八年级数学上册 整式的乘法(第2课时)教案 (新版)新人教版
14.1.4 整式的乘法(第2课时)教案2022-2023学年人教版八年级数学上册

14.1.4 整式的乘法(第2课时)教案一、教学目标1.了解整式的乘法的概念和性质;2.掌握整式相乘的方法;3.能够正确地进行整式相乘的计算。
二、教学重点和难点1.整式的乘法的性质和计算方法;2.整式相乘的应用。
三、教学过程1. 课前准备1.1 教师出示课前预习题教师出示一道整式乘法的练习题,要求学生在课前完成并准备上交。
1.2 复习上节课的内容教师进行简单回顾,引导学生回忆上节课学习的内容,强化概念理解。
2. 新课讲解2.1 整式的乘法概念和性质•整式是由变量和系数以及加法和乘法运算构成的代数式;•整式的乘法满足交换律、结合律和分配律。
2.2 整式相乘的方法•单项式相乘:将系数相乘,将变量的指数相加;•多项式相乘:利用分配律,将每一项逐一相乘,再将结果相加。
2.3 示例讲解教师通过示例讲解整式的乘法计算方法,让学生理解和掌握相乘的过程。
3. 练习与讨论学生在教师的指导下,完成一些整式乘法的练习题,在课堂上进行讨论和解答。
4. 拓展应用4.1 解决实际问题教师引导学生通过整式乘法解决一些与实际生活相关的问题,如面积计算、速度计算等。
4.2 探究整式相乘的规律教师提出问题,让学生通过观察和分析找出整式相乘的一些规律,并进行总结。
5. 总结与归纳教师对本节课的内容进行总结和归纳,让学生再次强化所学知识。
6. 课后练习教师布置课后练习题,要求学生独立完成,以巩固所学知识。
四、板书设计# 14.1.4 整式的乘法(第2课时)## 教学目标- 了解整式的乘法的概念和性质- 掌握整式相乘的方法- 能够正确地进行整式相乘的计算## 教学重点和难点- 整式的乘法的性质和计算方法- 整式相乘的应用五、教学反思本节课以整式的乘法为主题,通过讲解概念和性质,以及示例讲解和练习,让学生掌握整式相乘的基本方法。
在课堂上,学生表现积极参与,能够独立解决一些简单的整式乘法计算问题。
在课后布置的练习题中,学生能够较好地运用所学知识。
最新人教版八年级数学上册《整式的乘法二》教学设计

《整式的乘法》一、内容解析1.教学内容(1)单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.地位与作用单项式乘单项式综合用到有理数的乘法、幂的运算性质等知识,它是学习多项式乘法的基础,在整式乘法中,它有承前启后的作用,是整式乘法的关键.单项式乘多项式是研究多项式与多项式相乘、整式的除法和因式分解的基础,同时也是学习物理、化学等学科不可缺少的工具.本节课的教学效果将直接影响后续课程的教学.3.教学重点(1)单项式与单项式相乘法则的概括过程和运用.(2)单项式与多项式相乘法则的概括过程和运用.二、目标解析1.目标(1)理解单项式乘单项式、单项式乘多项式法则.(2)能够运用单项式乘单项式、单项式乘多项式法则进行运算.(3)在探索单项式与多项式相乘法则中,发展学生的运算能力,体会转化思想和数形结合的思想.2.目标解析(1)学生能理解并掌握单项式与单项式相乘、单项式与多项式相乘法则.(2)学生能运用单项式与单项式、单项式与多项式相乘法则.(3)结合具体的实例,让学生体会从特殊到一般的数学思想及类比的学习方法.三、学情诊断八年级学生已经掌握了有理数的乘法,并对幂的运算性质有一定的认知水平,再利用单项式与单项式相乘法则过程中,符号是计算过程中极易出错的问题.单项式与多项式相乘是利用乘法分配律展开,结果是一个多项式,其项数与多项式中的项数相同,学生往往出现漏乘现象.四、教学策略1.教学手段利用多媒体和导学案辅助教学,提高课堂效率和学生的积极性.2.教学工具电脑和投影仪.五、教学过程本节课以教材为蓝本,以学生为主体,以高效为目标,以多媒体和导学案为手段,我将整个教学过程设计为以下8个环节:1.