数系的扩充和复数的概念
数系的扩充与复数的概念 课件

复数的分类 m 取何实数时,复数 z=m2m-+m3-6+(m2-2m-
15)i. (1)是实数? (2)是虚数? (3)是纯虚数? [分析] 在本题是复数的标准形式下,即 z=a+bi(a,b∈
R),根据复数的概念,只要对实部和虚部分别计算,总体整合 即可.
[解析] (1)由条件得mm+2-32≠m0-,15=0, ∴mm= ≠5-或3m. =-3, ∴当 m=5 时,z 是实数. (2)由条件得mm+2-32≠m0-. 15≠0, ∴mm≠ ≠5-且3m. ≠-3, , ∴当 m≠5 且 m≠-3 时,z 是虚数.
3.复数的定义:形如a+bi(a、b∈R)的数叫做复数,其中 i叫做虚数单位,满足i2=___-__1___.
这一表示形式叫做复数的代数形式,a与b分别叫做复数z的 __复__数_集___与__虚_部_____.全体复数构成的集合叫做 实部
复数的相等与复数的分类
4.复数相等的充要条件
设a、b、c、d都是实数,那么a+bi=c+ di⇔a_=__c且__b_=_d_______.
数系的扩充与复数的概念
数系的扩充与复数的概念
我们认识数的过程是先认识了自然数,又扩充到整数集,再扩充到有 理数(分数、有限小数和无限循环小数),再扩充无理数到实数集,但 在实数集中,我们已知一元二次方程ax2+bx+c=0(a≠0),当Δ= b2-4ac<0时无实数解,我们能否设想一种方法使得Δ<0时方程也有 解呢?
1.数系扩充的原因、脉络、原则
脉 络 : 自 然 数 系 → 整 数 系 → 有 理 数 系 → 实 数 系 → _ _ _ _复_ _数_系_
原因:数系的每一次扩充都与实际需求密切相关,实际需求与 数学内部的矛盾在数系扩充中起了主导作用.
( 人教A版)数系的扩充和复数的概念课件 (共29张PPT)

(3)要使 z 为纯虚数,必须有 m2-4≠0, m2-3m+2=0. 所以mm≠ =-1或2m且=m≠ 2,2, 所以 m=1,即 m=1 时,z 为纯虚数.
探究三 复数相等
[典例 3] 根据下列条件,分别求实数 x,y 的值. (1)x2-y2+2xyi=2i; (2)(2x-1)+i=y-(3-y)i. [解析] (1)∵x2-y2+2xyi=2i,x,y∈R, ∴2xx2-y=y22=,0, 解得xy==11,, 或xy==--11., (2)∵(2x-1)+i=y-(3-y)i,且 x,y∈R,
-2i. 答案:A
3.下列命题: ①若 a∈R,则(a+1)i 是纯虚数; ②若(x2-1)+(x2+3x+2)i(x∈R)是纯虚数,则 x=±1; ③两个虚数不能比较大小. 其中正确命题的序号是________. 解析:当 a=-1 时,(a+1)i=0,故①错误;两个虚数不能比较大小,故③对; 若(x2-1)+(x2+3x+2)i 是纯虚数,则xx22- +13= x+0, 2≠0, 即 x=1,故②错. 答案:③
解析:复数 z=a+bi(a,b∈R)的虚部为 b,故选 B.
答案:B
2.下列复数中,和复数-1+i 相等的复数为( )
A.-1-i
B.1-i
C.1+i
D.i2+i
解析:∵i2=-1,∴i2+i=-1+i,故选 D.
答案:D
3.z=(m2-1)+(m-1)i(m∈R)是纯虚数,则有( )
A.m=±1
A.0
B.1
C.
D.3
解析:27i,(1- 3)i 是纯虚数,2+ 7,0,0.618 是实数,8+5i 是虚数. 答案:C
2.以- 5+2i 的虚部为实部,以 5i+2i2 的实部为虚部的复数是( )
数系的扩充及复数的概念

知识引入
我们已知知道:
对于一元二次方程
x 1 0 没有实数根.
2
思考?
x 1
2
我们能否将实数集进行扩充,使得在新的 数集中,该问题能得到圆满解决呢?
