b)
= 2a2· 3a2- 2a2· 5b =6a4 -10a2b
结论:
单项式与多项式相乘法则: 单项式与多项式相乘,就是用单项式去乘多项式的每 一项,再把所得的积相加.
ma b c ma mb mc
【例题】
计算:
(1) ( 4x 2 )( 3x 1)
【解析】原式 (-4x ) (3 x) (-4x ) 1
2 2
(2)3a(5a b)
-12x3 - 4x 2
【解析】 原式 3a 5a 3a b
(3) - 7x 2 y 2 x 3 y 2

15a 2 3ab


2 2 2 【解析】原式 (7x y) 2x (7x y) 3y
14x 3 y 21x 2 y3
【跟踪训练】
1.
2.
4a-4b+4 4·(a-b+1)=__________________.
相关文档
最新文档