观看视频,激发热情首先让学生欣赏一段天宫二号起飞的视频,再提出问题:“天宫二号飞行的高度怎么求?”,由于学生已经学过路程问题,他们很快能说出“速度乘时间”.【设计意图】由天宫二号起飞视频入手,提高学生的学习积极性,既能让学生体会到数学来源于生活,也能服务于生活,更能激发学生的爱国热情.2.引入问题,探索新知新课标指出,教师是课堂教学的组织者、引导者、合作者,学生才是学习的主体.因此在这一环节,我引导学生探索,设置了问题1.问题1 “天宫二号”垂直起飞的平均的速度约7×103m/s,垂直飞行的时间约2×102s,你知道“天宫二号”垂直飞行路程约是多少吗?问题1是由学生观看的视频抽象出来数学问题,并提出问题:“天宫二号”的垂直飞行的路程是多少呢?学生根据已经学过的知识,很容易的得出结论(7×103)×(2×102)m.我接着问:“那么(7×103)×(2×102)等于多少呢”,学生根据整数与整数的乘法和科学记数法等知识,能求出结果是1.4×106.肯定学生的回答后,再次追问了一个问题:在计算(7×103)×(2×102)的过程中,运用了哪些运算律和运算性质?这个问题不是很难,学生能够回答,结论是:乘法交换律、乘法结合律以及幂的运算性质.为了进一步引导,我追问了两个问题.追问1 如果将数据7×103改为7c3,2×102改为2c2,怎样计算7c3·2c2这个式子?追问2 如果将数据7c3改为ac3,那怎样计ac3·2c2这个式子?追问1是将问题1中物理问题转化为纯数学问题,把数据10换成c.追问2是将思考题1中的7换成了a.通过追问1和追问2,我把“数”的运算转化为“式”的运算,并在此基础上,让小组合作讨论、归纳和总结出“式”的运算规律,即单项式与单项式相乘法则.【设计意图】第一个环节,是为探索单项式与单项式相乘法则做知识铺垫,第二个环节通过由特殊到一般,由具体到抽象,通过类比得出单项式与单项式相乘法则,同时也培养学生了探索新知的方法.3.总结新知,应用新知通过问题1探究,归纳提炼出单项式与单项式相乘法则,即:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.在这个运算法则里,要强调三个方面的内容,即系数、同底数幂和只在一个单项式里含有的字母.为了引导学生使用这个法则,我设置了例题1.例1 计算:(1)(-5a2b)(-3a) (2) (2x)3(-5xy2)运用法则解决问题时,首先要认清式子的结构,即是否单项式与单项式相乘.显然例1第一题符合这样的结构,而例1第二题不符合这样的结构,式子里面有一个积的乘方运算,所以先运算积乘方,然后转化为单项式与单项式相乘.【设计意图】引导学生使用法则,加深学生对法则的理解.4.应用新知提高能力为了突出难点1,我设置了练习1和练习2.练习1 口算下列各题,看谁算得又对又快:(1) 6x2·3xy(2) 4y·(-2xy2)(3) (-3ab)·2ab2(4) (-3x)2·5x3练习2 计算:(1) (-3x)2·4x2(2) (-2a)3·(-3a)2练习1是一个抢答题,不但提高了学生的积极性,也活跃了课堂气氛,更让学生加强了p c b a 对法则的理解和应用.练习2由学生独立完成,学生代表板书.师生共同点评学生代表板书结果,适时提醒学生注意符号问题.练习1、练习2加强了单项式与单项式相乘法则的应用.【设计意图】第一个环节是为了激发学生的积极性,活跃课堂氛围,初步检查了部分学生的掌握情况.第二个环节是检验全体学生的掌握情况.5.引入问题 再探新知为了突破重点2,我引入了问题2,把实验中学的“思源广场”花坛抽象成为数学问题. 问题2 为了扩大绿地面积,实验中学把“思源广场”的一块长pm ,宽bm 的长方形绿地,向两边分别加宽am 和cm ,你能用几种方法表示扩大后的整个绿地面积?学生根据数形结合思想,用两种不同方式表示花坛的面积,利用面积不变这一条件,得到一个单项式乘多项式等于多项式,并由小组合作探究单项式与多项式相乘的规律.【设计意图】由校园内的“思源广场”引出新知,可以增加学生的学习兴趣.