引入一个新数:
i
满足
i 1
2
复数的概念
现在我们就引入这样一个数 i ,把 i 叫做虚数单位,
并且规定: (1)i21; (2)实数可以与 i 进行四则运算,在进行四则运 算时,原有的加法与乘法的运算律(包括交换率、结 合率和分配率)仍然成立。
(1)若a、b为实数,则Z=a+bi为虚数
(2)若b为实数,则Z=bi必为纯虚数 (3)若a为实数,则Z= a一定不是虚数
例1 实数m取什么值时,复数
z m 1 (m 1)i
m 1时,复数z 是实数.
m 1
是(1)实数? (2)虚数? (3)纯虚数?
解: (1)当 m 1 0,即 (2)当 m 1 0 ,即 (3)当 m 1 0
形如a+bi(a,b∈R)的数叫做复数.
全体复数所形成的集合叫做复数集,一般用字 母C表示 .
复数的代数形式: 通常用字母 z 表示,即
z a bi (a R, b R)
实部
虚部
其中
i 称为虚数单位。
注意:
(1)当b=0时,a+bi就是实数,如:1,2.5,-1/2 (2)当b≠0时,a+bi是虚数,(含 虚 数 单 位 i)时,复数z来自是虚数. m 1 0
2
即 纯虚数.
m 1时,复数z 是
2
练习:当m为何实数时,复数
7.1.1数系的扩充和复数的概念课件(人教版)

B.2,-3
C.-2,3
( B )
D.-2,-3
分析:两个复数相等,即这两个复数的实部和虚部分别对应相等,
得到等式求解.
解析:由2+bi与a-3i相等,得a=2,b=-3.故
实数a,b的值分别为2,-3.
五、举例应用 掌握定义
【例6】若关于x的方程3x²- x-1=(10-x-2x²)i有实根,求实
问题2:两个复数有大小关系吗?探究5:复数z=a+bi在什么条件下是实数、虚数?
四、定义辨析 强化理解
辨析1:若a,b为实数,则z=a+bi为虚数.( × )
提示:只有当b不等于零时z=a+bi为虚数.
辨析2:复数z1=3i,z2=2i,则z1>z2. ( × )
提示:复数不能比较大小,只有相等和不相等之分.
辨析3:复数z=bi(b∈R)是纯虚数.
( × )
提示:只有当b不等于零时z=bi才为纯虚数.
辨析4:实数集与复数集的交集是实数集.( √ )
提示:因为实数和虚数统称为复数,故实数集与复数
集的交集是实数集.
五、举例应用 掌握定义
【例1】复数3-i的实部和虚部分别是( C )
A.3和1
B.3和i
C.3和-1
所以ቊ
≠ 0.
解得y=3.
五、举例应用 掌握定义
【例4】 已知复数z=
²−−6
+(m²-2m-15)i.当m为何值时,
+3
(1)z是虚数;(2)z是纯虚数.
分析:解决复数分类问题的关键是找出等价条件,
列出方程(组).
五、举例应用 掌握定义
【例4】 已知复数z=
数系的扩充和复数的概念

必要不充分
条件.
17:06
思
考
复数集与实数集、虚数集、纯虚数集
之间有什么关系?
17:06
复数的分类
实数(b 0) 纯虚数(a 0,b 0) 1、复数z=a+bi 虚数(b 0) 非纯虚数(a 0,b 0)
2. 复数集、虚数集、实数集、 纯虚数集之间的关系
17:06
在测量过程中,常常会发生度量不尽的 情况,如果要更精确地度量下去,就必然 产生自然数不够用的矛盾.这样,正分数就 应运而生.据数学史书记载,三千多年前埃 及纸草书中已经记有关于正分数的问题.引 进正分数,这是数的概念的第一次扩展. 最初 人们在记数时,没有“零” 的概念.后来,在 生产实践中,需要记录和计算的东西越来越 多,逐渐产生了位值制记数法.有了这种记 数法,零的产生就不可避免的了.我国古代 筹算中,利用 “空位”表示零.公元6世纪, 印度数学家开始用符号“0”表示零.
17:06
• 上面,我们简要地回顾了数的发展过程.必须 指出,数的概念的产生,实际上是交错进 行的.例如,在人们还没有完全认识负数之 前,早就知道了无理数的存在;在实数理论 还未完全建立之前,经运用虚数解三次方程 了. 直到19世纪初,从自然数到复数的理论 基础,并未被认真考虑过.后来,由于数学 严密性的需要以及公理化倾向的影响,促 使人们开始认真研究整个数系的逻辑结构. 从19世纪中叶起,经过皮亚诺(G.Peano, 1855~1939)、康托尔(G.Cantor, 1845~1918)、戴德金(R.Dedekind, 1831~1916)、外尔斯特拉斯
x 2 y i (2x 5) (3x y)i
求 x与 y .
,
y R,
数系的扩充和复数的概念

数学的发源地.
古代印度人最早使用了“0” 公元5世纪时,“0”已经传入罗马。
但罗马教皇凶残而且守旧。他不允许任 何使用“0”。有一位罗马学者在笔记中 记载了关于使用“0”的一些好处和说明, 就被教皇召去,砍去了双手
2021/2/4
1
3
数系的扩充 SHUXI DI KUOCHONG
复数的代数形式 复数的实部 、虚部
虚数、纯虚数
复数相等
2021/2/4
1
29
谢谢观赏!
2020/11/5
30
(3)全体复数所形成的集合叫做复数 集,一般用字母 C 表示.
2021/2/4
1
19
C RQZ N
2021/2/4
1
20
数系的扩充 SHUXI DI KUOCHONG
1.新数 i 叫做虚数单位,并规定: (1)i 2 1; (2)实数可以与 i 进行四则运算,在进
行四则运算时,原有的加法与乘法 的运算律仍然成立.
2021/2/4
1
21
例题讲解
例1.写出下列复数的实部与虚部.
4 , 23i, 0 , 1 4 i,
5 2i, 6i 2 3
解: 4的实部为 4 ,虚部为 0 ;
2-3i的实部为 2 ,虚部为 -3 ;
0的实部为 0 ,虚部为 0 ;
1 2
4i 3
的实部为
1
2 ,虚部为
4
3;
5 2i的实部为 5 ,虚部为 2 ;
中国是世界上最早认识应用负数的
国家.早在2000多年前的《九章算术》 中,就有正数和负数的记载.公元3世纪,
刘徽在注解“九章算术”时,明确定义了正 负数:“两算得失相反,要令正负以名之”. 不仅如此,刘徽还给出了正负数的加减法 运算法则.千年之后,负数概念才经由阿 拉伯传人欧洲。负数的引入, 解决了在自然 数集中不够减的矛盾
人教版数学 选修1-2 1 数系的扩充和复数的概念(共14张ppt)教育课件

: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
有些人经常做一些计划,有的计划几乎 不去做 或者做 了坚持 不了多 久。其 实成功 的关键 是做很 坚持。 上帝没 有在我 们出生 的时候 给我们 什么额 外的装 备,也 许你对 未来充 满迷惑 ,也许 你觉得 是在雾 里看花 ,但是 只要我 们不停 的去做 ,去实 践,总 是可以 走到一 个鲜花 盛开的 地方, 也许在 那个时 候,你 就能感 受到什 么叫柳 暗花明 。走向 成功的 过程就 好像你 的起点 是南极 ,而成 功路径 的重点 在北极 。那么 无论你 往哪个 方向走 ,只要 中途的 方向不 变,最 终都会 到达北 极,那 就在于 坚持。
高中数学选修2-2第三章数系的扩充和复数的引入3.1.1数系的扩充和复数的概念讲义

3.1.1 数系的扩充和复数的概念1.虚数单位i在实数集R 中添加新数i ,规定:(1)i 2=□01-1,其中i 叫做虚数单位;(2)i 可与实数进行□02四则运算,且原有的加、乘运算律仍然成立. 2.复数的相关概念集合C ={a +b i|a ∈R ,b ∈R }中的数,即形如a +b i(a ,b ∈R )的数叫做□03复数,其中i 叫做□04虚数单位.全体复数的集合C 叫做□05复数集. 复数通用字母z 表示,即z =a +b i(a ,b ∈R ),这一表示形式叫做□06复数的代数形式.其中的a 与b 分别叫做复数z 的□07实部与虚部. 3.复数的分类对于复数z =a +b i ,当且仅当□08b =0时,它是实数;当且仅当□09a =b =0时,它是实数10b≠0时,叫做虚数;当□11a=0,且b≠0时,叫做纯虚数.0;当且仅当□4.复数相等的充要条件在复数集C={a+b i|a,b∈R}中任取两个数a+b i,c+d i(a,b,c,d∈R),规定:a +b i与c+d i的充要条件是□12a=c且b=d(a,b,c,d∈R).复数相等的充要条件(1)两个复数相等的充要条件中,注意前提条件是a,b,c,d∈R,若忽略这一条件,则不能成立.因此解决复数相等问题时,一定要把复数的实部与虚部分离出来,再利用相等条件.(2)复数相等的条件是把复数问题转化为实数问题是重要依据,是复数问题实数化这一重要数学思想方法的体现.利用这一结论,可以把“复数相等”这一条件转化为两个实数等式,为应用方程思想提供了条件,这一思想在解决复数问题中非常重要.1.判一判(正确的打“√”,错误的打“×”)(1)若a,b为实数,则z=a+b i为虚数.( )(2)若z=m+n i(m,n∈C),则当且仅当m=0,n≠0时,z为纯虚数.( )(3)b i是纯虚数.( )(4)如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.