在推导法则过程中,体会转换和数形结合的思想的应用.6.归纳新知 应用新知根据小组探究结果,由小组代表总结出单项式与多项式相乘法则,即:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 在得出单项式与多项式相乘法则后,引导学生发现,单项式与多项式相乘,实质是利用乘法分配律转化为单项式与单项式相乘,再把所得的积相加.这一过程体现了转化的数学思想. 为了突破难点2,我设置了例题2.例2 计算:(1)(-4x )·(3x+1) (2)221(2)32ab ab ab -⋅ 【设计意图】加强对法则的理解,由老师根据法则完成例题2,并适时提醒学生避免出现“漏乘”现象,并注意符号问题.7.训练新知 拓展提升a b2b 3a第一个环节,为了突破难点2,我设置了练习3.练习3 计算:(1)3a(5a-2b) (2)(x-3y)(-6x)练习3由学生独立完成,学生代表板书.师生共同点评学生代表板书结果,并了解下面学生掌握情况,适时提醒可能出现的问题.【设计意图】由学生独立完成,学生代表板书,可以检验学生对法则的掌握情况为了培养学生的发散思维,第二个环节设置了一个拓展提升题:如图是改造后的“思源广场”花坛,你能求出它的整个面积吗?在这个环节中,小组内再次合作交流,从不同角度看待这个问题,通过一题多思,一题多解培养学生的探索精神和创新意识.通过学生发言讲解,体现学生是课堂的主体,把课堂真正还给学生.【设计意图】用不同方法求面积,培养学生的发散思维.8.总结收获课后反思为了让学生能清晰的理出本节课所学的知识,我引导学生从两个方面进行总结:(1)本节课在数学知识上你有哪些收获?(2)本节课体现出了哪些数学思想?【设计意图】通过归纳总结,优化知识结构,完善知识体系,体会数学思想,提高认知水平,同时培养了学生的归纳能力、语言表达能力.本节课同学们共同探讨了单项式与单项式相乘、单项式与多项式相乘法则,知识点都是学生通过探索、归纳发现的.对知识的理解步步深入,达到了各层次的目标要求,并且本节课注重了知识的拓展延伸,使课堂效益达到最佳状态.美中不足的是,小组合作学习中的参与度不均衡,语言表达能力强的学生参与的机会相对多,另一些学生却习惯于当听众,被动的接受别人的观点.也有个别同学课前预习没有落实,对老师提出的问题有些茫然.在今后教学中,我将督促学生养成课前预习的习惯,鼓励学生积极参与到课堂学习中来.我的说课到此结束,谢谢大家!。
整式的乘法(二)八年级数学上(人教版)学习教案

运算顺序 23 x3 5xy2
40x4 y2
数式通性
(5)提高运算正确率. 注意结果的运算符号; 注意幂的运算性质的正确应用; 注意运算顺序 ......
课后作业
1.计算
(1) 3x2 5x3
(3) 3x2 4x2
(2) 4y 2xy2
(4) 2a3 3a2
8x4 y2
(2) 5a2b 3a
53a2 ab
15a3b
练习 下面的计算对不对?如果不对,请改正 (1)3a3 2a2 6a6 × 3a3 2a2 6a32 6a5
(2)2x2 3x2 6x4 √
(3)3x2 4x2 12x2 × 3x2 4x2 12x22 12x4 (4)5y3 3y5 15y15 × 5y3 3y5 15y35 15y8
2
10a4b5c
先定符号
练习
解: (1) a2 2 3ab2 3 a4 27a3b6
27 a4a3 b6
27a7b6
幂的运算性质
23xy x2z6xy2z
18x x2 xy y2 z z
18x4 y3z2
先定符号
拓展提升:已知 1 (x2 y3)m与 2xyn1 2 的积是 8
先乘方 单项式的乘法运算
例 计算
解:(1)2mn3 mn2 3
8m3n3 m3 n2 3
8m3n3 m3n6
8 m3m3 n3n6
8m6n9
幂的运算性质
单项式乘单项式法 则同样适用
(2)5a2b3 4b2c 1 a2 2
5
4
1
a2a2
b3b2 c
积的乘方,等于把积的每一个因式分别乘方, 再把所得的幂相乘.