( )答案(1)×(2)×(3)×(4)√2.做一做(1)若a+b i=0,则实数a=________,实数b=________.(2)(1+3)i的实部与虚部分别是________.(3)若复数(a+1)+(a2-1)i(a∈R)是实数,则a=________.答案(1)0 0 (2)0,1+ 3 (3)±1探究1复数的有关概念例1 给出下列四个命题:①两个复数不能比较大小;②若x,y∈C,则x+y i=1+i的充要条件是x=y=1;③若实数a与a i对应,则实数集与纯虚数集一一对应;④纯虚数集相对复数集的补集是虚数集.其中真命题的个数是________.[解析]①中当这两个复数都是实数时,可以比较大小;②由于x,y都是复数,故x+y i不一定是复数的代数形式,不符合复数相等的充要条件;③若a=0,则a i不是纯虚数;④由纯虚数集、虚数集、复数集之间的关系知,所求补集应是非纯虚数集与实数集的并集.[答案]0拓展提升数集从实数集扩充到复数集后,某些结论不再成立.如:两数大小的比较,某数的平方是非负数等.但i 与实数的运算及运算律仍成立. 【跟踪训练1】 下列命题中: ①若a ∈R ,则(a +1)i 是纯虚数; ②若a ,b ∈R 且a >b ,则a +i>b +i ;③若(x 2-1)+(x 2+3x +2)i 是纯虚数,则实数x =±1; ④两个虚数不能比较大小. 其中,正确命题的序号是( ) A .① B .② C .③ D .④ 答案 D解析 对于复数a +b i(a ,b ∈R ),当a =0且b ≠0时为纯虚数. 在①中,若a =-1,则(a +1)i 不是纯虚数,故①错误; 在②中,两个虚数不能比较大小,故②错误;在③中,若x =-1,x 2+3x +2≠0不成立,故③错误; ④正确.探究2 复数的分类例2 当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为:(1)实数?(2)虚数?(3)纯虚数?[解] (1)当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数;(2)当m 2-2m ≠0,即m ≠0且m ≠2时,复数z 是虚数;(3)当⎩⎪⎨⎪⎧m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.[条件探究] 是否存在实数m ,使z =(m 2-2m )+m 2+m -6mi 是纯虚数?[解] 由z =(m 2-2m )+m 2+m -6mi 是纯虚数,得⎩⎪⎨⎪⎧m 2-2m =0,m 2+m -6m≠0,解得m ∈∅.即不存在实数m ,使z =(m 2-2m )+m 2+m -6mi 是纯虚数.拓展提升利用复数的分类求参数的值或取值范围的一般步骤(1)判定复数是否为a +b i(a ,b ∈R )的形式,实部与虚部分别为哪些; (2)依据复数的有关概念将复数问题转化为实数问题; (3)解相应的方程(组)或不等式(组); (4)求出参数的值或取值范围. 【跟踪训练2】 已知m ∈R ,复数z =m m +2m -1+(m 2+2m -3)i ,当m 为何值时,(1)z 为实数? (2)z 为虚数? (3)z 为纯虚数?解 (1)要使z 为实数,需满足m 2+2m -3=0,且m m +2m -1有意义,即m -1≠0,解得m=-3.(2)要使z 为虚数,需满足m 2+2m -3≠0,且m m +2m -1有意义,即m -1≠0,解得m ≠1且m ≠-3.(3)要使z 为纯虚数,需满足m m +2m -1=0,且m 2+2m -3≠0,解得m =0或m =-2.探究3 复数相等例3 已知M ={1,(m 2-2m )+(m 2+m -2)i},P ={-1,1,4i},若M ∪P =P ,求实数m 的值.[解] ∵M ∪P =P ,∴M ⊆P ,即(m 2-2m )+(m 2+m -2)i =-1或(m 2-2m )+(m 2+m -2)i =4i. 由(m 2-2m )+(m 2+m -2)i =-1,得⎩⎪⎨⎪⎧ m 2-2m =-1,m 2+m -2=0,解得m =1.由(m 2-2m )+(m 2+m -2)i =4i ,得⎩⎪⎨⎪⎧m 2-2m =0,m 2+m -2=4,解得m =2.∴实数m 的值为1或2.拓展提升复数相等的充要条件是实部相等且虚部相等.复数问题实数化多用来求参数,其步骤是:分别确定两个复数的实部和虚部,利用实部与实部、虚部与虚部分别相等,列方程组.【跟踪训练3】 已知A ={1,2,a 2-3a -1+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值.解 由题意知,a 2-3a -1+(a 2-5a -6)i =3(a ∈R ),∴⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0.解得⎩⎪⎨⎪⎧a =4或a =-1,a =6或a =-1,∴a =-1.故实数a 的值为-1.1.在复数a +b i 中,a ,b 必须是实数,否则不是复数的代数形式.2.复数的虚部是实数而不是虚数,即为“b ”,不是“b i”,更不是“i”.3.当且仅当b ≠0且a =0时,复数a +b i 才是纯虚数,解题时不能只注意a =0而忽视了b ≠0的限制.4.复数相等的充要条件是把复数问题转化为实数问题的重要依据,是复数问题实数化这一重要数学思想的体现.1.“a =0”是“复数a +b i(a ,b ∈R )是纯虚数”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 答案 A解析 因为复数a +b i(a ,b ∈R )是纯虚数⇔a =0且b ≠0,所以“a =0”是“复数a +b i(a ,b ∈R )是纯虚数”的必要不充分条件.2.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2i D.2+2i答案 A解析 3i -2的虚部为3,3i 2+2i 的实部为-3,所以所求复数为3-3i.3.已知复数z =a 2-(2-b )i 的实部和虚部分别是2和3,则实数a ,b 的值分别是________. 答案 ±2,5解析 由题意得:a 2=2,-(2-b )=3,所以a =±2,b =5. 4.设复数z =1m +5+(m 2+2m -15)i 为实数,则实数m 的值是________. 答案 3解析 依题意有⎩⎪⎨⎪⎧m 2+2m -15=0,m +5≠0,解得m =3.5.如果log 12(m +n )-(m 2-3m )i≥-1,求自然数m ,n 的值.解 ∵log 12 (m +n )-(m 2-3m )i≥-1,∴⎩⎪⎨⎪⎧log 12 m +n ≥-1,-m 2-3m =0.∴⎩⎪⎨⎪⎧0<m +n ≤2,m =0或m =3.∵m ,n ∈N ,∴m =0,n =1或n =2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《》教学设计
1.了解解方程等实际需要也是数系发展的一个主要原因,数集的扩展过程以及复数的
分类表;
2.理解复数的有关概念以及符号表示;
3.掌握复数的代数表示形式及其有关概念;
4.在问题情境中了解数系得扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.
【教学重点】引进虚数单位i的必要性、对i的规定以及复数的有关概念.
【教学难点】复数概念的理解.
【教学过程】
1.对数集因生产和科学发展的需要而逐步扩充的过程进行概括(教师引导学生进行简
明扼要的概括和总结)
自然数整数有理数无理数实数
2.提出问题
我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?
3.组织讨论,研究问题
我们说,实系数一元二次方程没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.解决这一问题,其本质就是解决一个什么问
题呢?组织学生讨论,引导学生研究,最后得出结论:最根本的问题是要解决-1的开平方问题.即一个什么样的数,它的平方会等于-1.
4.引入新数,并给出它的两条性质
根据前面讨论结果,我们引入一个新数,叫做虚数单位,并规定:(1);
(2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.有了前面的讨论,引入新数,可以说是水到渠成的事.这样,就可以解决前面提出的问题(-1可以开平方,而且-1的平方根是).
5.提出复数的概念
根据虚数单位的第(2)条性质,可以与实数b相乘,再与实数a相加.由于满足乘法交换律及加法交换律,从而可以把结果写成这样,数的范围又扩充了,出现了形如的数,我们把它们叫做复数.
全体复数所形成的集合叫做复数集,一般用字母C表示,显然有:N* N Z Q R C.
【巩固练习】
下列数中,哪些是复数,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么?
例1.实数m分别取什么值时,复数z=m+1+(m-1)i是
(1)实数?(2)虚数?(3)纯虚数?
分析:因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实、虚数、纯虚数与零的条件可以确定实数m的值.。