计算:
八年级数学上册 整式的乘法教案2 (新版)新人教版

整式的乘法 教学目标:知识与技能1、在具体情境中了解多项式与单项式的相乘的意义;2、理解多项式与单项式相乘的运算法则;3、会进行多项式与单项式的乘法运算。
过程与方法 1、经历探索多项式与单项式相乘的乘法法则的过程,体会乘法分配律的作用以及“整体”和“转化”的数学思想;2、通过对乘法法则的探索,归纳与描述,发展有条理思考的能力和语言表达能力;情感、态度与价值观 在探究乘法法则的过程中,体会“整体”和“转化”的思想,体验学习和把握数学问题的方法,树立学好数学的信心,培养学习数学的兴趣。
教学重点:多项式的乘法法则及其应用。
教学难点:探索多项式的乘法法则,灵活地进行整式的乘法运算。
教学过程:一、复习引入:1、复习单项式乘以多项式的法则:计算:)1(2)1(x x -- )9()1944)(2(2x x x -⋅-- ][)1(3)4(3)3(2+-+--x x x x x2、问题引入:求各个图示给出的矩形的面积。
学生活动:图(1)所示的矩形面积为m(a+n)=ma+mn图(2)所示的矩形面积为b(a+n)=ba+bn图(3)所示的矩形面积为(m+b)(a +n)二、探索多项式乘以单项式的运算法则:师生互动:呈接上问,另一方面,图(3)所示的矩形面积是图(1)、(2)所示矩形面积之和。
所以有:)()())((n a b n a m n a b m +++=++学生小结:这是多项式乘以单项式,这一过程,可以看成是把第二个多项式看成一个整体,用第一个多项式里各项分别去乘以第二个多项式。
教师启发学生用数学式子或用自己的语言归纳、描述多项式乘以多项式的运算法则。
如: nc nb na mc mb ma c b a n c b a m c b a n m +++++=+++++=+++)()())((利用乘法分配律,用一个多项式里的各项分别去乘以另一个多项式里的每一项,再把所得的积相加。
三、过手训练:1、例1、计算:)6.0)(1)(1(x x --))(2)(2(y x y x -+2))(3(y x -2)32)(4(+-x)2)(1()3)(2)(5(-+-++y x y x解:(写出完整解答)师生点评:(1)、用一个多项式的每一项乘遍另一个多项式的每一项,不要漏乘,在没有合并同类项之前,两个多项式相乘展开后的项数应是原来两个多项式项数之积。
14.1.4 整式的乘法(第2课时)说课稿2022-2023学年人教版八年级数学上册

14.1.4 整式的乘法(第2课时)说课稿一、教材分析本节课是《2022-2023学年人教版八年级数学上册》中第14章第1节的第4个课时,主要讲解整式的乘法。
本节课的教学内容包括整式的基本概念、整式的乘法法则、多项式的乘法等。
通过本节课的学习,学生将进一步巩固整式的概念和性质,掌握整式的乘法法则,培养学生解决实际问题的能力。
二、教学目标1.知识与技能:•掌握整式的基本概念及其表示方法;•理解整式的乘法法则;•掌握多项式的乘法运算。
2.过程与方法:•运用归纳法整理策略,提高整理信息的能力;•运用数学语言表达数学概念和数学推理,培养数学思维能力。
3.情感态度价值观:•培养学生对数学知识的兴趣和探究欲望;•培养学生的合作意识和共享精神。
三、教学重点•整式的乘法法则;•多项式的乘法运算。
四、教学难点•多项式的乘法运算。
五、教学过程本节课的教学过程分为四个环节:导入新课、讲解新知、练习巩固、课堂小结。
环节一:导入新课通过提问的方式引导学生回顾上节课所学内容,复习整式的基本概念和性质。
例如,让学生回答以下问题:1.什么是整式?它有哪些基本组成部分?2.你能用自己的话解释一下整式的加法和减法运算法则吗?环节二:讲解新知在导入环节复习之后,引入本节课的新知:整式的乘法法则。
首先,提供一个具体的例子让学生观察和思考,例如:已知:(3x + 4)(2x - 5)请你计算乘积(3x + 4)(2x - 5)的结果。
通过学生的思考,引导他们观察并总结出整式的乘法法则,例如:整式的乘法法则:将每个被乘数的每一项依次与乘数的每一项相乘,然后将各项的乘积相加即可。
接下来,通过几个具体的例子向学生展示整式的乘法运算步骤,并注重解释每一步的原理和获得结果的意义。
同时,可以引导学生发现和讨论与整数有关的乘法特殊法则,例如相同项乘积的规律等。
环节三:练习巩固在讲解新知环节结束后,安排一些练习题,以巩固学生对整式的乘法法则的理解和运用能力。
人教版八年级上册数学《整式的乘法》整式的乘法与因式分解教学说课(第2课时单项式与多项式相乘)

多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个
多项式的每一项,再把所得的积相加。
2
1
1
2
3
4
(a+b)(m+n)=am+an+bm+bn
34
多乘多顺口溜:
多乘多,来计算,多项式各项都见面, 乘后结果要相加,化简、排列才算完.
例1 计算:(1)(3x+1)(x+2);
解: (1)× 错因:不注意单项式和多项式中每一项的符号. 改正:-2x(3x2y-2xy)=-6x3y+4x2y. (2)× 错因:漏乘了多项式中的项. 改正:2xy2(-x2+2y2+1)=-2x3y2+4xy4+2xy2 (3)× 错因:漏乘了单项式中单独的字母“c”. 改正:(3ab3-2ab)·abc=3a2b4c-2a2b2c. (4)√
式乘以多项式
导入新课
1.如何进行单项式与多项式乘法的运算?
① 将单项式分别乘以多项式的各项, ② 再把所得的积相加.
2.进行单项式与多项式乘法运算时,要注意什么?
① 不能漏乘: 即单项式要乘遍多项式的每一项 ② 去括号时注意符号的确定.
多项式乘以多项式
观察上面四个等式,你能发现什么规律?并应用这个规律解决 下面的问题. 口答: (x+a)(x+b)=x2+__(a_+_b_) _x+_a_b__;
(x-7)(x+5)=x2+_(_-2_) x+_(_-3_5_) _;
能力提升:小东找来一张挂历画包数学课本.已知课本长a厘米, 宽b厘米,厚c厘米,小东想将课本封面与封底的每一边都包进 去m厘米,问小东应在挂历画上裁下一块多大面积的长方形?
人教版八年级数学上册整式的乘法和因式分解《整式的乘法(第2课时)》示范教学课件

a=2555=(25)111=32111, b=3444=(34)111=81111,c=4333=(43)111=64111, d=5222=(52)111=25111.因为81>64>32>25,所以b>c>a>d.
人教版八年级数学上册
整式的乘法第2课时
同底数幂相乘,底数不变,指数相加.
am·an=am+n(m,n都是正整数).
1.同底数幂的乘法的运算法则:
符号语言:
文字语言:
2.am·an·ap=_________(m,n,p都是正整数).
am+n+p
5.同底数幂的乘法的逆运算:同底数幂的乘法的运算法则可以逆用,即 (m,n都是正整数).当指数为多项式且项数大于等于 3 时同样适用,即 (m,n,p都是正整数).
问题
(3)先说出下列各式的意义,再计算下列各式:
(23)2表示____________;(a4)3表示____________;(am)5表示____________.
2个23相乘
3个a4相乘
5个am相乘
从上面的计算中,你发现了什么规律?
(23)2=23×23=23+3=26;
(a4)3=a4·a4·a4=a4+4+4=a12;
幂的乘方,底数不变,指数相乘.
(am)n=amn(m,n都是正整数).
幂的乘方的运算法则
多重乘方可以重复运用上述法则:
[(am)n]p=amnp(m,n,p都是正整数).
幂的乘方,底数不变,指数相乘.
(am)n=amn(m,n都是正整数).
幂的乘方的逆运算是怎样的呢?
八年级数学上人教版《整式的乘法》教案

《整式的乘法》教案一、教学目标:1.掌握整式乘法的基本法则和运算步骤。
2.能够正确地进行整式的乘法运算。
3.培养学生的运算能力和代数思维,体验数学中的一般思想和方法。
二、教学内容:1.单项式与单项式相乘。
2.单项式与多项式相乘。
3.多项式与多项式相乘。
4.乘法公式。
三、教学重点:1.单项式与单项式、单项式与多项式、多项式与多项式相乘的运算法则。
2.乘法公式的推导和应用。
四、教学难点:1.乘法公式的推导和理解。
2.运用乘法公式进行复杂整式乘法的运算。
五、教学方法:1.通过实例引入,引导学生自主探究,发现整式乘法的规律和法则。
2.通过讲解、示范和练习相结合的方式,使学生掌握运算法则和运算步骤。
3.运用多媒体教学工具,帮助学生更好地理解抽象的概念和解决问题的方法。
六、教学过程:1.导入新课:通过复习旧知,引出新课题。
引导学生观察、思考整式乘法的规律和特点。
2.新课学习:通过实例讲解和示范,引导学生探究单项式与单项式、单项式与多项式、多项式与多项式相乘的运算法则。
然后通过练习题和例题讲解,使学生掌握运算法则和运算步骤。
最后推导乘法公式,并讲解其意义和应用。
3.课堂练习:通过练习题和例题讲解,使学生能够正确地进行整式的乘法运算,并运用乘法公式进行复杂整式乘法的运算。
同时引导学生发现整式乘法中的规律和特点,培养其代数思维和运算能力。
4.归纳小结:总结整式乘法的运算法则和运算步骤,强调重点和难点。
同时强调学生在运算中需要注意的事项,如符号问题、括号问题等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法(2)
(一)教学目标
知识与技能目标:
掌握单项式与多项式相乘的法则.
过程与方法目标:
●理解单项式乘以多项式运算的算理.
●体会乘法的分配律的作用.
●发展有条理的思考及语言表达能力.
情感态度与价值观:
通过学生板算、讨论、争论等方法培养学生归纳、概括能力,以及运算能力. 教学重点:单项式与多项式相乘的法则.
教学难点:对单项式乘以多项式运算的算理的理解.
(二)教学程序
教学过程
15.1.4整式的乘法(2)
单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.。